• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Adhesion-governed buckling of thin-film electronics on soft tissues

    2016-12-09 08:00:08BoWangShuodaoWang

    Bo Wang,Shuodao Wang

    School of Mechanical and Aerospace Engineering,Oklahoma State University,Stillwater,OK,74078,USA

    Letter

    Adhesion-governed buckling of thin-film electronics on soft tissues

    Bo Wang,Shuodao Wang?

    School of Mechanical and Aerospace Engineering,Oklahoma State University,Stillwater,OK,74078,USA

    H I G H L I G H T S

    ?Adhesion-governed buckling physics for thin-film on elastomer.

    ?The transitions between buckling modes are predicted analytically.

    ?Mechanics discussed in the context of bio-integrated electronics applications.

    A R T I C L EI N F O

    Article history:

    Accepted 20 November 2015

    Available online 24 December 2015

    Stretchable electronics

    Bio-electronics

    Buckling

    Work of adhesion

    Bio-interface

    Stretchable/flexible electronics has attracted great interest and attention due to its potentially broad applications in bio-compatible systems.One class of these ultra-thin electronic systems has found promising and importantutilities in bio-integrated monitoring and therapeutic devices.These devices can conform to the surfaces of soft bio-tissues such as the epidermis,the epicardium,and the brain to provide portable healthcare functionalities.Upon contractions of the soft tissues,the electronics undergoes compression and buckles into various modes,depending on the stiffness of the tissue and the strength of the interfacial adhesion.These buckling modes result in different kinds of interfacial delamination and shapes of the deformed electronics,which are very important to the proper functioning of the bioelectronic devices.In this paper,detailed buckling mechanics ofthese thin-film electronics on elastomeric substrates is studied.The analytical results,validated by experiments,provide a very convenient tool for predicting peak strain in the electronics and the intactness of the interface under various conditions.

    Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/ 4.0/).

    Stretchable electronics,being as stretchable and flexible as soft tissues,has enabled many important applications,such as[1–8] eyeball-like digital cameras[9,10],sensitive robotic skins[11,12], smart surgical gloves[13],comfortable skin sensor[14],and structural health monitoring devices[15].Among these applications, some of the most important ones are the bio-integrated monitoring and therapeutic devices that can conform to the surfaces of soft bio-tissues such as the epidermis[16],the epicardium[17], and the brain[18],which provide promising options for longtermand portable healthcare devices.Upon contractions ofthe soft tissues,the electronics undergoes compression and buckles into various modes[19,20].A few important mechanics models were developed to study the buckling problems on similar film-onelastomer systems.Jiang et al.[2]studied the buckling behavior of strongly-bonded film-on-elastomer structures and predicted the maximum strain in the thin film to prevent fracture.Wang et al.[1] described local and global buckling modes for one-dimensional thin films or two-dimensional thin membranes on elastomers,and obtained the analytical critical conditions for separating the two buckling modes.Cheng etal.[21]introduced a bi-layer elastomeric substrate(a soft layer laminated on top ofa relatively stiffone)that yields high levels of stretchability,and discussed the buckling and post-buckling behaviors.To achieve optimum bio-compatibility, Ko et al.[22]and Wang et al.[23]introduced advanced strategies to wrap thin-filmelectronics onto arbitrarily curvilinearshapes,for which Wang et al.[23]developed an analytical model to study the buckling patterns,and showed thatthe buckling behaviors are governed by the strength of the interface and the level of the compressive strain.

    These important mechanics models indicate that the buckling behavior of these film-on-elastomer structures is related to the applied strain,the material and geometric parameters of the film, the stiffness of the elastomer,as well as the strength of the interfacial adhesion.In the context of bio-electronics applications where the tissues are the elastomeric substrate,the stiffness of the tissues and the strength of the interface can vary in a very wide range due to the type of tissues and changes in temperature, moisture,and bio-chemical activities.The intactness of the interface is of great importance to the functioning of electronic devicesthat rely on intimate contact and coupling to the tissues.Detailed mechanics analysis of the buckling physics that accounts for any tissue stiffness and any interfacial adhesion is presented in this study to predict the intactness of the bio-electronics interfaces.

    Fig.1.The four buckling modes:(a)flat;(b)wrinkling;(c)partial delamination;(d)total delamination.

    The various buckling modes in the previous work[1,2,16–20] can be categorized into the four modes shown in Fig.1.Under none to minor compression,the film does not buckle and remains flat(Fig.1(a));as the compression increases,the film wrinkles into multiple small waves on top of the elastomer but does not delaminate from the interface,which we refer to as the wrinkling mode(Fig.1(b));under further compression,the multiple waves merge into one and cause the film to partially delaminate from the interface,which is the partial delamination mode(Fig.1(c)); more compression eventually causes the film to delaminate totally from the interface,which we define as the total delamination mode in this study(Fig.1(d)).The energies of these different buckling modes are formulated and then compared in the next section to explain transitions between them.

    Here we consider a film-structure of length L,thickness h,and Young’s modulus E laminated on top of a soft substrate of Young’s modulus Es,and the work of adhesion for the interface isγ,and the structure is under a compressive applied strain of|ε|.By assuming a sinusoidal buckling shape of wavelength 0< l< L (Fig.1(c)),Wang et al.[23]analyzed the energies for the flat,partial and total delamination modes.Their analysis is elaborated in the Supplementary Information and summarized in the following.All the energies are normalized byfor convenience, whereWe also define the following non-

    For the flat mode,the total energy of the system consists of the membraneenergyofthefilm,andtheadhesionenergyoftheentire interface,and is obtained as

    For the partial delamination mode,the total energy consists of the membrane and bending energy of the film and the adhesion energyoftheun-delaminatedpartoftheinterface[lengthof(L?l)], and is obtained as

    Energy minimization with respect to a requires the first derivative of Eq.(2)to be zero and the second derivative to be greater than zero,therefore a can be solved from

    where a≤1 is due to the constraint that l≤L.

    For the total delamination mode,the energy consists of the membrane and bending energy of the film,and is obtained as

    In this study,we find that a fourth buckling mode,i.e.the wrinkling mode,exists under certain conditions.Following similar approach of Jiang et al.[2],the energy of this mode consists of the membrane and bending energies of the film,the strain energy of the substrate,as well as the adhesion energy of the interface,and can be obtained analytically as strain exceeds the critical buckling strain,namely e>ew.

    Here we adopt a typical case of ew=4 and g=3 to facilitate the discussion.Figure 2 shows the four energy curves versus the normalized strain e.All the curves are obtained analytically from Eqs.(1)to(5),except for the case of local buckling(blue curve).It is clearlyshowninFig.2thatforverysmallstraine,theflatmodehas the lowest energy.As e increases,wrinkling,partial delamination and then total delamination modes become the lowest energy state in sequence.Intersections of the above energy curves are important because they indicate the transitions from one buckling mode to another.Depending on the values of ewand g,there are 6 possible intersections between these curves,which are found below.

    Fig.2.Normalized energy curves of the four buckling modes versus normalized applied strain.The inset in the dashed box shows illustrative details of the intersection points(not to scale)between the four curves.(For interpretation of the references to color in this figure legend,the reader is referred to the web version of this article.)

    The intersection between flat and wrinkling(black and green curves)is found by setting(Eqs.(1)and(5)),which yields

    The intersection between flat and total delamination(black and red curves)is found by setting(Eqs.(1)and(4)), which yields

    The intersection between wrinkling and total delamination (black and red curves)is found by setting(Eqs. (4)and(5)),which yields

    Following the analysis of Wang et al.[23],the intersection between flat and partial delamination is found to be

    and that between partial delamination and total delamination is

    The intersection between wrinkling and partial delamination cannot be obtained analytically because the energy of partial delamination needs to be solved numerically from Eqs.(2)and(3). Here an approximate solution is obtained.We notice that the blue curve for partial delamination is very close to a linear line,and two points on this line can be given analytically by Eqs.(9)and(10)and Eqs.(1)and(4)as

    The energy curve for partial delamination can be approximated by the straight line connecting the two points in Eq.(11).The intersection point between this line and the wrinkling curve can be then obtained analytically as

    By carefully comparing the energies,one can determine which buckling mode has the lowest energy.However,the relations between these energies depend on the values of ewand g, and therefore require careful investigation of various cases.We categorize these cases by the value of ew=(3Es/E)2/3/(4εc)(an indication of relative stiffness of the substrate)as the following.

    (1)0< ew≤ 1:for extremely soft substrate,it is found that the energyofthewrinkling modeisalwayslowerthanthoseofpartial and total delamination modes.Therefore,the deformation map is obtained from Eq.(6)as

    (

    3)3<ew≤5:the conclusions are the same as Case 2 for weak adhesion ofFor stronger adhesion,the transitions from flat to wrinkling,then to partial and total delamination modes can be obtained from Eqs.(6),(10) and(12)as

    (4)ew>5:for relatively stiffer substrate(note:its Young’s modulusisstillfourtofiveordersofmagnitudelowerthanthat ofthefilm),theconclusionsarethesameastheresultsofWang et al.[23]for weak adhesion ofFor adhesion stronger than that,the transitions are the same as in Case 3:

    Fig.3.Deformation mapsversusthat separate the four buckling modes for various values of ew;the plots are generated for representative ewvalues of (a)0.8;(b)2.5;(c)4.0;(d)7.0.(For interpretation of the references to color in this figure legend,the reader is referred to the web version of this article.)

    Hereweusetheexampleinthepreviousstudies[21,22]toshow theutility ofthepresentedresults.Thematerialandgeometric and mechanical properties[22,23]are E=2.5 GPa,h=1.4μm,L= 150μm,Es=2.0 MPa,andγ=0.16 J/m2,which correspond to thenormalizedvaluesofew=15.6andg=69.6.Underthesetwo conditions,Eq.(16)applies and gives the following results(these can also be obtained from Fig.3(d)):

    These results agree very well with experimental observance shown in Fig.4:the film is flat(Fig.4(a))before compression is applied;under very small strain it wrinkles into multiple waves (Fig.4(b))and then quickly transits to the partial delamination mode(Fig.4(c));when|ε|exceeds about 8.5%[23],the film totally delaminated from the substrate(Fig.4(d)),which agrees very well with the 8.0%strain predicted by the analytical model.It should be noted that there may exist another buckling mode between the wrinkling and partial delamination modes,in which the film delaminates from the substrate from multiple locations.However, since the transitions happen at very similar strain levels,we propose to adopt the simplified model presented here.

    Fig.4.Experimental images of the four buckling modes.

    The deformed shape of the film and the peak strain for the flat, partial/total delamination modes are analyzed in detail by Wang et al.[23].For the wrinkling mode,Jiang’s analysis[2]shows that the wrinkling wavelengthλand amplitude A can be obtained by which gives the wavelength to be 67.5μm and agrees reasonably with 56.8μm from experiments(Fig.4(b)).This predicts 2–3 waves over the total span of L=150μm,which again agrees withexperimentalobservations(onlythemiddlewaveofthethree waves in Fig.4(b)spans for an entire wavelength ofλ).Therefore, for the wrinkling mode,we propose to follow Jiang’s approach in Ref.[2]to analyze the maximum strain to prevent fracture of the film structure.

    The deformation maps shown in Fig.3 are very important for the design of bio-integrated electronics,in the sense that they predict the buckling modes for any materials under any adhesion conditions.One crucial information they predict is the onset of interfacial delamination,indicated in these figures by the lower bounds of partial and total delamination modes(magenta,purple, cyan and red curves).

    In this paper,an analytical model is established for thin-film on elastomer structures in the context of bio-integrated electronics applications.Under different conditions in interfacial adhesion, stiffness of the elastomer(tissues)and the levels of compressive strain,the thin film buckles into various modes.The transitions between these modes are predicted analytically,and summarized infourdeformationmaps.Thelowerboundsofthepartialandtotal delamination modes predict the onset of interfacial delamination, which sets design criteria to avoid delamination and achieve intimate and conformal contact to bio-tissues.The analytically predicted information on deformation modes,maximum strain, and interfacial intactness,are important to the design and optimization of high performance bio-integrated electronics.

    Acknowledgment

    Theauthorsacknowledgepartialsupportofthisresearchbythe National Natural Science Foundation of China(Grants 11272260, 11172022,11572022,51075327,11302038).

    Appendix A.Supplementary data

    Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.taml.2015.11.010.

    References

    [1]S.Wang,J.Song,D.-H.Kim,et al.,Local versus global buckling of thin films on elastomeric substrates,Appl.Phys.Lett.93(2008)023126. http://dx.doi.org/10.1063/1.2956402.

    [2]H.Jiang,D.-Y.Khang,J.Song,et al.,Finite deformation mechanics in buckled thin films on compliant supports,Proc.Natl.Acad.Sci.104(2007) 15607–15612.http://dx.doi.org/10.1073/pnas.0702927104.

    [3]J.Xiao,A.Carlson,Z.J.Liu,et al.,Analytical and experimental studies of the mechanics of deformation in a solid with a wavy surface profile,J.Appl.Mech. 77(2009)011003–011003-6,http://dx.doi.org/10.1115/1.3132184.

    [4]Y.Zhang,S.Xu,H.Fu,etal.,Bucklinginserpentinemicrostructuresandapplicationsinelastomer-supportedultra-stretchableelectronicswithhigharealcoverage,SoftMatter9(2013)8062–8070. http://dx.doi.org/10.1039/C3SM51360B.

    [5]Z.Li,Y.Wang,J.Xiao,Mechanicsofcurvilinearelectronicsandoptoelectronics, Curr.Opin.Solid State Mater.Sci.3(2015)171–189. http://dx.doi.org/10.1016/j.cossms.2015.01.003.

    [6]S.Xu,Z.Yan,K.-I.Jang,et al.,Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling,Science 347(2015) 154–159.http://dx.doi.org/10.1126/science.1260960.

    [7]Y.Xue,Y.Zhang,X.Feng,et al.,A theoretical model of reversible adhesion in shapememory surfacereliefstructuresand itsapplicationin transferprinting, J.Mech.Phys.Solids 77(2015)27–42. http://dx.doi.org/10.1016/j.jmps.2015.01.001.

    [8]Z.Li,J.Xiao,Mechanics and optics of stretchable elastomeric microlens array for artificial compound eye camera,J.Appl.Phys.117(2015)014904. http://dx.doi.org/10.1063/1.4905299.

    [9]H.C.Ko,M.P.Stoykovich,J.Song,et al.,A hemispherical electronic eye camera based on compressible silicon optoelectronics,Nature 454(2008)748–753. http://dx.doi.org/10.1038/nature07113.

    [10]G.Shin,I.Jung,V.Malyarchuk,etal.,Micromechanicsandadvanceddesignsfor curved photodetector arrays in hemispherical electronic-eye cameras,Small 6 (2010)851–856.http://dx.doi.org/10.1002/smll.200901350.

    [11]S.Wagner,S.P.Lacour,J.Jones,et al.,Electronic skin:architecture and components,Physica E 25(2004)326–334. http://dx.doi.org/10.1016/j.physe.2004.06.032.

    [12]S.P.Lacour,J.Jones,Z.Suo,et al.,Design and performance of thin metal film interconnects for skin-like electronic circuits,IEEE Electron Device Lett.25 (2004)179–181.http://dx.doi.org/10.1109/LED.2004.825190.

    [13]T.Someya,T.Sekitani,S.Iba,etal.,Alarge-area,flexiblepressuresensormatrixwithorganicfield-effecttransistorsforartificial skin applications,Proc.Natl.Acad.Sci.USA 101(2004)9966–9970. http://dx.doi.org/10.1073/pnas.0401918101.

    [14]S.Xu,Y.Zhang,L.Jia,etal.,Softmicrofluidicassembliesofsensors,circuits,andradiosfortheskin,Science344(2014)70–74. http://dx.doi.org/10.1126/science.1250169.

    [15]A.Nathan,B.Park,A.Sazonov,et al.,Amorphous silicon detector and thin film transistor technology for large-area imaging of X-rays,Microelectron.J. 31(2000)883–891.http://dx.doi.org/10.1016/S0026-2692(00)00082-3.

    [16]D.-H.Kim,N.Lu,R.Ma,et al.,Epidermal electronics,Science 333(2011) 838–843.http://dx.doi.org/10.1126/science.1206157.

    [17]L.Xu,S.R.Gutbrod,A.P.Bonifas,et al.,3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium,Nature Commun.5(2014)3329. http://dx.doi.org/10.1038/ncomms4329.

    [18]J.Viventi,D.-H.Kim,L.Vigeland,et al.,Flexible,foldable,actively multiplexed, high-density electrode array for mapping brain activity in vivo,Nat.Neurosci. 14(2011)1599–1605.http://dx.doi.org/10.1038/nn.2973.

    [19]Z.Y.Huang,W.Hong,Z.Suo,Nonlinear analyses of wrinkles in a film bonded to a compliant substrate,J.Mech.Phys.Solids 53(2005)2101–2118. http://dx.doi.org/10.1016/j.jmps.2005.03.007.

    [20]S.Wang,M.Li,J.Wu,et al.,Mechanics of epidermal electronics,J.Appl.Mech. 79(2012)031022–031022-6,http://dx.doi.org/10.1115/1.4005963.

    [21]H.Cheng,Y.Zhang,K.-C.Hwang,et al.,Buckling of a stiff thin film on a prestrained bi-layer substrate,Int.J.Solids Struct.51(2014)3113–3118. http://dx.doi.org/10.1016/j.ijsolstr.2014.05.012.

    [22]H.C.Ko,G.Shin,S.Wang,et al.,Curvilinear electronics formed using silicon membrane circuits and elastomeric transfer elements,Small 5(2009) 2703–2709.http://dx.doi.org/10.1002/smll.200900934.

    [23]S.Wang,J.Xiao,J.Song,et al.,Mechanics of curvilinear electronics,Soft Matter 6(2010)5757–5763.http://dx.doi.org/10.1039/C0SM00579G.

    13 October 2015

    in revised form 14 November 2015

    http://dx.doi.org/10.1016/j.taml.2015.11.010

    2095-0349/Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

    ?.

    E-mail address:shuodao.wang@okstate.edu(S.Wang).

    黑人高潮一二区| 一级毛片我不卡| 视频中文字幕在线观看| 天堂8中文在线网| 国产精品熟女久久久久浪| 男人爽女人下面视频在线观看| 激情视频va一区二区三区| 精品亚洲乱码少妇综合久久| 精品视频人人做人人爽| 永久免费av网站大全| 国产福利在线免费观看视频| 欧美日韩精品成人综合77777| 欧美人与性动交α欧美精品济南到 | 国产色婷婷99| 国产一区二区激情短视频 | 亚洲成色77777| 亚洲av日韩在线播放| 欧美日韩视频精品一区| 亚洲一区二区三区欧美精品| 爱豆传媒免费全集在线观看| 色视频在线一区二区三区| 欧美精品av麻豆av| 国产免费视频播放在线视频| 午夜福利视频精品| 免费看av在线观看网站| 亚洲国产看品久久| 久久久久精品人妻al黑| 亚洲精品乱码久久久久久按摩| 中文字幕另类日韩欧美亚洲嫩草| 看非洲黑人一级黄片| 一级毛片电影观看| 在现免费观看毛片| 亚洲精品第二区| 亚洲精品日本国产第一区| 大片电影免费在线观看免费| 18禁裸乳无遮挡动漫免费视频| 免费观看a级毛片全部| 97在线人人人人妻| 97精品久久久久久久久久精品| 一级毛片我不卡| av在线播放精品| a级毛片在线看网站| 国产有黄有色有爽视频| 久久鲁丝午夜福利片| 在线精品无人区一区二区三| a级片在线免费高清观看视频| 午夜免费观看性视频| 国产淫语在线视频| 欧美成人精品欧美一级黄| 男女国产视频网站| av免费在线看不卡| 精品国产乱码久久久久久小说| 欧美激情极品国产一区二区三区 | videos熟女内射| 伊人久久国产一区二区| 自线自在国产av| 日韩免费高清中文字幕av| 日日摸夜夜添夜夜爱| 又大又黄又爽视频免费| 欧美亚洲 丝袜 人妻 在线| 2022亚洲国产成人精品| 国产女主播在线喷水免费视频网站| 永久网站在线| 人人妻人人爽人人添夜夜欢视频| 国产白丝娇喘喷水9色精品| 亚洲精品一二三| 涩涩av久久男人的天堂| 男女午夜视频在线观看 | 亚洲美女视频黄频| 深夜精品福利| 涩涩av久久男人的天堂| 青春草国产在线视频| 婷婷色av中文字幕| 午夜精品国产一区二区电影| 国产精品人妻久久久久久| 永久免费av网站大全| 91国产中文字幕| 多毛熟女@视频| 亚洲欧美日韩卡通动漫| 综合色丁香网| 国产片特级美女逼逼视频| 精品99又大又爽又粗少妇毛片| 80岁老熟妇乱子伦牲交| 国产永久视频网站| 午夜久久久在线观看| 午夜福利影视在线免费观看| 国产欧美日韩一区二区三区在线| 国产精品人妻久久久久久| 一级毛片黄色毛片免费观看视频| 狠狠婷婷综合久久久久久88av| 日本av免费视频播放| 国产激情久久老熟女| 午夜91福利影院| 另类精品久久| 欧美人与善性xxx| a级毛片在线看网站| 久久久久视频综合| 在线 av 中文字幕| 又黄又爽又刺激的免费视频.| 男女无遮挡免费网站观看| 美女xxoo啪啪120秒动态图| 久久久久精品性色| 欧美97在线视频| 久久精品aⅴ一区二区三区四区 | 国产福利在线免费观看视频| 日韩三级伦理在线观看| 大码成人一级视频| 五月天丁香电影| 涩涩av久久男人的天堂| 免费女性裸体啪啪无遮挡网站| 精品一区二区三区四区五区乱码 | 男女高潮啪啪啪动态图| 搡老乐熟女国产| 国产欧美另类精品又又久久亚洲欧美| 日日摸夜夜添夜夜爱| 精品卡一卡二卡四卡免费| 国产成人精品在线电影| 免费观看无遮挡的男女| 精品久久蜜臀av无| 男女边摸边吃奶| 欧美xxⅹ黑人| 寂寞人妻少妇视频99o| 亚洲欧美精品自产自拍| 成人免费观看视频高清| 欧美精品一区二区大全| 中文字幕人妻熟女乱码| 91国产中文字幕| 国产极品天堂在线| 久久久亚洲精品成人影院| 欧美精品一区二区免费开放| 国产欧美另类精品又又久久亚洲欧美| 丰满乱子伦码专区| 国产成人精品婷婷| 欧美精品av麻豆av| 欧美日韩视频高清一区二区三区二| 亚洲成人手机| 国产免费视频播放在线视频| 国产 精品1| 激情视频va一区二区三区| 一个人免费看片子| 丁香六月天网| 男女无遮挡免费网站观看| 少妇被粗大的猛进出69影院 | 国产精品久久久av美女十八| 99国产精品免费福利视频| 国产在线视频一区二区| 国产福利在线免费观看视频| 大陆偷拍与自拍| 满18在线观看网站| 大香蕉久久成人网| 日本wwww免费看| 91在线精品国自产拍蜜月| 国产日韩一区二区三区精品不卡| 欧美人与性动交α欧美精品济南到 | 少妇被粗大的猛进出69影院 | 久久精品国产亚洲av涩爱| 99国产精品免费福利视频| 少妇被粗大的猛进出69影院 | 国产日韩欧美亚洲二区| 夫妻性生交免费视频一级片| 少妇的逼好多水| 黄色视频在线播放观看不卡| 色5月婷婷丁香| 亚洲精品日韩在线中文字幕| 各种免费的搞黄视频| 国产精品99久久99久久久不卡 | 美女国产高潮福利片在线看| 一区二区日韩欧美中文字幕 | 啦啦啦在线观看免费高清www| 热99国产精品久久久久久7| 一级爰片在线观看| 这个男人来自地球电影免费观看 | 国产精品偷伦视频观看了| 国产男女内射视频| 男人爽女人下面视频在线观看| 欧美97在线视频| 天天操日日干夜夜撸| 我的女老师完整版在线观看| 麻豆乱淫一区二区| 国产在线免费精品| 成人国语在线视频| 欧美成人午夜精品| 黄色一级大片看看| 一级毛片 在线播放| 日韩免费高清中文字幕av| 国产精品久久久av美女十八| 亚洲av欧美aⅴ国产| 国产精品三级大全| 晚上一个人看的免费电影| 亚洲欧美成人精品一区二区| www.色视频.com| 美国免费a级毛片| 91成人精品电影| 中文字幕人妻丝袜制服| 日韩大片免费观看网站| 欧美人与性动交α欧美软件 | 成人毛片60女人毛片免费| 成人漫画全彩无遮挡| 婷婷色av中文字幕| 久久女婷五月综合色啪小说| 啦啦啦在线观看免费高清www| 欧美丝袜亚洲另类| 久久国产精品大桥未久av| 各种免费的搞黄视频| 五月天丁香电影| 人妻一区二区av| 男人操女人黄网站| 久久精品国产综合久久久 | 久久精品国产自在天天线| 黄色毛片三级朝国网站| 人妻系列 视频| 秋霞在线观看毛片| 人人妻人人澡人人爽人人夜夜| 国产成人免费观看mmmm| 中文字幕精品免费在线观看视频 | 国产国语露脸激情在线看| av国产久精品久网站免费入址| 精品亚洲成国产av| 另类亚洲欧美激情| 久热这里只有精品99| 成年人午夜在线观看视频| 97精品久久久久久久久久精品| 内地一区二区视频在线| 久久精品aⅴ一区二区三区四区 | 男的添女的下面高潮视频| 2022亚洲国产成人精品| 日韩中文字幕视频在线看片| 多毛熟女@视频| 春色校园在线视频观看| 三级国产精品片| 久久久久久久大尺度免费视频| 80岁老熟妇乱子伦牲交| 免费观看av网站的网址| 99香蕉大伊视频| 欧美精品国产亚洲| 热re99久久国产66热| 人妻系列 视频| 成人综合一区亚洲| 亚洲性久久影院| 22中文网久久字幕| 看非洲黑人一级黄片| 国产欧美日韩综合在线一区二区| 欧美精品国产亚洲| 日日摸夜夜添夜夜爱| 久久热在线av| 99久国产av精品国产电影| 国产69精品久久久久777片| 国产乱人偷精品视频| 欧美老熟妇乱子伦牲交| 国产免费一级a男人的天堂| 日韩精品免费视频一区二区三区 | 日本午夜av视频| 99久久中文字幕三级久久日本| 国产精品免费大片| 狂野欧美激情性xxxx在线观看| 国产成人免费无遮挡视频| 最近的中文字幕免费完整| av线在线观看网站| 久久毛片免费看一区二区三区| 国产成人精品福利久久| 亚洲精品视频女| 亚洲av.av天堂| 久久ye,这里只有精品| 日日爽夜夜爽网站| 下体分泌物呈黄色| 成年人午夜在线观看视频| 赤兔流量卡办理| av免费在线看不卡| 超碰97精品在线观看| 久久国产精品大桥未久av| 青青草视频在线视频观看| 精品亚洲成a人片在线观看| 2022亚洲国产成人精品| 国产成人a∨麻豆精品| 尾随美女入室| 中文精品一卡2卡3卡4更新| 亚洲精品日本国产第一区| 尾随美女入室| 美女大奶头黄色视频| 亚洲国产欧美在线一区| 精品久久久精品久久久| 麻豆精品久久久久久蜜桃| 热99久久久久精品小说推荐| 成人毛片a级毛片在线播放| 有码 亚洲区| 夜夜骑夜夜射夜夜干| 国产成人欧美| 亚洲人成网站在线观看播放| 制服丝袜香蕉在线| 菩萨蛮人人尽说江南好唐韦庄| 国精品久久久久久国模美| 天天躁夜夜躁狠狠躁躁| 国产成人午夜福利电影在线观看| 日韩av不卡免费在线播放| av免费在线看不卡| 2021少妇久久久久久久久久久| 亚洲伊人色综图| 日韩,欧美,国产一区二区三区| 男女边摸边吃奶| 中文字幕人妻熟女乱码| 欧美国产精品一级二级三级| 五月天丁香电影| 国产xxxxx性猛交| av在线app专区| 色5月婷婷丁香| 天天操日日干夜夜撸| 婷婷色综合大香蕉| 日本与韩国留学比较| 高清av免费在线| 男人爽女人下面视频在线观看| 国产一级毛片在线| 两个人免费观看高清视频| 狠狠婷婷综合久久久久久88av| 最黄视频免费看| 国产男人的电影天堂91| 卡戴珊不雅视频在线播放| 欧美 日韩 精品 国产| 国产色婷婷99| 久久久久久久久久人人人人人人| 如日韩欧美国产精品一区二区三区| 大片电影免费在线观看免费| 丰满少妇做爰视频| 一二三四在线观看免费中文在 | 久久人妻熟女aⅴ| 久久久久久人妻| 下体分泌物呈黄色| 高清在线视频一区二区三区| 免费高清在线观看日韩| 这个男人来自地球电影免费观看 | 大片电影免费在线观看免费| 午夜91福利影院| 十八禁高潮呻吟视频| 在线天堂中文资源库| 免费人妻精品一区二区三区视频| 欧美国产精品一级二级三级| 一本大道久久a久久精品| 男人舔女人的私密视频| 亚洲成人国产一区在线观看| 国产精品偷伦视频观看了| 69精品国产乱码久久久| 丰满迷人的少妇在线观看| 欧美精品亚洲一区二区| 国产精品香港三级国产av潘金莲| 免费观看人在逋| 精品一区二区三区四区五区乱码| 一级毛片精品| 少妇粗大呻吟视频| 亚洲成av片中文字幕在线观看| 麻豆av在线久日| 欧美精品av麻豆av| 亚洲熟女毛片儿| 男人舔女人的私密视频| 久久中文看片网| 精品国产乱码久久久久久男人| 欧美日韩视频精品一区| 丝袜人妻中文字幕| 免费在线观看黄色视频的| 成人三级做爰电影| 王馨瑶露胸无遮挡在线观看| 亚洲五月色婷婷综合| 日本五十路高清| 日本黄色日本黄色录像| 亚洲五月天丁香| 人人妻人人澡人人看| 成人18禁高潮啪啪吃奶动态图| 久久ye,这里只有精品| 看片在线看免费视频| 国产精品乱码一区二三区的特点 | 91大片在线观看| 成人18禁在线播放| 99精品在免费线老司机午夜| 国内久久婷婷六月综合欲色啪| 高清av免费在线| 咕卡用的链子| 国产精品1区2区在线观看. | 欧美国产精品一级二级三级| 中文字幕最新亚洲高清| 精品福利观看| 成人国产一区最新在线观看| 日韩欧美一区二区三区在线观看 | 又黄又粗又硬又大视频| 国产精品98久久久久久宅男小说| 欧美日韩国产mv在线观看视频| 国产乱人伦免费视频| 国产日韩欧美亚洲二区| 国产三级黄色录像| 桃红色精品国产亚洲av| 精品国产乱子伦一区二区三区| 少妇粗大呻吟视频| 国产成人精品无人区| 欧美日韩黄片免| 精品亚洲成a人片在线观看| 久久精品人人爽人人爽视色| 制服人妻中文乱码| 日韩欧美一区视频在线观看| 人人妻人人澡人人看| 中文亚洲av片在线观看爽 | 成人三级做爰电影| 老司机在亚洲福利影院| 免费高清在线观看日韩| 久久久久久久久免费视频了| 国产av一区二区精品久久| 首页视频小说图片口味搜索| ponron亚洲| 国产精品成人在线| 亚洲熟女毛片儿| 久久亚洲真实| 高清欧美精品videossex| 久久香蕉国产精品| 最近最新中文字幕大全电影3 | 亚洲第一av免费看| 国产精品秋霞免费鲁丝片| 亚洲三区欧美一区| 18在线观看网站| 国产无遮挡羞羞视频在线观看| 99香蕉大伊视频| www.自偷自拍.com| 精品欧美一区二区三区在线| 久久精品aⅴ一区二区三区四区| 久久ye,这里只有精品| 高清视频免费观看一区二区| 亚洲中文日韩欧美视频| 18禁美女被吸乳视频| 午夜激情av网站| 又大又爽又粗| 美女视频免费永久观看网站| 精品国产一区二区久久| 久久国产精品男人的天堂亚洲| 午夜成年电影在线免费观看| 99精品欧美一区二区三区四区| 一级毛片精品| 狠狠婷婷综合久久久久久88av| 欧美不卡视频在线免费观看 | 精品乱码久久久久久99久播| 男女高潮啪啪啪动态图| 国产又爽黄色视频| 男女高潮啪啪啪动态图| 80岁老熟妇乱子伦牲交| 欧洲精品卡2卡3卡4卡5卡区| 99re在线观看精品视频| 高清在线国产一区| 国产免费av片在线观看野外av| 熟女少妇亚洲综合色aaa.| 丁香欧美五月| 亚洲人成电影免费在线| 欧美成人午夜精品| 久久精品成人免费网站| 国产亚洲av高清不卡| 免费女性裸体啪啪无遮挡网站| 在线观看免费日韩欧美大片| 午夜激情av网站| 亚洲熟妇中文字幕五十中出 | 婷婷丁香在线五月| 久久国产精品男人的天堂亚洲| 久久久国产成人精品二区 | 九色亚洲精品在线播放| 中亚洲国语对白在线视频| 亚洲一区中文字幕在线| 久久精品国产亚洲av高清一级| 女人爽到高潮嗷嗷叫在线视频| 五月开心婷婷网| 免费一级毛片在线播放高清视频 | 九色亚洲精品在线播放| 亚洲av日韩在线播放| 91精品国产国语对白视频| 亚洲精品国产精品久久久不卡| 脱女人内裤的视频| 91精品三级在线观看| xxx96com| 热99久久久久精品小说推荐| 午夜老司机福利片| 国产精品98久久久久久宅男小说| 日本黄色日本黄色录像| 欧美日韩一级在线毛片| 国产免费男女视频| 美女视频免费永久观看网站| 色94色欧美一区二区| 亚洲avbb在线观看| 欧美日韩黄片免| 亚洲精品中文字幕一二三四区| 亚洲情色 制服丝袜| 伊人久久大香线蕉亚洲五| 人成视频在线观看免费观看| 黑人欧美特级aaaaaa片| 久久久国产欧美日韩av| 高清黄色对白视频在线免费看| 亚洲情色 制服丝袜| 91成人精品电影| 午夜福利在线观看吧| 美国免费a级毛片| 天堂√8在线中文| 国产男女内射视频| 啦啦啦免费观看视频1| 中文字幕色久视频| 国产精品影院久久| 日韩大码丰满熟妇| 亚洲一区中文字幕在线| 日韩欧美一区二区三区在线观看 | 黄色视频,在线免费观看| 好看av亚洲va欧美ⅴa在| 俄罗斯特黄特色一大片| 欧美性长视频在线观看| 狠狠狠狠99中文字幕| 久久精品亚洲熟妇少妇任你| 中文字幕另类日韩欧美亚洲嫩草| 亚洲一区二区三区不卡视频| 狠狠婷婷综合久久久久久88av| 午夜91福利影院| 美女高潮到喷水免费观看| 精品国内亚洲2022精品成人 | 国产精品 国内视频| 精品福利观看| 免费看十八禁软件| 久久久精品区二区三区| 中文字幕人妻熟女乱码| 老熟妇仑乱视频hdxx| 亚洲一卡2卡3卡4卡5卡精品中文| 精品少妇一区二区三区视频日本电影| 制服诱惑二区| 女性被躁到高潮视频| 亚洲熟妇熟女久久| 少妇猛男粗大的猛烈进出视频| 91成年电影在线观看| 精品国产国语对白av| 叶爱在线成人免费视频播放| 日韩免费高清中文字幕av| 午夜亚洲福利在线播放| 精品福利观看| 男女之事视频高清在线观看| av不卡在线播放| 中文字幕人妻丝袜制服| 女性被躁到高潮视频| 亚洲黑人精品在线| 日韩中文字幕欧美一区二区| 国产成人精品久久二区二区91| 一级黄色大片毛片| 久久精品成人免费网站| 18禁观看日本| 国产单亲对白刺激| 亚洲av成人av| 王馨瑶露胸无遮挡在线观看| 一边摸一边抽搐一进一小说 | 在线观看午夜福利视频| 国产亚洲av高清不卡| 桃红色精品国产亚洲av| 麻豆成人av在线观看| 国产色视频综合| 中文字幕制服av| 日本撒尿小便嘘嘘汇集6| 涩涩av久久男人的天堂| 丰满迷人的少妇在线观看| 大香蕉久久网| 亚洲专区字幕在线| 性色av乱码一区二区三区2| 国产一区二区三区视频了| 国产麻豆69| 国产一区有黄有色的免费视频| 成年女人毛片免费观看观看9 | 亚洲中文av在线| xxx96com| 人妻一区二区av| 免费一级毛片在线播放高清视频 | 天天躁日日躁夜夜躁夜夜| 亚洲人成电影观看| 欧美 日韩 精品 国产| 性少妇av在线| 亚洲,欧美精品.| 99精品久久久久人妻精品| 动漫黄色视频在线观看| 最新在线观看一区二区三区| 99re6热这里在线精品视频| 757午夜福利合集在线观看| 国产精品美女特级片免费视频播放器 | 精品国内亚洲2022精品成人 | 国产成+人综合+亚洲专区| 亚洲色图 男人天堂 中文字幕| 国产不卡一卡二| 亚洲成人手机| 国产精华一区二区三区| 99re在线观看精品视频| 国产成人精品久久二区二区免费| 黄片大片在线免费观看| 老司机靠b影院| 午夜成年电影在线免费观看| 天天添夜夜摸| 999久久久精品免费观看国产| 欧美成人免费av一区二区三区 | 9色porny在线观看| 久久精品国产亚洲av高清一级| 久久久久久久国产电影| 搡老乐熟女国产| 亚洲av第一区精品v没综合| 亚洲全国av大片| 欧美日韩亚洲国产一区二区在线观看 | av网站在线播放免费| 99久久人妻综合| x7x7x7水蜜桃| 男女午夜视频在线观看| 99久久综合精品五月天人人| 欧美黑人精品巨大| 免费一级毛片在线播放高清视频 | 欧美 亚洲 国产 日韩一| 视频在线观看一区二区三区| 国产亚洲精品久久久久久毛片 | 久久久久久人人人人人| 亚洲成a人片在线一区二区| 国产一区在线观看成人免费| 在线播放国产精品三级| 亚洲久久久国产精品| 真人做人爱边吃奶动态| 日韩欧美免费精品| 国产精品免费视频内射| 精品熟女少妇八av免费久了| 男女下面插进去视频免费观看| 啦啦啦视频在线资源免费观看|