• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Recent development of transient electronics

    2016-12-09 08:00:11HuanyuChengVikasVepachedu

    Huanyu Cheng,Vikas Vepachedu

    Department of Engineering Science and Mechanics,Materials Research Institute,The Pennsylvania State University,University Park,PA 16802,USA

    Review

    Recent development of transient electronics

    Huanyu Cheng?,Vikas Vepachedu

    Department of Engineering Science and Mechanics,Materials Research Institute,The Pennsylvania State University,University Park,PA 16802,USA

    H I G H L I G H T S

    ?A number of inorganic materials and their method of application were studied.

    ?Models of reactive diffusion were presented to predict the dissolution behavior.

    ?Various encapsulation approaches were explored as a way to extend the lifetime.

    ?The transient ECG sensor was configured in a stretchable layout.

    A R T I C L EI N F O

    Article history:

    Accepted 26 November 2015

    Available online 15 January 2016

    Transient electronics

    Model of reactive diffusion

    Encapsulation strategy

    Multilayer structures

    Transient electronics are an emerging class of electronics with the unique characteristic to completely dissolve withina programmed periodof time.Sincenoharmful byproducts arereleased,theseelectronics can be used in the human body as a diagnostic tool,for instance,or they can be used as environmentally friendly alternatives to existing electronics which disintegrate when exposed to water.Thus,the most crucial aspect of transient electronics is their ability to disintegrate in a practical manner and a review of the literature on this topic is essential for understanding the current capabilities of transient electronics and areas of future research.In the past,only partial dissolution of transient electronics was possible, however,total dissolution has been achieved with a recent discovery that silicon nanomembrane undergoes hydrolysis.The use of single-and multi-layered structures has also been explored as a way to extend the lifetime of the electronics.Analytical models have been developed to study the dissolution of various functional materials as well as the devices constructed from this set of functional materials and these models prove to be useful in the design of the transient electronics.

    ?2016 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY license(http://creativecommons.org/ licenses/by/4.0/).

    Contents

    1.Introduction........................................................................................................................................................................................................................21

    2.Hydrolysis of semiconducting materials..........................................................................................................................................................................22

    3.Model of reactive diffusion for transient materials.........................................................................................................................................................23

    4.Dissolution of the device with bi-layered structures......................................................................................................................................................25

    5.Conclusion..........................................................................................................................................................................................................................29

    Acknowledgments.............................................................................................................................................................................................................30

    References...........................................................................................................................................................................................................................30

    1.Introduction

    While the development of modern electronics has typically been concerned with durable devices that function stably over time,the advent of transient electronics takes an opposite approach;the destruction of the said devices is designed to provide unique opportunities.Upon exposure to water,transient electronics disintegrate at a predictable rate while releasing biologically and/or environmentally benign end products[1,2].This ability opensawiderangeofapplicationsfrombio-degradableelectronics to diagnostic/therapeutic implants[3,4].One can use an electronic component,for instance,as a temporary implant in a patient and allow it to safely dissolve on its own without the need for a second surgery[1,5].Ultimately,transient electronics can solve the problemofdisposingelectronicsinasafeandconvenientmanner[6–8].

    The defining quality of transient electronics is their ability to dissolve into non-toxic products upon exposure to water and,naturally,dissolution accounts for a significant amount of research in this field[1,2,9–12].Early research on this topic resulted in achieving the partial dissolution of components through the use of organic materials as substrates[13,14].For instance,organic thinfilmtransistorshavebeendevelopedusingcotton-madepaper[15] as substrate and silk was also shown to be useful as a soluble substrate for implants in the body[16].However,this type of research was limited to the substrate and the electronic devices remained insoluble.

    Fig.1.Proof-of-concept demonstration for transient electronics,with key materials and device structure layout.(a)Image of a device with all components deployed on a thin silk substrate.The device components include transistors,diodes,inductors,capacitors,and resistors,with interconnects and interlayer dielectrics.(b)Schematic illustration in an exploded view,with a top view in the lower right inset.(c)Images showing the time sequence at various dissolution stages in deionized(DI)water.

    More recently however,electronics which are completely soluble have been developed.This relies on a recent,important discovery that semiconductor grade monocrystalline silicon can undergo dissolution in bio-fluids or even water at physiological conditions with a programmed lifetime relevant to applications in biomedicine[1].As the reaction rate of silicon hydrolysis to form silicic acid(Si(OH)4)is exceptionally small,silicon devices were fabricated in extremely thin forms.A nanomembrane of silicon with lateral dimensions similar to conventional circuits but with a thickness of 70 nm has been shown to dissolve in~10 days[1].Via similar chemistry,thin silicon dioxide(SiO2)was selected as a gate dielectric.Taken together with the other dissolvable,inorganic materials such as magnesium(Mg)and magnesium oxide(MgO) for conductors and the interlayer dielectric,respectively,due to their spontaneous reaction with water to form biologically benign Mg(OH)2,silicon nanomembranes provide a basic means for the construction of a transient,electronic device.As a proofof-concept,Fig.1(a)and(b)present a schematic demonstration platform which utilizes silicon nanomembranes(Si NMs)for the semiconductors,magnesium for the conductors,magnesium oxide and silicon dioxide for the dielectrics,and silk for the substrate and packaging materials.The collectively configured devices dissolve and disintegrate when immersed in DI water(Fig.1(c)).

    Surface reactions typically dominate the dissolution behavior for sufficiently large reaction constants.The porosity of the materials(e.g.,Mg,MgO and SiO2)however,was found to be influential as it allows for the diffusion of water through the material,thereby increasing the dissolution rate through an increase in the effective surface area[12].In studying the dissolution of transient electronics,the factors to consider include physical and chemical properties of materials,and certain ambient factors of an aqueous environment.Given the research of these factors and others,analytical models have been developed to solidify the understanding of the dissolution behaviors in transient electronics[1,11,12].Such models can be of great assistance in the design of transient electronics.This review will first provide a comprehensive discussion on the hydrolysis of semiconducting materials with a focus on silicon nanomembranes,followed by the model of reactive diffusion to account for the dissolution behavior of porous materials.When combined with ideas from soft,tissuelike electronic devices,the class of transient electronics provides a viable means to monitor health or deliver care in a minimally obtrusive way.

    2.Hydrolysis of semiconducting materials

    To establish a realistic set of functional materials,knowledge regarding the chemical kinetics of each material is critical, especially that of the hydrolysis of semiconducting materials.At physiological pH levels and temperatures,the dissolution rates of semiconducting materials(e.g.,silicon,silicon–germanium,and germanium)are remarkably small[17].Therefore,in order to minimize the amount of semiconducting materials which must be dissolved,the nanomembrane structure is critical.Dissolution of monocrystalline silicon nanomembranes in phosphate buffered saline(PBS with pH=7.4)at biologically pertinent temperatures (e.g.,37°C)forms either an intermediate oxidation product SiO2or Si(OH)4through the equilibrium:Si+4H2O?Si(OH)4+2H2[18,19].Theratedependsonthecrystalstructure,morphology,and doping concentration of silicon[20,21],as well as the temperature and composition of solutions[2,19].

    Systematic characterization of the dissolution kinetics for siliconusedvariousbio-fluidsatmultiplepHlevelsandtemperatures. Patterned Si NMs(3μm×3μm×70 nm)were first created on a layer of thermal oxide on a silicon wafer,followed by immersion in aqueous buffer solutions(50 mL,in a petri dish with diameter of 7 cm).The dissolution rate of thermal oxide is negligible in comparison to that of silicon.Thicknesses of Si NMs were measured at a specific time(e.g.,every other day)after which the sample wasplaced into a fresh buffer solution.There was no significant change in the dissolution rate for a variety of time intervals(e.g.,for every 1,2,4,7 days),indicating accurate measurement in the dissolution rate.Studies of SiGe and Ge were given in a similar setup[17].Figure 2(a)presents atomic force microscope topographical images of a Si NM with an initial thickness of 70 nm collected at various stages of hydrolysis,demonstrating its transient behavior in biofluids(PBS with pH of 7.4;37°C).

    Fig.2.Experiments of silicon dissolution with corresponding theoretical and numerical analyses.(a)Atomic force microscope topographical images of a Si NM with initial dimension of 3μm×3μm×70 nm at various stages of hydrolysis in PBS at 37°C.(b)Theoretical(lines)and experimental(symbols)dissolution of Si NMs from(a)in buffer solutions at different pH levels(pH 6,black;pH 7,red;pH 8,blue;pH 10,purple),at physiological temperature(37°C).(c)Atomic configurations for each ion adsorption event in density functional theory(DFT)simulation of the silicon dissolution process.(For interpretation of the references to color in this figure legend,the reader is referred to the web version of this article.)

    Given the dense arrangement of the silicon atoms in crystal structures,the hydrolysis of monocrystalline silicon nanomembranesislimitedtothesurfaceandthekineticscanbedescribedby a surface reaction with a constant dissolution rate[1,2].With the assumption that no solution molecules diffuse into the silicon,this modelyieldsalinearrelationshipbetweenthemeasuredthickness and the time,where the slopes represent the dissolution rates.A previously established empirical formula[19]suggests that an increase in the hydroxide ion concentration[OH?]results in an accelerated dissolution rate in high pH solutions of KOH.As shown in Fig.2(b),this formula can reproduce the experimental trends for solutions at the physiological pH levels if a different power law exponent is used for[OH?][2].

    3.Model of reactive diffusion for transient materials

    In addition to surface reactions,the diffusion in the porous materials cannot be ignored and the reaction between the diffused molecules and surrounding porous materials also needs to be considered.A model of reactive diffusion was proposed to analytically study the dissolution process of porous materials[23].Themodelconsidersthediffusionofwaterandhydroxideionsinto porous materials,which effectively increases the reactive surface. Here the key parameters are the diffusivity D of water in the porousmaterialandthereactionconstantkbetweenwaterandthe material.Becausetheinitialthicknessh0ismuchsmallerthanboth the width and length of the sample in the experiment,the onedimensional(1D)model can adequately capture the dissolution behaviors.Withy=0atthebottomofthemateriallayer(Fig.4(a)), the water concentrationw(y,t)at location y and time t satisfies the reactive diffusion equation[23]

    This equation reduces to the standard diffusion equation if the reaction constant k is negligible.The boundary conditions of Eq.(1) include a constant water concentration at the water/porous material interfaceand a zero water flux at the porous material/substrate interface?w/?y|y=0=0.The initial condition is zero water concentrationIn order to transform the inhomogeneous boundary conditionto a homogeneous one,a new variableis introduced[12],which results in an updated equation

    The boundary conditions and the initial condition becomeandrespectively.Eq.(2)is inhomogeneous,but the general solution can be represented by a sum of a homogeneous solutionθhand a particular solutionθp.The homogeneous solutionθhsatisfies the homogeneous equationwith homogeneous boundary conditionsand. Expressed in the form ofcan be solved by the method of separation of variables.The homogeneous equation leads towhereλis the eigenvalue to be determined from the boundary condition.The functions T(t)and Y(y)are then expressed as T=e?λtandwhere A and B are constants to be determined from initial and boundary conditions.Withandobtained from the homogeneous boundary conditions,A is solved to be A=0 and the trigonometric equationleads to the solution for eigenvaluesk(n=1,2,3,...),whichin turngivesthehomogeneous solution

    The solution given above indicates a clear scaling lawin which the normalized water concentrationw/w0depends on normalized position y/h0,normalized timeand a single non-dimensional parameterthat scales with the ratio of reaction constant k to diffusivity D.Experimental measurement of Mg with an initial thickness of 300 nm showsandwhich is within the range of reaction constants reported by Taub et al.[24].Figure 3(a)presents the distribution of water concentration for the normalized time0.2,0.4,0.8, 2 and∞,wherecorresponds to the steady-state limit of the water concentration in the Mg layerw(y,t→∞)=

    whereρis the mass density of the porous material.For parameters k and D relevant to applications of transient electronics in biomedicine,the summation on the right hand side of Eq.(5)is negligible in linear expression for the thickness as

    is the critical time of complete physical disappearance for the transient material.The rate of dissolutionalso known as the electrical dissolution rate used for conductors[25],can be determined from the linear approximation of the thickness asThe rate of dissolution is 0.044 nm/s, 0.13 nm/s,and 0.20 nm/s for 100 nm-,300 nm-and 500 nmthick Mglayers,respectively.Thesequantitieshavethe same order of magnitude as rates of dissolution reported in the prior experiments[26,27].

    The chemical reaction of Mg in phosphate buffered saline follows Mg+2H2O→Mg(OH)2+H2.Thus,two water molecules react with one Mg atom(i.e.,q=2).Because water molecules are the dominant molecule in phosphate buffered saline or the other bio-fluids,the water concentration is approximatelyw0= 1 g·cm?3.The critical time tcto dissolve Mg(molar mass M= 24 g·mol?1,mass densityρ=1.738 g·cm?3,and initial thickness h0=300 nm)is calculated as 38 min,which agrees reasonably well with the measurement of 40 min in the experiment.Via a similar chemistry,one silicon oxide atom reacts with two water molecules by SiO2+2H2O→Si(OH)4.Because the reactionbetween SiO2and water is much slower than between Mg and water(minutes to dissolve Mg versus days to dissolve SiO2),the reaction constant between water and SiO2(~10?6s?1)is much smaller than that between water and Mg(~10?3s?1).The rates of dissolution range from 0.11 to 0.47 nm/h for SiO2with an initialthicknessbetween35and100nmatatemperaturebetween room and physiological temperatures.These rates of dissolution for PECVD SiO2in water are consistent with the rates reported in priorexperiments[28],whicharehigherthanthoseforquartz[29].

    In comparison to the intermittent thickness measurement, electrical properties can potentially provide continuous measurements.Electrical measurements also allow for evaluation of the dissolution behavior of a conductive material below a nonconductive layer,as discussed in the next section.The relative changes in both the width and length directions are much smaller than in the thickness direction.Therefore,the electric resistance is inversely proportional to the remaining thickness as R=R0h0/h≈R0/(1?t/tc),where R0is the initial resistance.Changes of resistance approximately account for both changes in thickness and influences associated with porosity,pitting and other nonuniformitiesinducedbynon-uniformdissolution[25].ThenormalizedelectricresistanceR/R0ofMgisshowninFig.4(c)asafunction of the normalized time t/tc.In this figure,the same reaction constant k=1.2×10?3s?1and diffusivity D=6.0×10?12cm2/s arechosenforMgwithan initialthicknessof300nmandinitial resistance(per unit length)R0of 1.06Ω/mm.It is important to note that an initial layer of thin MgO may exist on top of the Mg layer. In the presence of water,this thin MgO layer quickly reacts to form a more stable,crystalline hydroxide[30],which is not as protective as non-crystalline films[31].Thus,the single-layer dissolution model can properly account for the hydrolysis of Mg.

    The potential of thin films made from other transient metals for use in transient electronics has also been explored and was found to be worth considering with the development of MOSFETs as an example[25].Analytical models discussed above are found to be applicable to other dissolvable metals,including Mg alloy, zinc(Zn),tungsten(W),and molybdenum(Mo).The prediction from the model can reproduce the observed dissolution behaviors inDIwaterandsimulatedbodyfluids(e.g.,Hanks’solutionwithpH from5to8)[25].Particularly,theelectricaldissolutionratesinthin films can be much different from traditionally reported corrosion rates in corresponding bulk materials.The model cannot,however, capture the dissolution behavior of iron(Fe),because Fe degrades in a spatially non-uniform manner,with certain reaction products (Fe2O3and Fe3O4)that have very low solubility[25].

    Silicon oxides and silicon nitrides are key materials for dielectrics and encapsulation layers in the class of silicon-based high performance electronics.The dissolution rates of these materials are affected by the physical and chemical properties of the films,which in turn depend on the deposition/growth methods and conditions.A key parameter that can approximately characterize these differences is density.The effects of density variation are two-fold.Reduced density increases the porosity in the porous materials,which results in an increased reactive surface to accelerate the dissolution.Secondly,it also reduces the amountofmaterialsthatneedtobedissolved.Theeffectivedensity ρeffof porous material is related to the densityρsof the fully dense materials asρeff= ρsVs/(Vs+Vair),where Vsand Vairare the volumes of the porous material and air cavity,respectively. A modified version of the reactive diffusion model provides a simple means to account for the density variation[11].In Eq.(1),the diffusivity D is replaced with an effective diffusivity De. The effective diffusivity of water in a porous medium is linearly proportional to the pore fraction in the porous medium:De∝Vair/(Vair+Vs)=(ρs?ρeff)/ρs.As densities of porous materials fromvariousdepositionmethods/conditionsaremeasureddirectly from the experiment,the effective diffusivity of water in each porous material can be determined.At time t=0,the air pores are filled with water,i.e.,w|t=0=w0(ρs?ρeff)/ρs(0≤y<h0). The boundary conditions remain the same as those for Eq.(1). Following the same approach discussed above,the normalized thickness is solved as[11]

    4.Dissolution of the device with bi-layered structures

    Applications in biomedicine require the transient electronics to function stably in a certain timeframe,followed by a complete physical disappearance.All of the transient materials however, start to dissolve immediately in the bio-fluids.The lifetime of the resulting devices is typically determined by Mg interconnects due totheirfastreactionwithwater.Althoughthesystemmayfunction before it completely breaks down,its performance is significantly compromised.Therefore,it is important to explore a mechanism that allows devices to function in a programmed lifetime.

    Adding encapsulation layers or packaging materials on top of the device can extend its lifetime in a controlled manner. For instance,MgO can serve as an encapsulation layer for Mg. In this bi-layered system(Fig.4(b)),zero initial condition at t=0 applies to both Mg and MgO layers.The reactive diffusion Eq.(1)together with zero water flux boundary condition at the bottom surface y=0 still holds for the Mg layer.As for the MgO encapsulation with an initial thickness ofthe reactive diffusion equation becomes[12]whereandare the diffusivity of water in MgO and reaction constant between MgO and water,respectively.The constant water concentration boundary condition at the MgO/water interface isIn addition,the continuity conditions of water concentration and flux across the MgO/Mg interface areandSimilar to the single-layer system,theinhomogeneous boundary condition leads to a representation of the water concentration as a sum of a homogeneous solutionwhand a particular solutionwp,i.e.,w=wh+wp.The homogeneous solutionwhsatisfies the homogeneous equationwhereandfor 0≤ y≤ h0in the Mg layer,andandfor h0≤in the MgO encapsulation.The boundary conditions become homogeneous as well,i.e.,

    and fn(y)is written as

    Satisfying the reactive diffusion equation,together with inhomogeneousboundarycondition,zerowaterfluxatthebottom of Mg layer,and continuity conditions,the particular solutionwpis solved aswp=w0g(y),where

    In the same manner as described in the previous section,the remaining thickness h of the Mg layer normalized by its initial thickness h0is obtained as

    whereGisgiveninEq.(10a).AsMgisbelowtheMgOencapsulation layer,itisdifficulttomeasurethethicknesschangeofMg.Noticing MgO is not conductive,the electric resistance of Mg(or this bilayered structure)is then measured,from which the thickness can be calculated h=R0h0/R.To understand the thickness effect of MgO encapsulation,both 400 nm-thick and 800 nm-thick MgO layers are studied on a 300 nm-thick Mg layer.As shown in Fig.4(c),the normalized electrical resistance R/R0versus the normalized timepredicted from the theory agrees well with the experimental measurements.A comparison between two Mg+MgO structure layouts indicates a substantial increase in the dissolution time as the thickness of encapsulation layer increases. ThiscomesfromthefactthatthediffusionofwaterinMgOismuch slowerthanthatinMg,whicheffectivelyextendsthelifetimeofMg in providing an effective way to control the dissolution time.

    The summation on the right hand side of Eq.(12)is negligible for devices relevant totransient implants.As a result,the thickness decreases linearly with time.The simple and approximate expression is given aswhere is the critical time for complete physical disappearance of the Mg conductor layer in the device and tcis the critical time in the single-layer system.From the remaining thickness h,the rate of dissolution can be solved as′.The rateofdissolutionisapproximatelylinearwiththeinitialthickness h0and it can be further simplified for a sufficiently thin Mg layer

    Fig.3.Distribution of water concentration predicted from models of reactive diffusion for the normalized timeand∞in(a)an Mg layerwithoutencapsulationlayer,and(b)bothanMgconductorlayerencapsulatedbyanMgOlayer

    Fig.4.Schematic illustrations for models of reactive diffusion and modeling predictions of the electrical resistance compared with experimental measurements.(a)Singlelayered structure and(b)bi-layered structure used in models of reactive diffusion for porous materials.(c)Experimental and modeling results of the electric resistance of Mg and Mg with different encapsulation strategies(e.g.,MgO encapsulation layers and/or silk overcoats).

    Fig.5.Encapsulation strategies with multilayer structures.(a)Schematic illustrations of encapsulation methods for transient electronic devices,with defects(e.g.,pinholes) covered by a bilayer of SiO2/Si3N4(left)or an ALD layer(right).(b)Measurements of changes in resistance of Mg traces with an initial thickness of 300 nm encapsulated with different encapsulation approaches(in deionized water at room temperature).Encapsulation strategies examined here include a single layer of PECVD SiO2(black, 1μm),PECVD-LF Si3N4(red,1μm)and ALD SiO2(orange,20 nm);a double layer of PECVD SiO2/PECVD-LF Si3N4(blue,500/500 nm),PECVD SiO2/ALD SiO2(magenta, 500/20 nm),PECVD-LF Si3N4/ALD SiO2(purple,500/20 nm);and a triple layer of PECVD SiO2/PECVD-LF Si3N4(Cyan,200/200/200/200/100/100 nm).(c)Fabrication strategy for the multilayer silk pocket.Crystallization of the outer layers renders them water insoluble,whereas the inner device substrate layer can remain crystallized.Sealing the outer edges around the device encapsulates it in a protective silk pocket.Multilayer fabrication is carried out by repeating the process with an inner pocket as the device layer.(For interpretation of the references to color in this figure legend,the reader is referred to the web version of this article.)

    As an alternative,silicon oxides and nitrides can also be considered as encapsulation layers in addition to their use as gate and interlayer dielectrics,as they are typically known to be barrier materials for permeation of water[11].As a primary source of leakage for vapors or fluids,defects such as pinholes are commonly found in films of silicon oxides and nitrides.As a result,multilayer structures with different materials[11]have been developed to cooperatively eliminate defects[32]for use in transient electronics.In addition to a combination of multiple different layers,i.e.SiO2and Si3N4(Fig.5(a)left),atomic layer deposition(ALD)provides a complementary strategy to reduce defects and improve the performance of the encapsulation,even with thin layers(Fig.5(a),right)[33].As shown in Fig.5(b), measured changes in resistance of a serpentine-shaped Mg trace with an initial thickness of 300 nm demonstrate the effectiveness of several encapsulation approaches.

    To achieve an even longer desired lifetime for transient electronic devices,silk overcoats have also been used to provide an extra barrier for water to diffuse into MgO and Mg layers[1]. A well designed layout with both MgO encapsulation and silk overcoat can successfully increase the lifetime of devices over hundreds of times[12].To apply the idea of multilayer structures to silk overcoats,an encapsulation strategy of exploiting multiple air pockets has been demonstrated[34].A scheme of this strategy is shown in Fig.5(c).Transient electronics transferred to a silk substrate are enclosed by silk films with tunable crystalline and diffusion properties.Thermal sealing of the silk films creates a small air pocket,which provides additional protection for the device components.Iteration of this process can provide multiple silk pockets as needed.The onset of device degradation starts only when swelling of the silk protective layer collapses the air pocket in a wet environment[35].

    Fig.6.Transient electrophysiological sensors configured in a stretchable pattern for capacitive sensing.(a)Optical image of a device and(inset)magnified view of electrode structures in the filamentary serpentine mesh layout.(b)Schematic illustration in an exploded view for the corresponding device in(a).(c)Photograph of a device mounted onthe chestformeasurement ofelectrocardiograms(ECG).(d)ECGmeasurements collectedfrom transient(red)andstandardgel-based(blue)devices.(e)Aseries ofimages at various dissolution stages of a transient device in PBS(pH 10)at room temperature.(For interpretation of the references to color in this figure legend,the reader is referred to the web version of this article.)

    These combined strategies in encapsulation lead to two-stage dissolution kinetics in transient electronics:(i)encapsulation layers define the first time period of stable operation with negligiblechangesinelectricalperformance,(ii)theMgdefinesthe second,where the device rapidly degrades.Efficient encapsulation strategies can remove the leakage pathways and significantly increase the time for stable operation.Realizing the full potential of transient electronics for implanted applications ultimately requires conformal contact with organs of the body.To this end, a recent development of transient medical devices exploits the conceptsofstretchableelectronics[36–40]byuseofbiodegradable elastomers[41].As shown in optical images and schematic illustrations(Fig.6(a)and(b)),a stretchable and transient electrophysiology sensor is constructed.Thin layers of Mg (300nm)andSiO2(100nm)aredesignedintheformoffilamentary serpentine meshes[42–44](Fig.6(a),inset)for measurement, ground and reference electrodes and connecting leads.Capacitive sensing leads to the use of a biodegradable polymer[45,46] between the Mg electrodes and the skin.The measurements show levelsoffidelitycomparabletothoseofconventionalgelelectrodes (Fig.6(d)),as demonstrated in the high quality ECG measurements on the chest(Fig.6(c)).Figure 6(e)presents a set of images of a transient electrophysiology sensor at various dissolution stages in PBS(pH 10)at room temperature.The dissolution behavior of each component is consistent with separate studies of these materials discussed in the previous section(complete dissolution within hours for Mg or days/weeks for SiO2).

    5.Conclusion

    When exposed to bio-fluids or water,the class of siliconbased high performance transient electronics disintegrates and dissolves to eliminate the need for recollection.A number of discoveries have been made in the effort to control how transient electronics dissolve.Firstly,a number of materials,including semiconductors,and their method of application in the design of transient electronics were studied.Secondly,a model of reactive diffusion was presented to predict the way in which a component would dissolve in bio-fluids or water.This model considered a variety of factors including the porosity of the material.Thirdly, this model was extended to study the reactive diffusion in a bilayered structure.The analytical results connect the key electricalproperty to models of reactive diffusion and provide the capability to use such analytics in conjunction with established circuit simulators as a comprehensive design approach.

    Since the nature of the materials used in transient electronics exhibits a decisive effect on the dissolution of resulting electronics,future material science research would be desirable. Other strategies besides encapsulation would also be worth future research to understand multiple ways of controlling the dissolution behavior of transient electronics.Active control of the transience in devices is of interest for the future development as well. Combining possibilities in transient electronics with ideas in soft,‘tissue-like’devices further expands opportunities for applications in biomedicine.Overall,however,the research performed thus far on the design of transient electronics has been extensive and the potential use of this technology in industry is evident.

    Acknowledgments

    H.C.was a Howard Hughes Medical Institute International Student Research fellow.The authors acknowledge the start-up fund provided by the Engineering Science and Mechanics Department, College of Engineering,and Materials Research Institute at the Pennsylvania State University(215-37 1001 cc:H.Cheng).

    References

    [1]S.-W.Hwang,H.Tao,D.-H.Kim,et al.,A physically transient form of silicon electronics,Science 337(2012)1640–1644. http://www.sciencemag.org/content/337/6102/1640.

    [2]S.W.Hwang,G.Park,H.Cheng,et al.,25th anniversary article:Materials for high-performance biodegradable semiconductor devices,Adv.Mater.26 (2014)1992–2000. http://onlinelibrary.wiley.com/doi/10.1002/adma.201470082/abstract.

    [3]R.O.Darouiche,Treatment of infections associated with surgical implants,N. Engl.J.Med.350(2004)1422–1429. http://www.nejm.org/doi/full/10.1056/NEJMra035415.

    [4]H.Tao,S.-W.Hwang,B.Marelli,et al.,Silk-based resorbable electronic devices for remotely controlled therapy and in vivo infection abatement,Proc.Natl. Acad.Sci.111(2014)17385–17389. http://www.pnas.org/content/111/49/17385.abstract.

    [5]C.Dagdeviren,S.W.Hwang,Y.Su,et al.,Transient,biocompatible electronics and energy harvesters based on ZnO,Small 9(2013)3398–3404. http://onlinelibrary.wiley.com/doi/10.1002/smll.201300146/abstract.

    [6]H.L.Hernandez,S.K.Kang,O.P.Lee,et al.,Triggered transience of metastable poly(phthalaldehyde)for transient electronics,Adv.Mater.26(2014) 7637–7642. http://onlinelibrary.wiley.com/doi/10.1002/adma.201403045/abstract.

    [7]C.H.Lee,S.K.Kang,G.A.Salvatore,et al.,Wireless microfluidic systems for programmed,functional transformation of transient electronic devices,Adv. Funct.Mater.25(2015)5100–5106. http://onlinelibrary.wiley.com/doi/10.1002/adfm.201502192/abstract.

    [8]C.W.Park,S.K.Kang,H.L.Hernandez,et al.,Thermally triggered degradation of transient electronic devices,Adv.Mater.27(2015)3783–3788. http://onlinelibrary.wiley.com/doi/10.1002/adma.201501180/abstract.

    [9]X.Huang,Y.Liu,S.W.Hwang,et al.,Biodegradable materials for multilayer transient printed circuit boards,Adv.Mater.26(2014)7371–7377. http://onlinelibrary.wiley.com/doi/10.1002/adma.201403164/abstract.

    [10]S.W.Hwang,S.K.Kang,X.Huang,et al.,Materials for programmed,functional transformation in transient electronic systems,Adv.Mater.27(2015)47–52. http://onlinelibrary.wiley.com/doi/10.1002/adma.201403051/abstract.

    [11]S.K.Kang,S.W.Hwang,H.Cheng,et al.,Dissolution behaviors and applications of silicon oxides and nitrides in transient electronics,Adv.Funct.Mater.24 (2014)4427–4434. http://onlinelibrary.wiley.com/doi/10.1002/adfm.201304293/abstract.

    [12]R.Li,H.Cheng,Y.Su,et al.,An analytical model of reactive diffusion for transient electronics,Adv.Funct.Mater.23(2013)3106–3114. http://onlinelibrary.wiley.com/doi/10.1002/adfm.201203088/abstract.

    [13]C.J.Bettinger,Z.Bao,Organic thin-film transistors fabricated on resorbable biomaterial substrates,Adv.Mater.22(2010)651–655. http://onlinelibrary.wiley.com/doi/10.1002/adma.200902322/abstract.

    [14]M.Irimia-Vladu,P.A.Troshin,M.Reisinger,et al.,Biocompatible and biodegradable materials for organic field-effect transistors,Adv.Funct.Mater. 20(2010)4069–4076. http://onlinelibrary.wiley.com/doi/10.1002/adfm.201001031/abstract.

    [15]F.Eder,H.Klauk,M.Halik,et al.,Organic electronics on paper,Appl.Phys.Lett. 84(2004)2673–2675. http://scitation.aip.org/content/aip/journal/apl/84/14/10.1063/1.1690870.

    [16]D.H.Kim,Y.S.Kim,J.Amsden,et al.,Silicon electronics on silk as a path to bioresorbable,implantable devices(vol 95,133701,2009),Appl.Phys.Lett.95 (2009). http://scitation.aip.org/content/aip/journal/apl/95/13/10.1063/1.3238552.

    [17]S.-K.Kang,G.Park,K.Kim,et al.,Dissolutionchemistryandbiocompatibilityof silicon-and Germanium-based semiconductors for transient electronics,ACS Appl.Mater.Interfaces 7(2015)9297–9305. http://pubs.acs.org/doi/abs/10.1021/acsami.5b02526.

    [18]J.D.Rimstidt,H.L.Barnes,The kinetics of silica–water reactions,Geochim. Cosmochim.Acta 44(1980)1683–1699. http://www.sciencedirect.com/science/article/pii/0016703780902203.

    [19]H.Seidel,L.Csepregi,A.Heuberger,et al.,Anisotropic etching of crystalline silicon in Alkaline-solutions.1.Orientation dependence and behavior of passivation layers,J.Electrochem.Soc.137(1990)3612–3626. http://jes.ecsdl.org/content/137/11/3612.

    [20]S.-W.Hwang,G.Park,C.Edwards,et al.,Dissolution chemistry and biocompatibility of single-crystalline silicon nanomembranes and associated materials for transient electronics,ACS Nano 8(2014)5843–5851. http://pubs.acs.org/doi/abs/10.1021/nn500847g.

    [21]H.Seidel,L.Csepregi,A.Heuberger,et al.,Anisotropic etching of crystalline silicon in Alkaline-solutions.2.Influence of dopants,J.Electrochem.Soc.137 (1990)3626–3632.http://jes.ecsdl.org/content/137/11/3612.

    [22]L.Yin,A.B.Farimani,K.Min,et al.,Mechanisms for hydrolysis of silicon nanomembranes as used in bioresorbable electronics,Adv.Mater.27(2015) 1857–1864. http://onlinelibrary.wiley.com/doi/10.1002/adma.201404579/abstract.

    [23]P.V.Danckwerts,Absorption by simultaneous diffusion and chemical reaction,Trans.Faraday Soc.46(1950)300.http://pubs.rsc.org/en/Content/ ArticleLanding/1950/TF/TF9504600300#!divAbstract.

    [24]I.A.Taub,W.Roberts,S.LaGambina,etal.,Mechanismofdihydrogenformation in the magnesium–water reaction?J.Phys.Chem.A 106(2002)8070–8078. http://pubs.acs.org/doi/abs/10.1021/jp0143847.

    [25]L.Yin,H.Cheng,S.Mao,et al.,Dissolvablemetalsfor transientelectronics,Adv. Funct.Mater.24(2014)645–658. http://onlinelibrary.wiley.com/doi/10.1002/adfm.201301847/abstract.

    [26]H.Inoue,K.Sugahara,A.Yamamoto,et al.,Corrosion rate of magnesium and its alloys in buffered chloride solutions,Corros.Sci.44(2002)603–610. http://www.sciencedirect.com/science/article/pii/S0010938X01000920.

    [27]W.Ng,K.Chiu,F.Cheng,Effect of pH on the i in vitro/i corrosion rate of magnesium degradable implant material,Mater.Sci.Eng.C 30(2010)898–903. http://www.sciencedirect.com/science/article/pii/S0928493110000895.

    [28]G.Wirth,J.Gieskes,The initial kinetics of the dissolution of vitreous silica in aqueous media,J.Colloid Interface Sci.68(1979)492–500. http://www.sciencedirect.com/science/article/pii/0021979779903072.

    [29]W.G.Worley,DissolutionKineticsandMechanismsinQuartz-and Grainite-WaterSystems,MassachusettsInstituteofTechnology,1994, http://dspace.mit.edu/handle/1721.1/28068.

    [30]M.Pourbaix,Atlas of Electrochemical Equilibria in Aqueous Solutions,1974.

    [31]J.P.Hoare,Oxide film studies on iron in electrochemical machining electrolytes,J.Electrochem.Soc.117(1970)142–145. http://jes.ecsdl.org/content/117/1/142.abstract.

    [32]J.Rosink,H.Lifka,G.Rietjens,et al.,34.1:Ultra-thin encapsulation for largearea OLED displays.Paper Presented at:SID Symposium Digest of Technical Papers,Wiley Online Library,2005. http://onlinelibrary.wiley.com/doi/10.1889/1.2036236/abstract.

    [33]J.Meyer,P.G?rrn,F.Bertram,et al.,Al2O3/ZrO2 nanolaminates as ultrahigh gas-diffusion barriers—A strategy for reliable encapsulation of organic electronics,Adv.Mater.21(2009)1845–1849. http://onlinelibrary.wiley.com/doi/10.1002/adma.200803440/abstract.

    [34]M.A.Brenckle,H.Cheng,S.Hwang,et al.,Modulated degradation of transient electronic devices through multilayer silk fibroin pockets,ACS Appl.Mater. Interfaces(2015). http://pubs.acs.org/doi/abs/10.1021/acsami.5b06059?journalCode=aamick.

    [35]B.D.Lawrence,S.Wharram,J.A.Kluge,et al.,Effect of hydration on silk film material properties,Macromol.Biosci.10(2010)393–403. http://www.ncbi.nlm.nih.gov/pubmed/20112237.

    [36]H.Cheng,Y.Zhang,K.-C.Hwang,et al.,Buckling of a stiff thin film on a prestrained bi-layer substrate,Int.J.Solids Struct.51(2014)3113–3118. http://www.sciencedirect.com/science/article/pii/S002076831400198X.

    [37]H.Cheng,J.Wu,M.Li,et al.,An analytical model of strain isolation for stretchable and flexible electronics,Appl.Phys.Lett.98(2011)061902. http://scitation.aip.org/content/aip/journal/apl/98/6/10.1063/1.3553020.

    [38]D.-H.Kim,N.Lu,R.Ma,et al.,Epidermal electronics,Science 333(2011) 838–843.https://www.sciencemag.org/content/333/6044/838.abstract.

    [39]J.A.Rogers,T.Someya,Y.G.Huang,Materials and mechanics for stretchable electronics,Science 327(2010)1603–1607. http://www.sciencemag.org/content/327/5973/1603.abstract.

    [40]J.Viventi,D.H.Kim,J.D.Moss,et al.,A conformal,bio-interfaced class of silicon electronics for mapping cardiac electrophysiology,Sci.Transl.Med.2(2010) http://pubs.acs.org/doi/abs/10.1021/jp0143847.

    [41]S.-W.Hwang,C.H.Lee,H.Cheng,et al.,Biodegradable elastomers and silicon nanomembranes/nanoribbons for stretchable,transient electronics, and biosensors,Nano Lett.15(2015)2801–2808. http://pubs.acs.org/doi/abs/10.1021/nl503997m.

    [42]D.H.Kim,J.L.Xiao,J.Z.Song,et al.,Stretchable,curvilinear electronics based on inorganic materials,Adv.Mater.22(2010)2108–2124. http://onlinelibrary.wiley.com/doi/10.1002/adma.200902927/abstract.

    [43]D.H.Kim,J.H.Ahn,W.M.Choi,et al.,Stretchable and foldable silicon integrated circuits,Science 320(2008)507–511. http://www.sciencemag.org/content/320/5875/507.

    [44]R.H.Kim,M.H.Bae,D.G.Kim,et al.,Stretchable,transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates,Nano Lett.11(2011)3381–3886. http://pubs.acs.org/doi/abs/10.1021/nl202000u.

    [45]S.W.Hwang,J.K.Song,X.Huang,et al.,High-performance biodegradable/transient electronics on biodegradable polymers,Adv.Mater.26(2014) 3905–3911. http://onlinelibrary.wiley.com/doi/10.1002/adma.201306050/abstract.

    [46]J.Yang,A.R.Webb,G.A.Ameer,Novel citric acid–based biodegradable elastomers for tissue engineering,Adv.Mater.16(2004)511–516. http://onlinelibrary.wiley.com/doi/10.1002/adma.200306264/abstract.

    10 October 2015

    http://dx.doi.org/10.1016/j.taml.2015.11.012

    2095-0349/?2016 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY license(http://creativecommons.org/licenses/by/4.0/).

    ?.

    E-mail address:huanyu.cheng@psu.edu(H.Cheng).

    国产成人av教育| 飞空精品影院首页| 男女床上黄色一级片免费看| cao死你这个sao货| 欧美中文综合在线视频| 无限看片的www在线观看| 嫩草影视91久久| 亚洲精品美女久久久久99蜜臀 | 50天的宝宝边吃奶边哭怎么回事| 在线观看www视频免费| 天天影视国产精品| 交换朋友夫妻互换小说| 多毛熟女@视频| 99九九在线精品视频| 午夜视频精品福利| 看十八女毛片水多多多| bbb黄色大片| 脱女人内裤的视频| 欧美+亚洲+日韩+国产| 精品人妻熟女毛片av久久网站| 亚洲精品自拍成人| 国产人伦9x9x在线观看| 亚洲精品在线美女| 久久久欧美国产精品| 亚洲国产精品一区二区三区在线| 亚洲国产av新网站| 国产在视频线精品| 国产淫语在线视频| 最新的欧美精品一区二区| 国产精品欧美亚洲77777| 日本欧美国产在线视频| 久久精品aⅴ一区二区三区四区| 亚洲av日韩在线播放| 中文字幕色久视频| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲精品美女久久久久99蜜臀 | 涩涩av久久男人的天堂| 国产精品一区二区在线观看99| 视频区图区小说| 亚洲,一卡二卡三卡| 老汉色∧v一级毛片| 久久av网站| 伊人亚洲综合成人网| 高清av免费在线| 一本久久精品| 久久亚洲精品不卡| 久久性视频一级片| 亚洲欧美日韩高清在线视频 | 亚洲欧美一区二区三区国产| 国产伦理片在线播放av一区| 精品熟女少妇八av免费久了| 国产免费一区二区三区四区乱码| 国产深夜福利视频在线观看| 女性生殖器流出的白浆| 成人国语在线视频| 欧美国产精品va在线观看不卡| 一个人免费看片子| 国产成人精品无人区| 啦啦啦在线观看免费高清www| 又黄又粗又硬又大视频| 亚洲国产毛片av蜜桃av| 交换朋友夫妻互换小说| 男女高潮啪啪啪动态图| 免费在线观看影片大全网站 | 搡老乐熟女国产| 日韩一区二区三区影片| 18禁国产床啪视频网站| av福利片在线| 亚洲精品国产av成人精品| 亚洲成人免费av在线播放| 99国产综合亚洲精品| 国产91精品成人一区二区三区 | 99国产精品一区二区蜜桃av | 一本一本久久a久久精品综合妖精| 大香蕉久久成人网| 中文字幕高清在线视频| 亚洲图色成人| 在线看a的网站| 一边亲一边摸免费视频| 天堂俺去俺来也www色官网| 宅男免费午夜| 人人妻人人澡人人看| 中文字幕高清在线视频| 国产日韩欧美在线精品| 大话2 男鬼变身卡| √禁漫天堂资源中文www| 精品福利观看| 99re6热这里在线精品视频| 麻豆国产av国片精品| 亚洲av电影在线观看一区二区三区| 日韩一区二区三区影片| 国产在线视频一区二区| 久久久久久亚洲精品国产蜜桃av| 欧美日韩av久久| 久久久精品免费免费高清| 日韩av不卡免费在线播放| 免费av中文字幕在线| 国产精品免费视频内射| 欧美激情 高清一区二区三区| 如日韩欧美国产精品一区二区三区| 久久久久久久精品精品| 午夜免费成人在线视频| 人成视频在线观看免费观看| 久久热在线av| 狠狠精品人妻久久久久久综合| 看十八女毛片水多多多| 国产精品免费大片| 欧美亚洲日本最大视频资源| 欧美日韩亚洲综合一区二区三区_| 国产成人欧美在线观看 | 欧美日韩视频精品一区| 久久精品久久精品一区二区三区| 午夜福利视频在线观看免费| 国产黄色免费在线视频| xxxhd国产人妻xxx| 丝袜喷水一区| 汤姆久久久久久久影院中文字幕| 精品高清国产在线一区| 丁香六月天网| 亚洲人成电影观看| 国精品久久久久久国模美| 99久久人妻综合| 精品国产乱码久久久久久男人| 又粗又硬又长又爽又黄的视频| 日韩 亚洲 欧美在线| 尾随美女入室| 国产成人免费观看mmmm| 午夜两性在线视频| 亚洲人成77777在线视频| 精品久久蜜臀av无| 欧美成人午夜精品| 国产免费现黄频在线看| www.熟女人妻精品国产| 午夜精品国产一区二区电影| 久久人妻熟女aⅴ| 男人操女人黄网站| 亚洲,一卡二卡三卡| 热re99久久精品国产66热6| 巨乳人妻的诱惑在线观看| 一级片免费观看大全| 欧美久久黑人一区二区| 免费黄频网站在线观看国产| 在线观看免费日韩欧美大片| 又黄又粗又硬又大视频| 老汉色av国产亚洲站长工具| 777米奇影视久久| 又紧又爽又黄一区二区| 午夜福利免费观看在线| 国产人伦9x9x在线观看| 精品亚洲成国产av| 大香蕉久久成人网| 2021少妇久久久久久久久久久| 久久亚洲精品不卡| 久久久精品国产亚洲av高清涩受| 狂野欧美激情性bbbbbb| 久久女婷五月综合色啪小说| www.熟女人妻精品国产| 丁香六月天网| 亚洲色图 男人天堂 中文字幕| 午夜91福利影院| 男女无遮挡免费网站观看| 中文欧美无线码| 精品少妇内射三级| 亚洲第一青青草原| 亚洲国产av影院在线观看| 在线 av 中文字幕| 精品人妻熟女毛片av久久网站| 最新在线观看一区二区三区 | 男女之事视频高清在线观看 | 日韩 欧美 亚洲 中文字幕| 亚洲五月婷婷丁香| 欧美精品啪啪一区二区三区 | 欧美日韩亚洲综合一区二区三区_| 国产亚洲午夜精品一区二区久久| 欧美+亚洲+日韩+国产| 大型av网站在线播放| 黄片播放在线免费| 美女午夜性视频免费| 大香蕉久久成人网| 中文乱码字字幕精品一区二区三区| 国产91精品成人一区二区三区 | 免费观看a级毛片全部| 咕卡用的链子| 人妻一区二区av| 人人妻人人澡人人看| 午夜福利视频精品| 人人妻,人人澡人人爽秒播 | 国产一区亚洲一区在线观看| 在线观看免费高清a一片| 晚上一个人看的免费电影| 深夜精品福利| 国产精品国产三级专区第一集| 欧美少妇被猛烈插入视频| 欧美日韩精品网址| 精品一区二区三卡| 亚洲av日韩在线播放| 自拍欧美九色日韩亚洲蝌蚪91| 日韩免费高清中文字幕av| 在线观看人妻少妇| 亚洲人成77777在线视频| 亚洲国产av影院在线观看| 9191精品国产免费久久| 黑人巨大精品欧美一区二区蜜桃| videosex国产| 国产成人91sexporn| 人妻人人澡人人爽人人| 国产野战对白在线观看| 久久亚洲精品不卡| 视频区图区小说| 亚洲欧美一区二区三区国产| 一级毛片黄色毛片免费观看视频| 亚洲色图综合在线观看| 国产不卡av网站在线观看| 亚洲国产av新网站| 亚洲国产欧美日韩在线播放| 免费看十八禁软件| 亚洲精品日本国产第一区| 老汉色av国产亚洲站长工具| 美女扒开内裤让男人捅视频| videos熟女内射| 嫁个100分男人电影在线观看 | 男的添女的下面高潮视频| 高清不卡的av网站| 亚洲男人天堂网一区| 日韩中文字幕视频在线看片| 欧美亚洲日本最大视频资源| 天天躁夜夜躁狠狠久久av| 中文字幕高清在线视频| 一二三四社区在线视频社区8| 爱豆传媒免费全集在线观看| 亚洲 国产 在线| 日韩人妻精品一区2区三区| 精品少妇久久久久久888优播| 国产一区有黄有色的免费视频| 国产精品成人在线| 精品福利观看| 99国产综合亚洲精品| 久久久久久久久免费视频了| 欧美黑人精品巨大| 18禁裸乳无遮挡动漫免费视频| 超碰97精品在线观看| 日本a在线网址| 亚洲 欧美一区二区三区| avwww免费| 精品久久久久久电影网| 亚洲中文字幕日韩| 一级片免费观看大全| 午夜91福利影院| 亚洲精品久久成人aⅴ小说| 中文欧美无线码| 成人三级做爰电影| 狂野欧美激情性xxxx| 亚洲午夜精品一区,二区,三区| 亚洲视频免费观看视频| 国产极品粉嫩免费观看在线| 中文乱码字字幕精品一区二区三区| 国产伦理片在线播放av一区| e午夜精品久久久久久久| 国产精品久久久久成人av| 日韩精品免费视频一区二区三区| 久久性视频一级片| 老司机亚洲免费影院| 久久av网站| 这个男人来自地球电影免费观看| 久久综合国产亚洲精品| 99久久人妻综合| 午夜激情av网站| 老汉色av国产亚洲站长工具| 91麻豆av在线| 国产亚洲一区二区精品| 亚洲人成77777在线视频| 午夜激情久久久久久久| 丝袜在线中文字幕| 久久精品国产亚洲av高清一级| 青春草亚洲视频在线观看| 亚洲 国产 在线| 交换朋友夫妻互换小说| 黄色怎么调成土黄色| 亚洲国产欧美日韩在线播放| 成人亚洲欧美一区二区av| 亚洲伊人久久精品综合| a级毛片黄视频| 91麻豆精品激情在线观看国产 | av天堂在线播放| 色网站视频免费| 2018国产大陆天天弄谢| 国产亚洲av高清不卡| 国产成人一区二区在线| xxx大片免费视频| 黑人巨大精品欧美一区二区蜜桃| 日本一区二区免费在线视频| 午夜视频精品福利| 国产熟女午夜一区二区三区| 久久精品久久久久久久性| 国产精品 国内视频| 亚洲精品国产av成人精品| 日韩熟女老妇一区二区性免费视频| 欧美久久黑人一区二区| 黄片小视频在线播放| 一本色道久久久久久精品综合| 999久久久国产精品视频| 在线观看免费日韩欧美大片| 国产精品免费视频内射| 日韩人妻精品一区2区三区| 国产精品熟女久久久久浪| 亚洲av电影在线进入| 一区二区三区四区激情视频| 成年人免费黄色播放视频| 久久午夜综合久久蜜桃| 18禁国产床啪视频网站| 亚洲av电影在线观看一区二区三区| 亚洲精品久久成人aⅴ小说| 国产一区亚洲一区在线观看| 午夜影院在线不卡| 狂野欧美激情性xxxx| 97在线人人人人妻| 99热网站在线观看| 极品少妇高潮喷水抽搐| 国产欧美日韩综合在线一区二区| 三上悠亚av全集在线观看| 国产精品偷伦视频观看了| 国产黄色视频一区二区在线观看| 亚洲国产欧美一区二区综合| 女性被躁到高潮视频| 亚洲九九香蕉| 欧美乱码精品一区二区三区| 色网站视频免费| 丝袜美足系列| 久久国产精品大桥未久av| 免费一级毛片在线播放高清视频 | 国产午夜精品一二区理论片| 夫妻午夜视频| 久热这里只有精品99| 日韩中文字幕视频在线看片| 国产xxxxx性猛交| 爱豆传媒免费全集在线观看| 国产免费又黄又爽又色| 国产精品免费大片| 青春草视频在线免费观看| 狂野欧美激情性xxxx| 国产亚洲av片在线观看秒播厂| 18禁黄网站禁片午夜丰满| 午夜视频精品福利| 一区二区av电影网| 黑人巨大精品欧美一区二区蜜桃| 老司机午夜十八禁免费视频| 十八禁高潮呻吟视频| 国产成人一区二区三区免费视频网站 | 欧美成人午夜精品| 亚洲精品国产av蜜桃| 嫩草影视91久久| 日韩精品免费视频一区二区三区| 亚洲激情五月婷婷啪啪| 国产免费视频播放在线视频| 亚洲伊人色综图| 黄频高清免费视频| 黑人猛操日本美女一级片| 每晚都被弄得嗷嗷叫到高潮| 久久人妻熟女aⅴ| 欧美日韩视频高清一区二区三区二| 久久久国产欧美日韩av| 最新的欧美精品一区二区| 欧美日韩国产mv在线观看视频| 久久毛片免费看一区二区三区| 久久久精品国产亚洲av高清涩受| 水蜜桃什么品种好| 久久精品人人爽人人爽视色| 男女高潮啪啪啪动态图| 国产在线一区二区三区精| 最新的欧美精品一区二区| 一本综合久久免费| 老汉色av国产亚洲站长工具| 午夜久久久在线观看| www.自偷自拍.com| 日本av免费视频播放| 在线观看www视频免费| 中文欧美无线码| 国产精品久久久久久精品古装| 国产一区二区三区av在线| 亚洲精品国产区一区二| 亚洲欧洲国产日韩| 久久久国产欧美日韩av| 中文精品一卡2卡3卡4更新| 国产淫语在线视频| 国产精品一区二区在线不卡| 男女床上黄色一级片免费看| 少妇猛男粗大的猛烈进出视频| 女性生殖器流出的白浆| 午夜福利影视在线免费观看| cao死你这个sao货| 欧美成人午夜精品| 别揉我奶头~嗯~啊~动态视频 | 美女中出高潮动态图| 日本猛色少妇xxxxx猛交久久| 精品人妻在线不人妻| 亚洲欧洲日产国产| 1024香蕉在线观看| av国产精品久久久久影院| 国产在线免费精品| 国产精品一二三区在线看| 交换朋友夫妻互换小说| 亚洲欧美激情在线| 别揉我奶头~嗯~啊~动态视频 | 精品久久久久久久毛片微露脸 | 亚洲欧美激情在线| 日本午夜av视频| 纯流量卡能插随身wifi吗| 国产国语露脸激情在线看| av线在线观看网站| xxx大片免费视频| 在线观看免费视频网站a站| 久久久精品94久久精品| 中文字幕人妻丝袜一区二区| 午夜福利视频精品| 男女之事视频高清在线观看 | 国产亚洲精品久久久久5区| 在现免费观看毛片| 久久久亚洲精品成人影院| 99热全是精品| 欧美日韩福利视频一区二区| 新久久久久国产一级毛片| 精品欧美一区二区三区在线| 国产又色又爽无遮挡免| 两个人看的免费小视频| 一二三四社区在线视频社区8| 91精品国产国语对白视频| 亚洲av电影在线进入| 一本大道久久a久久精品| 满18在线观看网站| 一级a爱视频在线免费观看| 只有这里有精品99| 欧美 日韩 精品 国产| 真人一进一出gif抽搐免费| 精品福利观看| 久久亚洲真实| 日韩中文字幕欧美一区二区| 日韩av在线大香蕉| 91在线观看av| 国产黄色小视频在线观看| 婷婷精品国产亚洲av| 国产精华一区二区三区| 国产精品综合久久久久久久免费| aaaaa片日本免费| 国产真人三级小视频在线观看| 亚洲精品国产一区二区精华液| 一进一出好大好爽视频| 久久青草综合色| 两个人看的免费小视频| 国产精品一区二区三区四区久久 | 波多野结衣高清作品| 亚洲av中文字字幕乱码综合 | 亚洲成人免费电影在线观看| 操出白浆在线播放| 亚洲第一av免费看| 黑人欧美特级aaaaaa片| 欧美性猛交黑人性爽| 超碰成人久久| 大香蕉久久成人网| 亚洲 国产 在线| www国产在线视频色| 国产精品久久久人人做人人爽| 一级毛片女人18水好多| 日韩视频一区二区在线观看| 亚洲色图av天堂| 香蕉国产在线看| 欧美日韩黄片免| 久久性视频一级片| 久久香蕉精品热| 日本免费a在线| 精品久久久久久久人妻蜜臀av| 琪琪午夜伦伦电影理论片6080| 国产精品电影一区二区三区| 欧美日韩中文字幕国产精品一区二区三区| 99国产精品99久久久久| 日韩视频一区二区在线观看| 国产免费男女视频| 亚洲精品中文字幕一二三四区| 香蕉久久夜色| 日韩视频一区二区在线观看| 成人永久免费在线观看视频| 亚洲av熟女| 激情在线观看视频在线高清| 大型av网站在线播放| 又黄又爽又免费观看的视频| 亚洲七黄色美女视频| 亚洲一区中文字幕在线| 午夜亚洲福利在线播放| 9191精品国产免费久久| 琪琪午夜伦伦电影理论片6080| 精品国产乱子伦一区二区三区| 亚洲激情在线av| 一本精品99久久精品77| 免费av毛片视频| 亚洲第一电影网av| 久久精品国产亚洲av香蕉五月| 午夜久久久在线观看| 国产高清激情床上av| 亚洲男人的天堂狠狠| 国内揄拍国产精品人妻在线 | 精品少妇一区二区三区视频日本电影| 最近最新免费中文字幕在线| 精品福利观看| 亚洲国产欧美一区二区综合| 国产精品1区2区在线观看.| 中亚洲国语对白在线视频| 亚洲欧美精品综合一区二区三区| 欧美黑人巨大hd| 成年版毛片免费区| 精品久久久久久久末码| 日本成人三级电影网站| a在线观看视频网站| 亚洲中文字幕日韩| 国产视频内射| 久久天堂一区二区三区四区| 色播在线永久视频| 视频在线观看一区二区三区| 午夜福利在线在线| 正在播放国产对白刺激| 成在线人永久免费视频| 在线观看66精品国产| 国产国语露脸激情在线看| avwww免费| 一级毛片精品| 一个人观看的视频www高清免费观看 | 亚洲色图 男人天堂 中文字幕| 成年版毛片免费区| 女警被强在线播放| 久久精品国产亚洲av香蕉五月| 亚洲av中文字字幕乱码综合 | 国产高清视频在线播放一区| 淫秽高清视频在线观看| 国语自产精品视频在线第100页| av福利片在线| 一区二区日韩欧美中文字幕| 国产成人精品久久二区二区免费| 精品久久久久久久末码| 午夜免费成人在线视频| 欧美大码av| 99国产综合亚洲精品| 亚洲熟女毛片儿| 国产区一区二久久| 黄片小视频在线播放| 久久精品亚洲精品国产色婷小说| 欧美成狂野欧美在线观看| 丁香欧美五月| 精品国内亚洲2022精品成人| 免费搜索国产男女视频| 欧美+亚洲+日韩+国产| 亚洲第一电影网av| 极品教师在线免费播放| 成人特级黄色片久久久久久久| 成人国语在线视频| 亚洲av成人av| 亚洲av五月六月丁香网| 女警被强在线播放| 日韩欧美一区二区三区在线观看| 在线观看舔阴道视频| 丝袜人妻中文字幕| 亚洲美女黄片视频| 日韩大尺度精品在线看网址| 亚洲国产精品成人综合色| 男人舔女人的私密视频| 国产人伦9x9x在线观看| 黄色视频,在线免费观看| 精品国产亚洲在线| 欧美成人免费av一区二区三区| 国产一区二区激情短视频| 国产精品免费视频内射| 国产亚洲欧美98| 波多野结衣高清作品| 欧美不卡视频在线免费观看 | 久久精品国产综合久久久| 黄片大片在线免费观看| 巨乳人妻的诱惑在线观看| 日日摸夜夜添夜夜添小说| 午夜福利在线观看吧| 91成人精品电影| 中文字幕久久专区| 日本 欧美在线| 国产亚洲精品第一综合不卡| 日韩大尺度精品在线看网址| 亚洲国产欧美一区二区综合| 亚洲精品一区av在线观看| 国产成人av激情在线播放| 亚洲aⅴ乱码一区二区在线播放 | 黄色视频,在线免费观看| 妹子高潮喷水视频| 精品久久久久久成人av| 淫秽高清视频在线观看| 在线观看www视频免费| 成人亚洲精品av一区二区| 一个人免费在线观看的高清视频| 一区二区三区激情视频| 久久草成人影院| 亚洲av日韩精品久久久久久密| 熟女电影av网| 成熟少妇高潮喷水视频| 亚洲人成77777在线视频| 妹子高潮喷水视频| 日韩欧美在线二视频| 叶爱在线成人免费视频播放| 成人av一区二区三区在线看| 国产av一区在线观看免费| 性色av乱码一区二区三区2| 天天躁夜夜躁狠狠躁躁| 最近最新中文字幕大全电影3 | 韩国av一区二区三区四区| 国产欧美日韩一区二区精品| 国产精品久久久人人做人人爽| 欧美绝顶高潮抽搐喷水| bbb黄色大片| 亚洲精品色激情综合| 欧美精品亚洲一区二区| 亚洲一区高清亚洲精品| 国产三级黄色录像|