• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Recent advances on thermal analysis of stretchable electronics

    2016-12-09 08:00:14YuhngLiYuynGoJizhouSong

    Yuhng Li,Yuyn Go,Jizhou Song,c,?

    aInstitute of Solid Mechanics,Beihang University(BUAA),Beijing 100191,China

    bDepartment of Engineering Mechanics,Zhejiang University,Hangzhou 310027,China

    cSoft Matter Research Center,Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province,Zhejiang University,Hangzhou 310027,China

    Review

    Recent advances on thermal analysis of stretchable electronics

    Yuhang Lia,Yuyan Gaob,Jizhou Songb,c,?

    aInstitute of Solid Mechanics,Beihang University(BUAA),Beijing 100191,China

    bDepartment of Engineering Mechanics,Zhejiang University,Hangzhou 310027,China

    cSoft Matter Research Center,Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province,Zhejiang University,Hangzhou 310027,China

    H I G H L I G H T S

    ?Recent advances on thermal analysis of stretchable electronics are overviewed.

    ?Scaling laws for the temperature increase in a constant and pulsed mode are established.

    ?Design guidelines for thermal management of stretchable electronics are provided.

    A R T I C L EI N F O

    Article history:

    Accepted 16 December 2015

    Available online 24 December 2015

    Stretchable electronics

    Thermal analysis

    Scaling law

    Stretchable electronics,which offers the performance of conventional wafer-based devices and mechanical properties of a rubber band,enables many novel applications that are not possible through conventional electronics due to its brittle nature.One effective strategy to realize stretchable electronics is to designtheinorganicsemiconductormaterialinastretchableformatonacompliantelastomericsubstrate. Engineering thermal management is essential for the development of stretchable electronics to avoid adverse thermal effects on its performance as well as in applications involving human body and biological tissues where even 1–2°C temperature increase is not allowed.This article reviews the recent advances inthermalmanagementofstretchableinorganicelectronicswithfocusesonthethermalmodelsandtheir comparisons to experiments and finite element simulations.

    ?2015 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    Contents

    1.Introduction........................................................................................................................................................................................................................32

    2.Thermal analysis ofμ-ILEDs under a constant power.....................................................................................................................................................33

    3.Thermal analysis ofμ-ILEDs in a pulsed operation.........................................................................................................................................................33

    4.Thermal analysis ofμ-ILEDs in optogenetics...................................................................................................................................................................36

    5.Summary............................................................................................................................................................................................................................37

    Acknowledgments.............................................................................................................................................................................................................37

    References...........................................................................................................................................................................................................................37

    1.Introduction

    Fast developments and substantial achievements have been made on various aspects of stretchable electronics[1–7],which hassuperiormechanicalpropertiesthatareinaccessibletoconventional wafer-based electronics such as stretched like a rubber band and twisted like a rope without any significant reduction in electronic performance.Two complementary approaches have been demonstratedtodevelopstretchableelectronics.Oneapproachinvolves the use of the intrinsically compliant semiconductor materials to replace the intrinsically brittle inorganic semiconductor materials[8–11]that are widely used in conventional electronics. The other approach designs conventional high-performance inorganic semiconductor materials(e.g.,Silicon)in a novel stretchable structure on a compliant substrate[12–15].One such design is the bridge-island design with functional components residing on the islandinterconnectedbythebridgestokeeptheislandsalmostun-deformed under stretching as shown in Fig.1(a)of inorganic lightemitting diodes stretched onto the sharp tip of a pencil.

    Fig.1.(a)Stretchable inorganic light-emitting diodes with serpentine bridges,tightly stretched onto the sharp tip of a pencil.Reproduced with permission from Ref.[15]. Copyright 2010 Nature Publishing Group.(b)Scanning electron microscope(SEM)image of an injectable array ofμ-ILEDs and the process of injection and release of the μ-ILEDs into the mouse brain for in vivo optogenetics.Reproduced with permission from Ref.[16].Copyright 2013 AAAS.

    Thermal management of stretchable electronics is critically important because excessive heating may induce adverse responses such as the reduction of device performance and tissue lesioning(even 1–2°C temperature increase)in applications(e.g.,optogenetics,see Fig.1(b))involving biological tissues.The low conductivity(~0.1 W·m?1·K?1)of elastomeric substrate for stretchable electronics,which is about 3 orders lower than that of typical substrate for conventional electronics,imposes more challenges on the thermal management.This review paper will focus on the latter approach based on inorganic semiconductor materials and take microscale,inorganic light-emitting diodes (μ-ILEDs),which serve as heat sources and the active device islands in the bridge-island design for stretchable electronics,as an example to overview the recent advances in heat management of stretchable electronics through discussions of analytic,finite element simulations and experimental results.

    2.Thermal analysis ofμ-ILEDs under a constant power

    The temperature increase in Eq.(1)is for the singleμ-ILED on a glass substrate and it can be easily extended to study otherμ-ILED system with similar layouts and materials.Figure 3(a)shows the μ-ILED temperature as a function ofμ-ILED size on a polyethylene terephthalate(PET)substrate at 160 mW ·mm2.The analytical prediction agrees very well with experiments.The temperature decreases with decreasing theμ-ILED size,which clearly indicates an effective route for thermal management:to divide a large LED to an array ofμ-ILEDs.To find the temperature increase forμ-ILED array,the method of superposition can be used,i.e.,∑whereΔTi(r,z)is the temperature increase due to ithμ-ILED.The temperature increases for a conventional, macro-size LED(i.e.,0.5×0.5 mm2),an array of 25μ-ILEDs(i.e., 100×100μm2)at different spacings are shown in Fig.3(b).The temperature ofμ-ILED array decreases with increasing spacing and becomes independent of spacing for the spacing larger than~200μm,which suggests a critical spacing to maximally reduce the temperature.

    3.Thermal analysis ofμ-ILEDs in a pulsed operation

    Fig.2.Thermal management ofμ-ILEDs on a glass substrate.(a)Three-dimensional illustrations of theμ-ILED structure.(b)A schematic illustration of the analytical model.(c)Surface temperature distribution given by experiments,analytical model and FEA for the input power Q=37.6 mW with L=100μm.(d)The normalized μ-ILED temperature increase as the function of the normalizedμ-ILED size for the approximate solution(solid line),accurate solution(circles),FEA(triangles)and experiments(squares).Reproduced with permission from Ref.[17].Copyright 2012 The Royal Society.

    Fig.3.Thermal management by controlling size and spatial distributions ofμ-ILEDs on a PET substrate.(a)Measured(black symbols)and analytical predicted(black line) temperature as a function ofμ-ILED size at 160 mW/mm2.(b)Measured and(black symbols)and analytical predicted(black line)temperature of(5×5)μ-ILED array (100×100μm2)as a function of spacing.Reproduced with permission from Ref.[18].Copyright 2012 Wiley-VCH Verlag GmbH&Co.KGaA,Weinheim.

    Fig.4.(a)Three-dimensional illustration of theμ-ILED on a hydrogel substrate.(b)A schematic illustration of the analytical model.(c)A unit pulsed power with duration timeτand period t0.(d)Temperature for the pulsed peak power 20 mW with D=50%and t0=1 ms with the inset as the temperature after saturation.(e)The maximum and minimumμ-ILED temperature increase as the function of the duty cycle for the peak power 30 mW with t0=1 ms.(f)The normalized maximumμ-ILED temperature increase at a pulsed power as the function of the duty cycle.Reproduced with permission from Ref.[19].Copyright 2013 American Institute of Physics.

    Fig.5.(a)Cross-sectional illustration of fourμ-ILEDs in biological tissue.(b)A schematic illustration of the analytical model.(c)Surface temperature increase determined by analytical model,FEA,and experiments as the function of duty cycle with the frequency 3 Hz,peak power Q0=2.5 mW,r0=60μm,rd=200μm,h0=0.3 mm,and h1=3.7 mm.(d)Maximum normalized temperature increase of centerμ-ILED as the function of the normalized parameter.Reproduced with permission from Ref.[20]. Copyright 2013 The Royal Society.

    4.Thermal analysis ofμ-ILEDs in optogenetics

    Li et al.[21]further extended the above model to perform thermal management ofμ-ILEDs in optogenetics.Kim et al.[21] developed injectable,wireless optoelectronic devices withμ-ILED arrays delivered into the mouse brain using a releasable microneedle for in vivo optogenetics.Figure 5(a)schematically shows the cross-section of fourμ-ILEDs coated with a thin(6μm) layer of benzocyclobutene(BCB)on a 2.5μm thick polyethylene terephthalate(PET)substrate in an explanted piece of tissue from the mouse brain with the dimension of 9×4×4 mm3held at T0= 37°C by a thermal stage.h0and h1denote the tissue thicknesses above and below theμ-ILEDs,respectively.The thermal properties of BCB and PET are similar to those of tissue,and therefore their effects on the temperature are neglected.Li et al.[21] developed an analytical model forμ-ILED arrays in a pulsed operation in biological tissues and established a simple scaling law for the maximum temperature increase in terms of material, geometric and loading parameters.An array of 4μ-ILEDs used in experiments[16]is taken as an example to illustrate the approach.

    Figure 5(b)shows a schematic illustration of the analytical model for 4μ-ILEDs in the tissue with a pulsed power Q(t)= Q0U(t)applied to a singleμ-ILED.Let rddenote the distance between the centers of two adjacentμ-ILEDs.With the origin at the center of arrays,the coordinates ofμ-ILED centers are (±3rd/2,0)and(±rd/2,0),respectively.Following the similar approach as the one forμ-ILED on a hydrogel substrate[20],the temperature increase for a singleμ-ILED in biological tissue is obtained first and then the method of superposition is used to obtain the temperature increase for theμ-ILED array.Letθ(r,z;ω) denote the temperature increase for a singleμ-ILED due to a sinusoidal power Q0cos(ωt)[or Q0sin(ωt)].The temperature increase at the center point P1of the top surface due to a sinusoidal power is obtained as.The temperature increase at the center point P1of the top surface due to the pulsed power is then obtained as

    whereζnis the phase angle ofwith the expression that canfoundinRef.[21].Figure5(c)comparesthemaximumandminimum temperature increase after saturation from Eq.(4),3D FEA andexperimentsforthefrequency3Hz,peakpowerQ0=2.5mW, r0=60μm,rd=200μm,h0=0.3 mm,and h1=3.7 mm.The good agreement indicates that the analytical model could predict the temperature distributions accurately.

    The maximum temperature increase in the array of four μ-ILEDs occurs at the centerμ-ILED.For large ratios of h0/r0and h1/r0as in experiments[21],the analytical model gives the normalized temperature increase of the centerμ-ILED as in Box II, where E is the complete elliptic integral of the second kind,β= A/(αt0)withas the total surface area ofμ-ILED,J0is 0th-order Bessel function of the first kind,andηnis the phase angle ofdξ. Eq.(5)shows a simple scaling law for the normalized maximum temperature increaseas shown in Fig.5(d),which only depends on three non-dimensional parameters:βand D.The normalized maximum temperature increase of the centerμ-ILED drops significantly for 0<β<40 and then remains almost unchanged forβ>40.The results show that largesmallβand D help to reduce the maximum temperature increase.The above results forμ-ILEDs in a constant or pulsed operation are applied to optimize the injectable optoelectronics tomaintain the temperature low enough to avoid tissue lesioning for in vivo optoelectronics[16].

    5.Summary

    In summary,with fast developments and substantial achievements made on various aspects of stretchable electronics,thermal management of stretchable electronics becomes more and more important due to its adverse effects on its performance as well as in applications involving human body,where even a small temperature increase(1–2°C)is not allowed.This paper overviews the recent advances on thermal analysis of stretchable inorganic electronics and provides design guidelines for thermal management(e.g.,to use small functional components in a pulsed mode). Whileseveraleffortshavebeendevotedtodevelopanalyticalmodels with certain assumptions,there are still many open challenges and opportunities for future research.For example,a biophysically realistic model,which accounts for the effects of blood perfusion and metabolic heat generation,is needed and remain an attracting area of research.Such a model will help researchers to optimally design experiment and offer the possibility of direct integration of stretchable electronics and optoelectronics with biological tissues for emerging applications.

    Acknowledgments

    This work was supported by the Zhejiang Provincial Natural Science Foundation of China(Grant No.LR15A020001),the National Natural Science Foundation of China(Grant Nos.11502009, 11372272 and 11321202),and the National Basic Research Program of China(Grant No.2015CB351900).

    References

    [1]D.H.Kim,J.H.Ahn,W.M.Choi,et al.,Stretchable and foldable silicon integrated circuits,Science 320(2008)507–511.

    [2]J.Viventi,D.H.Kim,L.Vigeland,et al.,Flexible,foldable,actively multiplexed, high-density electrode array for mapping brain activity in vivo,Nature Neurosci.14(2011)1599–1605.

    [3]D.H.Kim,R.Ghaffari,N.Lu,et al.,Flexible and stretchable electronics for biointegrated devices,Annu.Rev.Biomed.Eng.14(2012)113–128.

    [4]H.C.Ko,M.P.Stoykovich,J.Song,et al.,A hemispherical electronic eye camera based on compressible silicon optoelectronics,Nature 454(2008)748–753.

    [5]R.C.Webb,A.P.Bonifas,A.Behnaz,et al.,Ultrathin conformal devices for preciseandcontinuousthermalcharacterizationofhumanskin,NatureMater. 12(2013)938–944.

    [6]S.Xu,Y.Zhang,L.Jia,et al.,Soft microfluidic assemblies of sensors,circuits, and radios for the skin,Science 344(2014)70–74.

    [7]C.Dagdeviren,B.D.Yang,Y.Su,et al.,Conformal piezoelectric energy harvesting and storage from motions of the heart,lung,and diaphragm,Proc. Natl.Acad.Sci.USA 111(2014)1927–1932.

    [8]B.Crone,A.Dodabalapur,Y.Y.Lin,etal.,Large-scalecomplementaryintegrated circuits based on organic transistors,Nature 403(2000)521–523.

    [9]Y.L.Loo,T.Someya,K.W.Baldwin,et al.,Soft,conformable electrical contacts for organic semiconductors:high-resolution plastic circuits by lamination, Proc.Natl.Acad.Sci.USA 99(2002)10252–10256.

    [10]T.Sekitani,T.Yokota,U.Zschieschang,et al.,Organic nonvolatile memory transistors for flexible sensor arrays,Science 326(2009)1516–1519.

    [11]M.Kaltenbrunner,T.Sekitani,J.Reeder,et al.,An ultra-lightweight design for imperceptible plastic electronics,Nature 499(2013)458–463.

    [12]H.Jiang,D.Y.Khang,J.Song,et al.,Finite deformation mechanics in buckled thin films on compliant supports,Proc.Natl.Acad.Sci.USA 104(2007) 15607–15612.

    [13]D.H.Kim,J.Song,W.M.Choi,et al.,Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations,Proc.Natl.Acad.Sci.USA 105(2008)18675–18680.

    [14]S.Xu,Y.Zhang,J.Cho,et al.,Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems,Nature Commun.4 (2013)1543.

    [15]R.H.Kim,D.H.Kim,J.Xiao,et al.,Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics,Nature Mater.9(2010)929–937.

    [16]T.Kim,J.G.McCall,Y.H.Jung,et al.,Injectable,cellular-scale optoelectronics with applications for wireless optogenetics,Science 340(2013)211–216.

    [17]H.S.Kim,E.Brueckner,J.Song,et al.,Unusual strategies for using indium gallium nitride grown on silicon(111)for solid-state lighting,Proc.Natl.Acad. Sci.USA 108(2011)10072–10077.

    [18]C.Lu,Y.Li,J.Song,et al.,A thermal analysis of the operation of microscale, inorganic light-emitting diodes,Proc.R.Soc.Lond.Ser.A Math.Phys.Eng.Sci. 468(2012)3215–3223.

    [19]T.Kim,Y.H.Jung,J.Song,et al.,High-efficiency,microscale GaN light-emitting diodes and their thermal properties on unusual substrates,Small 8(2012) 1643–1649.

    [20]Y.Li,Y.Shi,J.Song,et al.,Thermal properties of microscale inorganic lightemitting diodes in a pulsed operation,J.Appl.Phys.113(2013)144505.

    [21]Y.Li,X.Shi,J.Song,et al.,Thermal analysis of injectable,cellular-scale optoelectronics with pulsed power,Proc.R.Soc.Lond.Ser.A Math.Phys.Eng. Sci.469(2013)20130142.

    16 October 2015

    in revised form 2 December 2015

    http://dx.doi.org/10.1016/j.taml.2015.12.001

    2095-0349/?2015 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    ?at:Department of Engineering Mechanics,Zhejiang University,Hangzhou 310027,China.

    E-mail address:jzsong@zju.edu.cn(J.Song).

    国精品久久久久久国模美| 久久精品熟女亚洲av麻豆精品| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲第一青青草原| 黑丝袜美女国产一区| 亚洲欧美一区二区三区黑人| 欧美成狂野欧美在线观看| 亚洲色图 男人天堂 中文字幕| 久久久精品国产亚洲av高清涩受| 国产日韩一区二区三区精品不卡| 又黄又粗又硬又大视频| 啦啦啦在线免费观看视频4| 亚洲五月色婷婷综合| 好男人电影高清在线观看| 午夜影院日韩av| 精品国产美女av久久久久小说| 国产精品二区激情视频| 捣出白浆h1v1| 久久精品91无色码中文字幕| 亚洲成a人片在线一区二区| 久久久久久久久免费视频了| 欧美乱色亚洲激情| 黄色 视频免费看| 涩涩av久久男人的天堂| 亚洲精品粉嫩美女一区| 亚洲av日韩在线播放| 国产精华一区二区三区| 国产亚洲欧美98| 夫妻午夜视频| 91老司机精品| 欧美 亚洲 国产 日韩一| 亚洲欧美精品综合一区二区三区| 午夜免费成人在线视频| 国产主播在线观看一区二区| 久久久久久久午夜电影 | 国产有黄有色有爽视频| 午夜精品在线福利| 色尼玛亚洲综合影院| 成人影院久久| 9191精品国产免费久久| 久久国产精品影院| 精品亚洲成a人片在线观看| 热99久久久久精品小说推荐| 黑丝袜美女国产一区| 亚洲aⅴ乱码一区二区在线播放 | av福利片在线| 亚洲第一欧美日韩一区二区三区| 两个人看的免费小视频| 亚洲一区二区三区不卡视频| 精品国产亚洲在线| 国产精品98久久久久久宅男小说| 精品少妇一区二区三区视频日本电影| 国产亚洲精品第一综合不卡| 一进一出好大好爽视频| 久久精品国产亚洲av高清一级| 制服诱惑二区| 久久影院123| 色综合婷婷激情| 欧美日韩av久久| 国产欧美日韩一区二区三区在线| 91麻豆精品激情在线观看国产 | 国产男靠女视频免费网站| 国产蜜桃级精品一区二区三区 | 咕卡用的链子| 日本黄色视频三级网站网址 | 精品人妻熟女毛片av久久网站| 亚洲av电影在线进入| 亚洲一区二区三区欧美精品| 中出人妻视频一区二区| 日日爽夜夜爽网站| 亚洲三区欧美一区| 精品视频人人做人人爽| 香蕉丝袜av| 最新的欧美精品一区二区| 亚洲人成伊人成综合网2020| 久久青草综合色| 黄色成人免费大全| 久久国产精品男人的天堂亚洲| 一二三四社区在线视频社区8| 男女免费视频国产| 视频区图区小说| 国产aⅴ精品一区二区三区波| 91在线观看av| 一边摸一边抽搐一进一出视频| 91字幕亚洲| 日韩欧美一区视频在线观看| 午夜亚洲福利在线播放| 日本wwww免费看| 国产精品 欧美亚洲| 少妇猛男粗大的猛烈进出视频| av免费在线观看网站| 99国产极品粉嫩在线观看| 午夜免费观看网址| 亚洲国产欧美一区二区综合| 极品人妻少妇av视频| 人人澡人人妻人| av不卡在线播放| 日韩制服丝袜自拍偷拍| 美女高潮到喷水免费观看| 国产成人影院久久av| 久久久国产成人精品二区 | 好看av亚洲va欧美ⅴa在| 麻豆乱淫一区二区| 热re99久久精品国产66热6| 91成人精品电影| 99国产精品免费福利视频| 久久久久久久精品吃奶| 久久精品国产99精品国产亚洲性色 | 丁香六月欧美| 日韩欧美国产一区二区入口| 国产三级黄色录像| 99精品久久久久人妻精品| 亚洲精品国产一区二区精华液| 男男h啪啪无遮挡| 亚洲精品在线美女| 欧美黄色片欧美黄色片| 久久精品成人免费网站| 成年女人毛片免费观看观看9 | 国产高清视频在线播放一区| 欧美黑人精品巨大| 免费观看人在逋| 在线观看免费午夜福利视频| 制服人妻中文乱码| 不卡一级毛片| 亚洲成av片中文字幕在线观看| 久久精品国产亚洲av高清一级| 99国产综合亚洲精品| 精品免费久久久久久久清纯 | 精品一区二区三区视频在线观看免费 | 777米奇影视久久| 99精品在免费线老司机午夜| 欧美 日韩 精品 国产| 黄色女人牲交| 五月开心婷婷网| 色精品久久人妻99蜜桃| 777米奇影视久久| 99国产精品一区二区三区| 午夜精品国产一区二区电影| 亚洲,欧美精品.| 嫩草影视91久久| 国产免费av片在线观看野外av| 老汉色av国产亚洲站长工具| 人人妻人人澡人人看| 黄色丝袜av网址大全| 欧美激情久久久久久爽电影 | 一级片免费观看大全| 亚洲免费av在线视频| 在线观看免费高清a一片| 丰满饥渴人妻一区二区三| 精品一区二区三卡| 欧美精品人与动牲交sv欧美| e午夜精品久久久久久久| 黄色怎么调成土黄色| 国产精品影院久久| 国产亚洲欧美在线一区二区| 99热国产这里只有精品6| 久久国产精品人妻蜜桃| 亚洲精品在线美女| www.999成人在线观看| 久久人人爽av亚洲精品天堂| 免费观看精品视频网站| 欧美亚洲日本最大视频资源| 亚洲精品美女久久久久99蜜臀| 国产成人影院久久av| 亚洲国产中文字幕在线视频| 看片在线看免费视频| 身体一侧抽搐| 成年人免费黄色播放视频| 免费看十八禁软件| svipshipincom国产片| 色婷婷久久久亚洲欧美| 新久久久久国产一级毛片| 久久精品人人爽人人爽视色| 麻豆av在线久日| 久久久国产一区二区| 老司机亚洲免费影院| 亚洲欧美色中文字幕在线| 人人妻人人澡人人爽人人夜夜| 香蕉国产在线看| 欧美大码av| 欧美日韩av久久| 美女午夜性视频免费| 叶爱在线成人免费视频播放| 自拍欧美九色日韩亚洲蝌蚪91| 欧美国产精品一级二级三级| 国产精品98久久久久久宅男小说| 在线永久观看黄色视频| 69av精品久久久久久| 精品熟女少妇八av免费久了| 久久精品国产综合久久久| 男人舔女人的私密视频| 国产免费现黄频在线看| 视频区图区小说| 黄色毛片三级朝国网站| 亚洲成人免费电影在线观看| 老汉色av国产亚洲站长工具| 99香蕉大伊视频| 黑人欧美特级aaaaaa片| 最新美女视频免费是黄的| 国产视频一区二区在线看| 精品视频人人做人人爽| 超色免费av| 丰满人妻熟妇乱又伦精品不卡| 9热在线视频观看99| 日本欧美视频一区| 中亚洲国语对白在线视频| 欧美一级毛片孕妇| 欧美成人午夜精品| 男女床上黄色一级片免费看| 欧美人与性动交α欧美精品济南到| 丰满迷人的少妇在线观看| 又紧又爽又黄一区二区| 免费在线观看完整版高清| 亚洲aⅴ乱码一区二区在线播放 | 黄片小视频在线播放| a级毛片在线看网站| 正在播放国产对白刺激| 在线观看免费视频日本深夜| 日韩欧美三级三区| 欧美色视频一区免费| 国产成人av激情在线播放| 国产精品久久久久久精品古装| 精品乱码久久久久久99久播| 亚洲一卡2卡3卡4卡5卡精品中文| 国产成人精品久久二区二区免费| 涩涩av久久男人的天堂| а√天堂www在线а√下载 | 大型黄色视频在线免费观看| 老司机影院毛片| 操出白浆在线播放| 高清欧美精品videossex| 一级a爱片免费观看的视频| 香蕉丝袜av| 精品欧美一区二区三区在线| 黄色成人免费大全| 91精品三级在线观看| 中文字幕人妻熟女乱码| 亚洲午夜理论影院| 久久精品熟女亚洲av麻豆精品| 欧美精品人与动牲交sv欧美| 欧洲精品卡2卡3卡4卡5卡区| 九色亚洲精品在线播放| 一本一本久久a久久精品综合妖精| 桃红色精品国产亚洲av| 国产片内射在线| 动漫黄色视频在线观看| 大香蕉久久网| 中亚洲国语对白在线视频| 精品第一国产精品| 亚洲专区中文字幕在线| 俄罗斯特黄特色一大片| 国产亚洲欧美精品永久| 国产成+人综合+亚洲专区| 91成人精品电影| 中文字幕人妻丝袜制服| 欧美中文综合在线视频| 国产精品久久久久久精品古装| 女性生殖器流出的白浆| 中出人妻视频一区二区| 亚洲精品在线美女| 欧美激情高清一区二区三区| 欧美人与性动交α欧美精品济南到| 在线观看免费高清a一片| 午夜免费成人在线视频| 电影成人av| 国产日韩一区二区三区精品不卡| 亚洲欧美日韩另类电影网站| 啦啦啦 在线观看视频| 免费观看a级毛片全部| 黄色毛片三级朝国网站| 91成人精品电影| 亚洲黑人精品在线| 啦啦啦在线免费观看视频4| 免费看a级黄色片| 日本a在线网址| 国产精品欧美亚洲77777| 超碰97精品在线观看| 国产成人精品在线电影| 国产亚洲欧美精品永久| 久久久久久免费高清国产稀缺| 亚洲精品国产精品久久久不卡| av福利片在线| 精品久久久精品久久久| 欧美激情 高清一区二区三区| 欧美乱妇无乱码| 美女福利国产在线| www.自偷自拍.com| 电影成人av| 怎么达到女性高潮| 美女午夜性视频免费| 亚洲五月婷婷丁香| 一本综合久久免费| 久久精品国产清高在天天线| 国产欧美日韩一区二区精品| 91九色精品人成在线观看| 搡老岳熟女国产| 亚洲五月天丁香| 怎么达到女性高潮| 国产又色又爽无遮挡免费看| 在线观看日韩欧美| 日韩免费高清中文字幕av| 精品视频人人做人人爽| 99精品久久久久人妻精品| 天天躁日日躁夜夜躁夜夜| 搡老岳熟女国产| 亚洲五月天丁香| 精品一区二区三区av网在线观看| 乱人伦中国视频| 国产成人精品久久二区二区91| 久久这里只有精品19| 免费在线观看日本一区| 欧美在线黄色| 99热国产这里只有精品6| 在线十欧美十亚洲十日本专区| 欧美激情 高清一区二区三区| 女警被强在线播放| 国产精品99久久99久久久不卡| 午夜福利,免费看| 国产麻豆69| 国产精品国产高清国产av | 亚洲性夜色夜夜综合| 免费观看a级毛片全部| 好看av亚洲va欧美ⅴa在| 两个人免费观看高清视频| 欧美日韩福利视频一区二区| 美女国产高潮福利片在线看| 精品一品国产午夜福利视频| 亚洲综合色网址| 999久久久精品免费观看国产| 老司机影院毛片| 高清在线国产一区| 成人av一区二区三区在线看| 大型av网站在线播放| 9色porny在线观看| 极品少妇高潮喷水抽搐| 国产精品偷伦视频观看了| 在线国产一区二区在线| 国产不卡av网站在线观看| x7x7x7水蜜桃| 在线观看www视频免费| 色94色欧美一区二区| 欧美另类亚洲清纯唯美| 建设人人有责人人尽责人人享有的| 99精国产麻豆久久婷婷| 精品一区二区三区av网在线观看| 国产又色又爽无遮挡免费看| 国产精品秋霞免费鲁丝片| 不卡av一区二区三区| 亚洲av美国av| 高清av免费在线| 丝袜在线中文字幕| 国产成人精品无人区| 国产成人av激情在线播放| 亚洲国产精品sss在线观看 | 久久婷婷成人综合色麻豆| 国产男女超爽视频在线观看| www.熟女人妻精品国产| 极品少妇高潮喷水抽搐| 国产精华一区二区三区| 757午夜福利合集在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲色图 男人天堂 中文字幕| 一本综合久久免费| 在线天堂中文资源库| 亚洲avbb在线观看| 国产深夜福利视频在线观看| 国产成人影院久久av| av电影中文网址| 黄片小视频在线播放| 亚洲成国产人片在线观看| 一边摸一边做爽爽视频免费| 中文字幕另类日韩欧美亚洲嫩草| 啦啦啦在线免费观看视频4| 国产精品香港三级国产av潘金莲| 欧美成狂野欧美在线观看| 老司机深夜福利视频在线观看| 叶爱在线成人免费视频播放| 国产精品永久免费网站| 免费黄频网站在线观看国产| 国产欧美日韩一区二区精品| a级毛片黄视频| 国产三级黄色录像| 亚洲欧洲精品一区二区精品久久久| 午夜福利欧美成人| 亚洲av欧美aⅴ国产| 少妇猛男粗大的猛烈进出视频| 久热这里只有精品99| 在线观看日韩欧美| av免费在线观看网站| 久久国产精品男人的天堂亚洲| 欧美色视频一区免费| 亚洲一区中文字幕在线| 美女高潮到喷水免费观看| 伦理电影免费视频| 女人高潮潮喷娇喘18禁视频| 后天国语完整版免费观看| 欧美中文综合在线视频| 国产男靠女视频免费网站| 十八禁人妻一区二区| 91九色精品人成在线观看| 人妻一区二区av| 国产精品美女特级片免费视频播放器 | 国产成人免费观看mmmm| 身体一侧抽搐| 一级片免费观看大全| 好看av亚洲va欧美ⅴa在| 中文字幕人妻丝袜一区二区| av网站在线播放免费| 三上悠亚av全集在线观看| 色精品久久人妻99蜜桃| 91九色精品人成在线观看| 人人妻人人爽人人添夜夜欢视频| 成年女人毛片免费观看观看9 | 久久久精品区二区三区| 国产精品久久久久久人妻精品电影| 高潮久久久久久久久久久不卡| 男女午夜视频在线观看| 国产精品美女特级片免费视频播放器 | 黄色a级毛片大全视频| 亚洲视频免费观看视频| 亚洲在线自拍视频| 国产亚洲欧美在线一区二区| 国产在视频线精品| av超薄肉色丝袜交足视频| 亚洲熟女毛片儿| 成年人黄色毛片网站| 三上悠亚av全集在线观看| 日韩一卡2卡3卡4卡2021年| 精品一区二区三区视频在线观看免费 | 在线观看66精品国产| 99精国产麻豆久久婷婷| 中文字幕高清在线视频| 日韩欧美一区二区三区在线观看 | 岛国在线观看网站| 美女高潮到喷水免费观看| 丰满迷人的少妇在线观看| 精品一品国产午夜福利视频| 99久久精品国产亚洲精品| 国产成人欧美在线观看 | 婷婷精品国产亚洲av在线 | 久久人妻av系列| 日韩 欧美 亚洲 中文字幕| 久久久精品国产亚洲av高清涩受| 亚洲三区欧美一区| 亚洲aⅴ乱码一区二区在线播放 | 久久亚洲精品不卡| 18禁裸乳无遮挡动漫免费视频| 欧美+亚洲+日韩+国产| 91国产中文字幕| 成年版毛片免费区| 久久人妻福利社区极品人妻图片| 国产1区2区3区精品| 91麻豆精品激情在线观看国产 | 欧美丝袜亚洲另类 | 在线观看www视频免费| 色尼玛亚洲综合影院| 涩涩av久久男人的天堂| 在线观看日韩欧美| 久久久久久免费高清国产稀缺| 亚洲成av片中文字幕在线观看| 夫妻午夜视频| 国产又爽黄色视频| 免费在线观看亚洲国产| 黄色 视频免费看| 桃红色精品国产亚洲av| 下体分泌物呈黄色| 国产亚洲精品久久久久5区| 男男h啪啪无遮挡| 十八禁网站免费在线| 多毛熟女@视频| 国产亚洲精品久久久久久毛片 | 少妇猛男粗大的猛烈进出视频| 国产91精品成人一区二区三区| 法律面前人人平等表现在哪些方面| 亚洲第一av免费看| 精品国产一区二区久久| 国产视频一区二区在线看| 精品福利永久在线观看| 成人永久免费在线观看视频| 久久香蕉国产精品| 国产成人av激情在线播放| 亚洲,欧美精品.| 欧美另类亚洲清纯唯美| 国产在线一区二区三区精| 欧美日韩视频精品一区| 中文亚洲av片在线观看爽 | 50天的宝宝边吃奶边哭怎么回事| 一区福利在线观看| 18禁裸乳无遮挡动漫免费视频| 十八禁高潮呻吟视频| 欧美日韩视频精品一区| 亚洲三区欧美一区| 最近最新免费中文字幕在线| 最近最新中文字幕大全电影3 | 99精国产麻豆久久婷婷| 日日夜夜操网爽| 欧美黑人欧美精品刺激| 女警被强在线播放| 999久久久精品免费观看国产| 这个男人来自地球电影免费观看| 亚洲色图av天堂| 在线看a的网站| 韩国av一区二区三区四区| 国产欧美亚洲国产| 欧美久久黑人一区二区| 一进一出好大好爽视频| 日韩欧美在线二视频 | 男女下面插进去视频免费观看| 热99国产精品久久久久久7| 免费女性裸体啪啪无遮挡网站| 久久精品亚洲精品国产色婷小说| 精品国产一区二区三区久久久樱花| 亚洲av片天天在线观看| 巨乳人妻的诱惑在线观看| 夜夜爽天天搞| 成年人午夜在线观看视频| а√天堂www在线а√下载 | 一区福利在线观看| 高潮久久久久久久久久久不卡| 欧美激情高清一区二区三区| av网站在线播放免费| 一区二区三区激情视频| 成人手机av| 一区二区三区激情视频| 成人手机av| 丰满饥渴人妻一区二区三| a在线观看视频网站| 欧美成人午夜精品| 国产高清videossex| 精品久久久久久,| 99精品久久久久人妻精品| 国产亚洲一区二区精品| 男人的好看免费观看在线视频 | 免费少妇av软件| 久久草成人影院| 波多野结衣av一区二区av| 久久草成人影院| 国产又爽黄色视频| 欧美日韩亚洲国产一区二区在线观看 | 精品久久久久久久久久免费视频 | 自拍欧美九色日韩亚洲蝌蚪91| 欧美激情 高清一区二区三区| 好看av亚洲va欧美ⅴa在| 老鸭窝网址在线观看| 亚洲 国产 在线| 国产精品 欧美亚洲| 90打野战视频偷拍视频| 国产精品一区二区精品视频观看| tocl精华| 国产xxxxx性猛交| 亚洲欧美日韩高清在线视频| 日韩欧美免费精品| 超碰97精品在线观看| 91麻豆av在线| 亚洲精品粉嫩美女一区| 亚洲色图av天堂| 美女 人体艺术 gogo| 少妇被粗大的猛进出69影院| 黑人操中国人逼视频| 久久天躁狠狠躁夜夜2o2o| 丝瓜视频免费看黄片| 久久ye,这里只有精品| 黑丝袜美女国产一区| 国产亚洲一区二区精品| 精品欧美一区二区三区在线| 亚洲精品粉嫩美女一区| 亚洲精品一卡2卡三卡4卡5卡| 18禁黄网站禁片午夜丰满| 精品人妻在线不人妻| 精品高清国产在线一区| 国产精品 国内视频| www.自偷自拍.com| 久久午夜综合久久蜜桃| 性色av乱码一区二区三区2| 免费在线观看影片大全网站| 欧美另类亚洲清纯唯美| 露出奶头的视频| 亚洲中文字幕日韩| 狂野欧美激情性xxxx| www.999成人在线观看| 手机成人av网站| 极品人妻少妇av视频| 深夜精品福利| 下体分泌物呈黄色| 日本vs欧美在线观看视频| 1024香蕉在线观看| 久久精品亚洲熟妇少妇任你| 日韩有码中文字幕| 午夜福利一区二区在线看| 9191精品国产免费久久| 欧美乱妇无乱码| 亚洲片人在线观看| 色综合婷婷激情| 中文欧美无线码| avwww免费| 色播在线永久视频| 欧美乱妇无乱码| 国产主播在线观看一区二区| 在线观看舔阴道视频| 成人手机av| 亚洲精品久久成人aⅴ小说| 91九色精品人成在线观看| 欧美色视频一区免费| 国产av一区二区精品久久| 香蕉久久夜色| 精品熟女少妇八av免费久了| 亚洲视频免费观看视频| 欧美国产精品va在线观看不卡| 操出白浆在线播放| a级片在线免费高清观看视频| 又黄又粗又硬又大视频| bbb黄色大片| 亚洲男人天堂网一区| 欧美日韩精品网址| 日本vs欧美在线观看视频|