• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Methodology for predicting optical system performance when subjected to static stresses

    2016-12-12 05:04:45ALLAHAMRadwanMOUSSELLYMhdFawazNAIMMamoun
    中國光學(xué) 2016年6期
    關(guān)鍵詞:物鏡傳遞函數(shù)靜態(tài)

    AL-LAHAM Radwan, MOUSSELLY Mhd.Fawaz, NAIM Mamoun

    (Higher Institute for Applied Sciences and Technology,Damascus,Syria)*Corresponding author, E-mail:eng.rad.laham@gmail.com

    ?

    Methodology for predicting optical system performance when subjected to static stresses

    AL-LAHAM Radwan*, MOUSSELLY Mhd.Fawaz, NAIM Mamoun

    (HigherInstituteforAppliedSciencesandTechnology,Damascus,Syria)*Correspondingauthor,E-mail:eng.rad.laham@gmail.com

    High performance optical systems are characterized by high sensitivity to assembly procedure of the system and to any sensible change in environmental conditions. This sensitivity issue is handled in this paper through a methodology allowing a computational prediction of optical performance when the opto-mechanical system is subject to some external factors. This paper explains the methodology through an example of an optical objective of excellent performance undergoing static mechanical stresses which degrade the performance expressed by an MTF diagram. Then the objective is manufactured, assembled, and an optical interferometer is used to test the objective when stress is retained; and the experimental results of degraded MTF are compared to the analytical MTF. The excellent matching between the two sets of results confirms the validity of the proposed methodology.

    predicting optical performance;assembly of optical system;tensile torque;MTF;objective;Ansys;Matlab

    1 Introduction

    Optical systems are essential components in astronomy, scientific devices, medical instruments, and military equipments. Therefore, there has been a considerable research effort dedicated to designing and optimizing optical systems, and to evaluating their performances. This evaluation has been traditionally based on optical criteria developed during the twentieth century such as the PSF or MTF resulting from the numerical analysis of optical designs[1]. But this evaluation remains practically incomplete unless it includes an analytical study on the effect of static and dynamic mechanical stress resulting from the effect of fixing optical elements within their mountings(i.e. assembly of optical systems), the expansion of the optical elements in an environment with variable temperature, or the exposure to shockwaves or vibration[3].

    In all cases, the various types of stresses adversely affect the quality of the image formed by the optical system, and the system may completely fail to accomplish its function if these stresses exceed certain limits related to opto-mechanical design. For example, tension of an optical element with a retainer leads to surface deformation and generates stresses within this element, and these stresses depend on the shape of the contact contour between the element and the metallic mounting(sharp corner-torodial contact-tangential contact-circular contact-…[4]). If these stresses exceed 345 MPa as a compression stresses, the optical element will breakdown[1,4-5].

    The available scientific articles do not offer enough information about how the optical system performances could be analytically evaluated under various environmental conditions(stresses-pressure-temperature-…). The only significant work is presented under the form of the program “SIGFIT”. This software converts finite elements analysis(FEA) thermal and structural results obtained using the program ANSYS(or NASTRAN), into any of the well-known optical analysis programs such CODE V, ZEMAX, or OSLO[6].

    The accessible publications in this field include the research presented by Victor Genberg, Gregory Michels, and Keith Doyle who studied the effect of both temperature and stresses on the refractive index of glass materials using the finite elements method and its effect on the optical path difference[6-8]. They also investigated the behavior of adaptive optics and provided the obtained results under a form appropriate for optical design programs[9]. Furthermore, their research included a comprehensive study on the resulted birefringence[10-11]. However, the validity of the mentioned results depends on the correctness of the software SIGFIT which has not been thoroughly tested by independent institutions.

    Available publications also include the work of Martin Booth and his colleagues who developed two methods to characterize membrane deformable mirrors that were used in adaptive optical systems. One of these two methods utilizes a simple interferometer, and the deformable mirror is inserted in one arms of the interferometer and then they analyzed the fringes resulted from the mirror deformation[12].

    In this paper, we present a detailed study on the effect of static stresses on optical elements, specifically in the case of optical systems of very high performances, such as projective microlithography devices and space telescopes[4]. In such systems the stresses effects are not negligible compared to optical aberrations, and they may cause the optical system to fall short of fulfilling its intended functions. Therefore, a high performance objective lens has been designed for the sake of this study, and the methodology shown in Fig.1 was adopted in order to investigate the effective optical performance of this objective under static stresses. Practical confirmation of this methodology is illustrated in Fig.2 where an interferometer with double-pass auto-collimation was used.

    Fig.1 General scheme for predicting optical performance through the static structural analysis[3]

    Fig.2 Verification of optical system performance using a double-pass auto-collimation interferometer

    2 Optical design of the objective

    The current work included the application of the proposed methodology to predict the optical performance of a variety of objectives and eyepieces of telescopes that operate in the visible, and typically have a resolution less than 100 lp/mm. The results assert that the mechanical tension has no effect on the optical performance because the optical aberrations are much higher than the degradation caused by the tensile even when increased up to the break point of the glass material of the optical element. Therefore, it is necessary to apply the suggested methodology to an optical system of high performance so that a practical confirmation could be clearly observed and quantified.

    The well-known optical design program ZEMAX was used to design an objective with a very high resolution reaching 625 lp/mm atλ=628.3 nm and for an on-axis object point. Tab.1 shows the parameters of the designed objective, and Fig.3 displays its diffraction limit performance with a cutoff frequency 625 lp/mm.

    Fig.3 Optical performance of the designed objective

    Additionally, the tolerances analysis within ZEMAX confirms that this objective has low sensitivity to inevitable tilts and decenter errors of its lenses. Therefore, when applying mechanical tension to the optical elements of the objective, any decrease of optical performance will be originated only from the tension.

    3 Applying the prediction methodology of optical performance

    The modeling of stresses and tensions is generally realized by “finite elements method” with any from a set of approaches relating all parameters of the case study:geometric form, downloading method, retaining method, the behavior of materials,etc. The modeling is commonly done within one of the specialized programs such as ANSYS or NASTRAN.

    This modeling by ANSYS was applied to the opto-mechanical objective formerly designed, with suitable conditions and restrictions(retaining force-temperature-…) governing the system. Next, the problem was resolved for the first lens of the objective and the deformations were presented. The following parameters and criteria were applied in the modeling:

    (a)Because the lens has circular symmetry in its mounting, the 3D shape had been reduced to only one quarter with restrictions on all nodes plans (a,b) in horizontal direction(levels XY-ZY)(Fig.4).

    Fig.4 One quarter of the lens

    (b)The used element for 3D structure modeling is Solid186 which consists of 20 nodes, and every node has three degrees of freedom.

    (c)The behavior of glass is “l(fā)inear elastic” within the “safe use” range, and Tab.2 presents the characteristic values of glass material of the current element. As for the behavior of the mounting material(aluminum alloy), it is nonlinear elasto-palstic, and its values shown in Tab.2 have been based on the stress-strain curve obtained from the static tension experiment carried out using a standard sample made from the alloy(Fig.5).

    Tab.2 Characteristics of the materials used in the modeling

    Fig.5 Stress-strain curve for aluminum material

    (d)With respect to the modeling of contact surfaces between the optical element and both of the mounting and retainer metal, the modeling has been represented by a “contact model” available in Ansys. The used element(Targe169-Conta172) consists of three nodes in addition to the coefficients of friction associated with them. The values of these coefficients of friction between glass and aluminum are 0.6 as it is given in Ref.[15].

    (e)The forces generated by the retainer on the optical element have been represented as “compressed transitions” along the vertical axis(the optical axis), and this is equivalent to applying a torque of 3 to 6 N·m.

    (f)The number of elements is 15 328, and the number of nodes is 251 221 nodes.

    Once the problem has been resolved, and the resulting deformation on surfaces nodes has been calculated(Fig.6), the translations(xi+Δxi,yi+Δyi,zi+Δzi) are stored in an Excel file.

    Fig.6 Original surface deformation as a result of applied tension

    Taking in calculations that the diameter of retainer(Torsion couple) is 60 mm, it is possible to numerically represent-Tab.3-the torque as a function of displacements of retainer.

    Tab.3 Tensile torques values as a function of retainer displacement

    Fig.7 illustrates the values generated within the

    optical element due to a torque of 5 N·m along the optical axis(y-axis in the current example). Note that the maximum of compression stress 36.3 MPa is much lower than the stress of 345 MPa provoking a glass failure.

    Fig.7 Generated stresses due to a torque of 5 N m along y-axis

    After obtaining and storing the displacements of all nodes, they were mathematically processed within the the software MATLAB so they could define a new surface according to the following equation (1)[14]:

    Fig.8 Expansion of deformed surface as a function of Zernike polynomials

    the spherical surface;c=1/Ris the curvature at the summit; and (Z1,Z9,Z16) are Zernike polynomial coefficients. Since the tension has circularly symmetric effect, and then the meaningful terms are those related to spherical aberrations, in addition to a piston term representing a constant phase. Fig.8 shows the perfect matching between the deformed surface and the surface defined to be the previous equation with suitable coefficients. These results were obtained for a 3 N·m torque applied to the first surface within a confidence bounds of 95%.

    Tab.4 shows Zernike polynomial coefficients at each surface of the lens for a set of tensile torques.

    Tab.4 Zernike coefficients for a set of tensile torques

    The next step involves inputting Zernike polynomial of the deformed surface into ZEMAX. These coefficients-Tab.4-were used to define a surface of the type “Zernike fringe sag surfaces”. Fig.9 shows the objective MTF under the influence of a set tensile torques.

    Fig.9 Using Zemax to output MTF as a function of tensile torque

    4 The practical investigation of the mechanical tension effect

    The practical part involved the use of the following:

    (1)Torque tool:This tool(Fig.10) is used to fasten the retainer by a certain torque whose value is in the range of 3-11 N·m. This tool was calibrated to an accuracy of 0.05 N·m.

    (2)Adapter of steel:it is an intermediate piece(Fig.10) between the torque tool and the retainer of the optical element.

    (3)Fizeau-Interferometer with an accuracy ofλ/50.

    Fig.10 Torque tool and adapter of steel used in experiments

    Firstly, all the optical and mechanical elements of the objective have been manufactured according the optical design previously presented in this paper. Then, all the elements were assembled without applying any mechanical tension on the first lens which has been selected to be subjected to the variable mechanical tension. The optical system is fixed on a movable stage with two degrees of freedom(horizontal and vertical) and facing an interferometer according to the adopted methodology.

    The stage is adjusted in both directions to minimize various optical aberrations, as seen in Fig.11(a). Good adjustment leads to straight fringes, as seen in Fig.11(b), and that affirms the excellent quality of the objective whose P-V fringes error is ΔN=0.08λ.

    Fig.11 (a)Measuring setup using an interferometer; (b)resulted fringes when no tension was applied to the optical element

    In the next phase, the tension was gradually increased using the steel adapter and the torque tool,seen in Fig.12. The tension was varied within the range from 3 N·m to only 6 N·m because the deformation became very large and thus immeasurable by the interferometer. Fig.13 presents diagrams of fringes errors for several values of the applied tensile torque to the optical element.

    Fig.12 Applying a tension on the optical element

    All diagrams of Fig.13 comprise some astigmatism, and it is directly measurable by the interferometer. The origin of this aberration is the tolerated tilt between the lens surfaces during manufacture. This tilt was within the allowed tolerance, and the third order spherical aberrations was always the dominant aberration.

    Fig.13 Diagrams of fringes errors of the optical system under test for several values of tensile torque

    6N·m5N·m4N·m3N·mSpatialfrequencyMTF(computation)MTF(experiment)MTF(computation)MTF(experiment)MTF(computation)MTF(experiment)MTF(computation)MTF(experiment)01.0001.0001.0001.0001.0001.0001.0001.00062.50.7390.7910.6570.7170.6230.6580.5950.6141250.5100.5200.4090.4080.3550.4100.3120.278187.50.3640.3100.2760.2510.2250.2090.1860.1302500.3040.2680.2250.1920.1840.1600.1540.081312.50.2750.2510.2260.1890.1990.1400.1760.1153750.2310.2390.2100.1840.1970.1650.1870.179437.50.1360.1530.1170.1350.1060.0910.0990.1255000.0570.0710.0390.0660.0300.0540.0220.037562.50.0060.0150.0170.0170.0410.0220.0120.0176250.0000.0000.0000.0000.0000.0020.0000.002

    Tab.5 shows the MTF values for the previous tensile torques, and Fig.14 shows the MTF diagram in two cases(computation-experiment) for the previous tensile torques and with deviation(2σ), since the tangential and sagittal MTF(for computational and experimental) are very close so the MTF has no significant astigmatism aberration.

    The result gives the excellent match between the analytical and measured MTF for several values of tensile torques. This match validates the reliability of the methodology presented in this paper. More significantly, it confirms the possibility of a computational prediction of the functional performance of this kind of optical systems undergoing static mechanical stresses before actually manufacturing any element of the opto-mechanical system.

    Fig.14 Computed MTF as function of tensile torque(solid circle); experimental MTF as function of tensile torque with deviation 2σ(solid rectangle)

    5 Conclusion

    This paper presented a detailed methodology capable of predicting the optical performance undergoing static tension applied to the lenses of an opto-mechanical system of high performance. The manuscript also showed the adopted setup used to demonstrate the validity of the methodology using an optical interferometer. Comparison between the computed numerical results and the experimental results assert the exactness of this methodology.

    [1] KASUNIC K J.OptomechanicalSystemsEngineering[M]. New Jersey:John Wiley & Sons,Inc.,Hoboken,2015.

    [2] SCHWERTZ K,BURGE H.FieldGuidetoOptomechanicalDesignandAnalysis[M] , Bellingham:SPIE Press,2012.

    [3] DOYLE K B,GENBERG V L,MICHELSS G J.IntegratedOptomechanicalAnalysis(2nd Edition)[M]. Bellingham:SPIE Press,2012.

    [4] KASUNIC K J,BURGE J,YODER P.MountingofOpticalComponents[M]. Bellingham:SPIE Press,2013.

    [5] YODER P R. Parametric Investigations of Mounting-Induced Axial Contact Stresses in Individual Lens Elements[J].SPIE,1993,1998:8-20.

    [6] SigFit is a product of Sigmadyne,Inc.,Rochester,New York[EB/OL]. http://www.sigmadyne.com.

    [7] GENBERG V,DOYLE K,MICHELS G. Making FEA results useful in optical analysis[J].SPIE,2002,4769:24-33.

    [8] GENBERG V,DOYLE K,MICHELS G. Opto-Mechanical I/F for ANSYS[R].SigmadyneCompany,2004:TT58.

    [9] DOYLE K B,GENBERG V L,MICHELS G J. Integrated optomechanical analysis of adaptive optical systems[J].SPIE,2004,5178:20-25.

    [10] DOYLE K B,HOFFMAN J M,GENBERG V L,etal.. Stress Birefringence Modeling for Lens Design and Photonics[J].SPIE,2002,4832:436-447.

    [11] DOYLE K,GENBERG V,MICHELS G,etal.. Numerical methods to compute optical errors due to stress birefringenc[J].SPIE,2002,4769:34-42.

    [12] BOOTH M,WILSON T,SUN H B,etal.. Methods for the characterization of deformable membrane mirrors[J].AppliedOptics,2005,44(24):5131-5139.

    [13] GENBERG V,MICHELS G,DOYLE K. Orthogonality of zernike polynomials[J].SPIE,2002,4771:33-40.

    [14]ZemaxManual:OpticalDesignProgramUser′sGuide9-6-2009[M]. ZEMAX Development Corporation.

    [15] BUCKLEY-LEWIS D H. Friction behavior of glass and metals in contact with glass in various environments[R],Nasa Technical Note,1973,Nasa TN 0-7529.

    Author biographies:

    2016-06-16;

    2016-07-19

    2095-1531(2016)06-0678-09

    靜態(tài)應(yīng)力作用下預(yù)測(cè)光學(xué)系統(tǒng)性能的計(jì)算方法

    AL-LAHAM Radwan*, MOUSSELLY Mhd.Fawaz, NAIM Mamoun

    (敘利亞應(yīng)用科學(xué)與技術(shù)高等學(xué)校,大馬士革 31983)

    本文通過計(jì)算預(yù)測(cè)光學(xué)性能的方法表征在光學(xué)系統(tǒng)組裝和外界環(huán)境因素影響下的光學(xué)系統(tǒng)靈敏度。該方法即通過調(diào)制傳遞函數(shù)來表征靜態(tài)機(jī)械應(yīng)力對(duì)光學(xué)物鏡性能的影響。采用光學(xué)干涉儀對(duì)經(jīng)過加工、組裝且存在機(jī)械應(yīng)力的光學(xué)物鏡進(jìn)行測(cè)試,并比較實(shí)驗(yàn)調(diào)制傳遞函數(shù)與計(jì)算模擬分析的調(diào)制傳遞函數(shù)。結(jié)果表明,計(jì)算結(jié)果與實(shí)驗(yàn)結(jié)果相符,證實(shí)了本文方法的有效性。

    光學(xué)性能預(yù)測(cè);光學(xué)系統(tǒng)組裝;張力轉(zhuǎn)矩;調(diào)制傳遞函數(shù);物鏡;Ansys;Matlab

    O438

    A

    AL-LAHAM Radwan(1976—), Master degree. His research interests are on optical design and optical metrology. E-mail:eng.rad.laham@gmail.com

    10.3788/CO.20160906.0678

    猜你喜歡
    物鏡傳遞函數(shù)靜態(tài)
    靜態(tài)隨機(jī)存儲(chǔ)器在軌自檢算法
    為什么能用望遠(yuǎn)鏡看遠(yuǎn)方
    基于LabVIEW的火焰?zhèn)鬟f函數(shù)測(cè)量系統(tǒng)
    紅外成像系統(tǒng)的調(diào)制傳遞函數(shù)測(cè)試
    高數(shù)值孔徑投影光刻物鏡的光學(xué)設(shè)計(jì)
    大數(shù)值孔徑物鏡的波像差測(cè)量及其特殊問題
    機(jī)床靜態(tài)及動(dòng)態(tài)分析
    具7μA靜態(tài)電流的2A、70V SEPIC/升壓型DC/DC轉(zhuǎn)換器
    基于傳遞函數(shù)自我優(yōu)化的BP網(wǎng)絡(luò)算法改進(jìn)
    50t轉(zhuǎn)爐靜態(tài)控制模型開發(fā)及生產(chǎn)實(shí)踐
    上海金屬(2013年6期)2013-12-20 07:57:59
    999久久久国产精品视频| 亚洲性夜色夜夜综合| 777米奇影视久久| 国产91精品成人一区二区三区| 一级片'在线观看视频| 成人免费观看视频高清| 少妇粗大呻吟视频| 王馨瑶露胸无遮挡在线观看| 首页视频小说图片口味搜索| 精品熟女少妇八av免费久了| 久久久久久久精品吃奶| 免费人成视频x8x8入口观看| 亚洲av第一区精品v没综合| 亚洲成人免费av在线播放| 亚洲伊人色综图| 男人舔女人的私密视频| 免费一级毛片在线播放高清视频 | 色播在线永久视频| 国产在线精品亚洲第一网站| 国产激情久久老熟女| 欧美日韩亚洲国产一区二区在线观看 | 波多野结衣av一区二区av| 丝袜在线中文字幕| 日日摸夜夜添夜夜添小说| 亚洲情色 制服丝袜| 亚洲精品国产色婷婷电影| 中国美女看黄片| cao死你这个sao货| 51午夜福利影视在线观看| 露出奶头的视频| 捣出白浆h1v1| 亚洲中文av在线| 国产一卡二卡三卡精品| 国产av一区二区精品久久| 人妻 亚洲 视频| 亚洲精品在线观看二区| 18禁观看日本| 亚洲少妇的诱惑av| 亚洲 国产 在线| 99国产极品粉嫩在线观看| 黄色 视频免费看| 国产无遮挡羞羞视频在线观看| 亚洲熟女毛片儿| 侵犯人妻中文字幕一二三四区| 欧美日韩精品网址| 亚洲专区国产一区二区| 欧美日韩瑟瑟在线播放| av不卡在线播放| 欧美日韩瑟瑟在线播放| 一本大道久久a久久精品| 国产亚洲精品一区二区www | 精品国产美女av久久久久小说| 精品视频人人做人人爽| 国产又爽黄色视频| 精品亚洲成国产av| www.自偷自拍.com| 亚洲伊人色综图| 国产又爽黄色视频| 1024香蕉在线观看| av视频免费观看在线观看| 美女福利国产在线| 最近最新中文字幕大全电影3 | 亚洲国产精品sss在线观看 | av国产精品久久久久影院| 久久午夜综合久久蜜桃| 老司机午夜福利在线观看视频| 亚洲精品国产一区二区精华液| 欧美国产精品一级二级三级| 免费在线观看亚洲国产| 成人黄色视频免费在线看| 欧美亚洲 丝袜 人妻 在线| 欧美日韩乱码在线| 亚洲五月天丁香| 欧美乱妇无乱码| 极品人妻少妇av视频| 亚洲成a人片在线一区二区| 久久久国产成人免费| 手机成人av网站| 一级a爱视频在线免费观看| 精品福利观看| 久久久久久免费高清国产稀缺| 老司机靠b影院| av线在线观看网站| 丁香欧美五月| 国产蜜桃级精品一区二区三区 | 大码成人一级视频| 免费久久久久久久精品成人欧美视频| 老司机深夜福利视频在线观看| 精品一区二区三区av网在线观看| xxxhd国产人妻xxx| 亚洲自偷自拍图片 自拍| 国产精品1区2区在线观看. | 80岁老熟妇乱子伦牲交| 成年人免费黄色播放视频| 91成年电影在线观看| 大型av网站在线播放| 成年人黄色毛片网站| 女警被强在线播放| 欧美丝袜亚洲另类 | 亚洲五月天丁香| 国产av又大| av片东京热男人的天堂| 777米奇影视久久| xxx96com| 天天躁日日躁夜夜躁夜夜| 国产精品98久久久久久宅男小说| 黄色 视频免费看| 丝瓜视频免费看黄片| 久久国产乱子伦精品免费另类| 巨乳人妻的诱惑在线观看| 国产一卡二卡三卡精品| 十八禁网站免费在线| 亚洲性夜色夜夜综合| 亚洲七黄色美女视频| 国产成人一区二区三区免费视频网站| 午夜久久久在线观看| 淫妇啪啪啪对白视频| 女人爽到高潮嗷嗷叫在线视频| 国产亚洲av高清不卡| av线在线观看网站| 精品人妻在线不人妻| 91精品三级在线观看| 日韩视频一区二区在线观看| 日韩欧美免费精品| 电影成人av| 亚洲熟女精品中文字幕| 狂野欧美激情性xxxx| xxx96com| 91九色精品人成在线观看| 欧美精品亚洲一区二区| 黄色 视频免费看| 免费少妇av软件| 80岁老熟妇乱子伦牲交| 亚洲中文av在线| 精品免费久久久久久久清纯 | 欧美人与性动交α欧美软件| 黄网站色视频无遮挡免费观看| 国产野战对白在线观看| 久久亚洲精品不卡| 叶爱在线成人免费视频播放| 国产成人精品久久二区二区91| 69精品国产乱码久久久| 亚洲第一欧美日韩一区二区三区| 黄片播放在线免费| 久久精品亚洲精品国产色婷小说| 中文亚洲av片在线观看爽 | 黄色片一级片一级黄色片| 国产精品永久免费网站| 国精品久久久久久国模美| 精品少妇一区二区三区视频日本电影| 亚洲 国产 在线| 国产一卡二卡三卡精品| 国产精品av久久久久免费| 18禁裸乳无遮挡免费网站照片 | 色94色欧美一区二区| 人人妻人人澡人人爽人人夜夜| 一边摸一边抽搐一进一小说 | 欧美日韩国产mv在线观看视频| 久久久久国产精品人妻aⅴ院 | 欧美亚洲 丝袜 人妻 在线| 亚洲欧美激情综合另类| 最新在线观看一区二区三区| 亚洲综合色网址| 看免费av毛片| 成年人午夜在线观看视频| 美女视频免费永久观看网站| av中文乱码字幕在线| 欧美黄色片欧美黄色片| 欧美日韩乱码在线| 欧美成狂野欧美在线观看| av网站在线播放免费| 精品国内亚洲2022精品成人 | 欧美日韩亚洲高清精品| 精品人妻1区二区| 国产精品免费一区二区三区在线 | 极品人妻少妇av视频| 国产精品 欧美亚洲| 国产激情欧美一区二区| 亚洲中文字幕日韩| av天堂在线播放| 中文字幕人妻丝袜一区二区| 狠狠狠狠99中文字幕| 操出白浆在线播放| 丰满人妻熟妇乱又伦精品不卡| 香蕉久久夜色| 欧美 日韩 精品 国产| 久久亚洲精品不卡| 99re在线观看精品视频| 日韩欧美一区视频在线观看| 亚洲av美国av| 久久久久久久精品吃奶| 视频区图区小说| 成人影院久久| 又黄又爽又免费观看的视频| 黄色 视频免费看| 久久久精品免费免费高清| 俄罗斯特黄特色一大片| 午夜精品在线福利| 欧洲精品卡2卡3卡4卡5卡区| 一本综合久久免费| 身体一侧抽搐| 国产淫语在线视频| 香蕉丝袜av| 日韩有码中文字幕| 国产人伦9x9x在线观看| 欧美人与性动交α欧美软件| 三上悠亚av全集在线观看| 久久天堂一区二区三区四区| 叶爱在线成人免费视频播放| 午夜精品在线福利| 夫妻午夜视频| 女人爽到高潮嗷嗷叫在线视频| 少妇粗大呻吟视频| 欧美午夜高清在线| 亚洲精品中文字幕一二三四区| 一进一出抽搐动态| 国产精品一区二区在线不卡| 老司机深夜福利视频在线观看| 午夜精品国产一区二区电影| 国产一区有黄有色的免费视频| www.999成人在线观看| 免费人成视频x8x8入口观看| 日本撒尿小便嘘嘘汇集6| 99精品在免费线老司机午夜| 在线观看免费视频日本深夜| 日韩欧美一区视频在线观看| 天堂中文最新版在线下载| 久99久视频精品免费| 亚洲欧美日韩高清在线视频| 女同久久另类99精品国产91| 久久久精品免费免费高清| 国产成人精品无人区| 亚洲免费av在线视频| 黄色怎么调成土黄色| 亚洲三区欧美一区| 久久国产精品男人的天堂亚洲| 国产成人精品在线电影| 亚洲五月婷婷丁香| 欧美一级毛片孕妇| 一本大道久久a久久精品| 午夜视频精品福利| 精品乱码久久久久久99久播| 久久精品成人免费网站| 日韩一卡2卡3卡4卡2021年| 看免费av毛片| 老熟妇仑乱视频hdxx| 亚洲男人天堂网一区| 久久精品亚洲av国产电影网| 久久人妻av系列| 亚洲欧美日韩另类电影网站| 丰满的人妻完整版| 狠狠狠狠99中文字幕| 国产区一区二久久| 男男h啪啪无遮挡| 国产高清视频在线播放一区| 免费在线观看完整版高清| 嫁个100分男人电影在线观看| 国内久久婷婷六月综合欲色啪| 老熟妇乱子伦视频在线观看| 国产xxxxx性猛交| 免费女性裸体啪啪无遮挡网站| 国产精品亚洲av一区麻豆| a级毛片黄视频| av国产精品久久久久影院| 一进一出抽搐gif免费好疼 | 少妇猛男粗大的猛烈进出视频| 又紧又爽又黄一区二区| 欧美黄色片欧美黄色片| 久久久国产成人免费| 精品少妇久久久久久888优播| 丝袜在线中文字幕| 欧美黑人欧美精品刺激| 精品熟女少妇八av免费久了| 免费在线观看日本一区| 91字幕亚洲| 国产亚洲精品久久久久5区| 中出人妻视频一区二区| 中文亚洲av片在线观看爽 | 中文字幕人妻丝袜制服| 性少妇av在线| 久久精品亚洲精品国产色婷小说| 国产一区在线观看成人免费| av网站免费在线观看视频| 一级片'在线观看视频| www.精华液| 亚洲五月色婷婷综合| 91麻豆精品激情在线观看国产 | 色精品久久人妻99蜜桃| 国产单亲对白刺激| 无限看片的www在线观看| 久久久国产欧美日韩av| 日本a在线网址| 欧美另类亚洲清纯唯美| 亚洲一区中文字幕在线| 久久国产精品男人的天堂亚洲| 黄色视频,在线免费观看| 两人在一起打扑克的视频| 女性被躁到高潮视频| 精品一品国产午夜福利视频| 在线观看午夜福利视频| xxxhd国产人妻xxx| 人人妻,人人澡人人爽秒播| 女性生殖器流出的白浆| 国产成人一区二区三区免费视频网站| 王馨瑶露胸无遮挡在线观看| 嫩草影视91久久| 99国产综合亚洲精品| 在线av久久热| 欧美日韩av久久| 精品国产一区二区三区四区第35| 国产免费现黄频在线看| 美女 人体艺术 gogo| 欧美激情久久久久久爽电影 | 精品国产一区二区久久| 国精品久久久久久国模美| 欧美精品高潮呻吟av久久| 母亲3免费完整高清在线观看| 国产精品欧美亚洲77777| 欧美精品亚洲一区二区| 午夜福利,免费看| 男人操女人黄网站| 亚洲国产欧美网| 丁香欧美五月| a级毛片在线看网站| 正在播放国产对白刺激| 婷婷成人精品国产| 精品久久久久久久毛片微露脸| 十分钟在线观看高清视频www| 欧美日韩瑟瑟在线播放| 在线永久观看黄色视频| 国产色视频综合| 午夜福利影视在线免费观看| 日韩精品免费视频一区二区三区| 亚洲七黄色美女视频| 正在播放国产对白刺激| 午夜视频精品福利| 99精国产麻豆久久婷婷| 国产精品欧美亚洲77777| 不卡一级毛片| 99精国产麻豆久久婷婷| 熟女少妇亚洲综合色aaa.| 一二三四在线观看免费中文在| 免费在线观看完整版高清| 日韩有码中文字幕| 亚洲自偷自拍图片 自拍| 国产精品国产av在线观看| 大香蕉久久成人网| 国产1区2区3区精品| 精品人妻1区二区| 性色av乱码一区二区三区2| 国产精品永久免费网站| 欧美 日韩 精品 国产| 黄色视频,在线免费观看| 在线av久久热| 午夜两性在线视频| 女性生殖器流出的白浆| 熟女少妇亚洲综合色aaa.| 一进一出抽搐gif免费好疼 | 一二三四社区在线视频社区8| aaaaa片日本免费| 欧美国产精品va在线观看不卡| 另类亚洲欧美激情| 国产成人免费观看mmmm| 色老头精品视频在线观看| 欧美激情 高清一区二区三区| 女警被强在线播放| 欧美国产精品va在线观看不卡| 国产一卡二卡三卡精品| bbb黄色大片| 免费在线观看视频国产中文字幕亚洲| 久久精品aⅴ一区二区三区四区| 国产欧美日韩一区二区精品| 9色porny在线观看| 老熟女久久久| 日本a在线网址| 久久国产精品人妻蜜桃| 伊人久久大香线蕉亚洲五| 丝袜美腿诱惑在线| 在线播放国产精品三级| 三上悠亚av全集在线观看| 国产精品久久久久久人妻精品电影| 国产在线精品亚洲第一网站| 亚洲全国av大片| 亚洲av欧美aⅴ国产| 50天的宝宝边吃奶边哭怎么回事| 精品亚洲成国产av| 国产精品久久视频播放| 看免费av毛片| 久久国产乱子伦精品免费另类| 在线观看免费日韩欧美大片| 中文字幕精品免费在线观看视频| 欧美午夜高清在线| 日韩一卡2卡3卡4卡2021年| 国产精品亚洲一级av第二区| 亚洲性夜色夜夜综合| 精品少妇久久久久久888优播| 丁香欧美五月| 国产精华一区二区三区| 日韩免费高清中文字幕av| 日韩欧美三级三区| 夜夜夜夜夜久久久久| 欧美精品亚洲一区二区| 天堂√8在线中文| 中出人妻视频一区二区| 女人被躁到高潮嗷嗷叫费观| 狠狠狠狠99中文字幕| 精品第一国产精品| 久久人人97超碰香蕉20202| 国产成人精品久久二区二区91| 亚洲中文日韩欧美视频| 亚洲成人国产一区在线观看| 免费不卡黄色视频| 亚洲欧美激情在线| 国产精品.久久久| 亚洲avbb在线观看| 大型黄色视频在线免费观看| 1024视频免费在线观看| 色婷婷av一区二区三区视频| 亚洲色图av天堂| 90打野战视频偷拍视频| 国产高清国产精品国产三级| 国产在线观看jvid| 亚洲一卡2卡3卡4卡5卡精品中文| 99国产精品一区二区三区| 国产欧美亚洲国产| 国产片内射在线| 国产高清视频在线播放一区| 日韩人妻精品一区2区三区| 午夜91福利影院| 国产欧美亚洲国产| 日韩一卡2卡3卡4卡2021年| 丰满饥渴人妻一区二区三| 狠狠婷婷综合久久久久久88av| 夜夜躁狠狠躁天天躁| 国产真人三级小视频在线观看| 香蕉国产在线看| 又黄又爽又免费观看的视频| 一个人免费在线观看的高清视频| 亚洲在线自拍视频| 在线观看免费视频网站a站| 99精品久久久久人妻精品| 激情在线观看视频在线高清 | 人人澡人人妻人| 国产av一区二区精品久久| 久久久国产成人精品二区 | 天天躁夜夜躁狠狠躁躁| 嫁个100分男人电影在线观看| 在线十欧美十亚洲十日本专区| 在线观看免费视频网站a站| 99久久精品国产亚洲精品| 国产成人欧美| 亚洲av电影在线进入| 欧美大码av| 国产视频一区二区在线看| 19禁男女啪啪无遮挡网站| 91av网站免费观看| 一级,二级,三级黄色视频| 欧美大码av| 一a级毛片在线观看| 国产区一区二久久| 午夜精品国产一区二区电影| 视频在线观看一区二区三区| 香蕉久久夜色| 99国产精品免费福利视频| 韩国av一区二区三区四区| 下体分泌物呈黄色| 国产精品久久久人人做人人爽| 精品无人区乱码1区二区| 精品国产超薄肉色丝袜足j| 亚洲黑人精品在线| 国精品久久久久久国模美| 亚洲成人国产一区在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 好男人电影高清在线观看| 一区二区三区精品91| 一二三四在线观看免费中文在| 黄频高清免费视频| 久久国产亚洲av麻豆专区| 国产一区二区三区综合在线观看| 亚洲精品国产色婷婷电影| 一级a爱片免费观看的视频| 在线观看免费午夜福利视频| 动漫黄色视频在线观看| 国产精品 国内视频| 久久精品亚洲熟妇少妇任你| 亚洲七黄色美女视频| 精品国产国语对白av| 国产欧美亚洲国产| 搡老乐熟女国产| 亚洲欧美色中文字幕在线| 午夜老司机福利片| 每晚都被弄得嗷嗷叫到高潮| 这个男人来自地球电影免费观看| 色老头精品视频在线观看| 俄罗斯特黄特色一大片| 黄色怎么调成土黄色| 国产91精品成人一区二区三区| 熟女少妇亚洲综合色aaa.| 精品久久久久久,| av片东京热男人的天堂| 三上悠亚av全集在线观看| 欧美日韩视频精品一区| 亚洲五月色婷婷综合| 夜夜爽天天搞| 欧美乱色亚洲激情| 视频区欧美日本亚洲| 一级毛片精品| 国产一区二区三区综合在线观看| 亚洲情色 制服丝袜| 丰满的人妻完整版| 国产精品欧美亚洲77777| 欧美在线黄色| 久久精品国产99精品国产亚洲性色 | 免费日韩欧美在线观看| av有码第一页| 一级毛片精品| 高清视频免费观看一区二区| 国产人伦9x9x在线观看| 丰满的人妻完整版| 黑人猛操日本美女一级片| 国产高清激情床上av| 高清av免费在线| 天天影视国产精品| e午夜精品久久久久久久| 乱人伦中国视频| 精品无人区乱码1区二区| 久久人人97超碰香蕉20202| 99香蕉大伊视频| 老司机靠b影院| 久9热在线精品视频| 超碰97精品在线观看| 国产av又大| 中文字幕制服av| 日韩有码中文字幕| ponron亚洲| 黄色片一级片一级黄色片| 999久久久国产精品视频| 无人区码免费观看不卡| 亚洲专区中文字幕在线| 美女 人体艺术 gogo| 国产在线一区二区三区精| 精品一区二区三区四区五区乱码| av天堂在线播放| 操出白浆在线播放| 久久精品国产a三级三级三级| 99热国产这里只有精品6| 亚洲全国av大片| 国产精品秋霞免费鲁丝片| 国产视频一区二区在线看| 久久精品91无色码中文字幕| 97人妻天天添夜夜摸| 1024视频免费在线观看| 国产精品亚洲一级av第二区| 一区二区三区精品91| 一进一出抽搐gif免费好疼 | 免费在线观看亚洲国产| 精品亚洲成a人片在线观看| av片东京热男人的天堂| 国产在线观看jvid| x7x7x7水蜜桃| 日韩成人在线观看一区二区三区| 精品午夜福利视频在线观看一区| 久久国产精品男人的天堂亚洲| 免费久久久久久久精品成人欧美视频| 国产主播在线观看一区二区| 国产高清国产精品国产三级| 人人妻人人爽人人添夜夜欢视频| 亚洲欧美日韩高清在线视频| 欧美激情极品国产一区二区三区| 在线国产一区二区在线| 90打野战视频偷拍视频| 国产亚洲精品一区二区www | 色综合婷婷激情| 国产精品av久久久久免费| 欧美乱色亚洲激情| 天天操日日干夜夜撸| 女同久久另类99精品国产91| 欧美乱妇无乱码| 纯流量卡能插随身wifi吗| 亚洲成a人片在线一区二区| 国产又爽黄色视频| 国内久久婷婷六月综合欲色啪| 精品乱码久久久久久99久播| 窝窝影院91人妻| 大陆偷拍与自拍| 一边摸一边抽搐一进一出视频| cao死你这个sao货| 黄网站色视频无遮挡免费观看| 一级作爱视频免费观看| 99久久人妻综合| 国产成人欧美在线观看 | 国产成人欧美在线观看 | 国产精品 欧美亚洲| 国产精品二区激情视频| 色综合婷婷激情| 少妇裸体淫交视频免费看高清 | 亚洲五月色婷婷综合| 一区在线观看完整版| 国产在线一区二区三区精| 老司机福利观看| 18禁国产床啪视频网站| 黑人欧美特级aaaaaa片| 美女高潮到喷水免费观看| 成人永久免费在线观看视频| a级毛片在线看网站| 超碰97精品在线观看| av片东京热男人的天堂| 在线观看免费视频网站a站| 91老司机精品| 国产精品av久久久久免费| 97人妻天天添夜夜摸| 久久午夜亚洲精品久久| 久久国产乱子伦精品免费另类| 黑人猛操日本美女一级片| 久久香蕉国产精品|