• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CHEN-RICCI INEQUALITIES FOR SUBMANIFOLDS OF GENERALIZED COMPLEX SPACE FORMS WITH SEMI-SYMMETRIC METRIC CONNECTIONS

    2016-12-07 08:58:52HEGuoqing
    數(shù)學(xué)雜志 2016年6期
    關(guān)鍵詞:安徽師范大學(xué)流形計(jì)算機(jī)科學(xué)

    HE Guo-qing

    (School of Mathematics and Computer Science,Anhui Normal University,Wuhu 241000,China)

    CHEN-RICCI INEQUALITIES FOR SUBMANIFOLDS OF GENERALIZED COMPLEX SPACE FORMS WITH SEMI-SYMMETRIC METRIC CONNECTIONS

    HE Guo-qing

    (School of Mathematics and Computer Science,Anhui Normal University,Wuhu 241000,China)

    In this paper,we study Chen-Ricci inequalities for submanifolds of generalized complex space forms endowed with a semi-symmetric metric connection.By using algebraic techniques,we establish Chen-Ricci inequalities between the mean curvature associated with a semisymmetric metric connection and certain intrinsic invariants involving the Ricci curvature and k-Ricci curvature of submanifolds,which generalize some of Mihai andzgr’s results.

    Chen-Ricci inequality;k-Ricci curvature;generalized complex space form;semisymmetric metric connection

    2010 MR Subject Classification:53C40

    Document code:AArticle ID:0255-7797(2016)06-1133-09

    1 Introduction

    Since the celebrated theory of Nash[1]of isometric immersion of a Riemannian manifold into a suitable Euclidean space gave very important and effective motivation to view each Riemannian manifold as a submanifold in a Euclidean space,the problem of discovering simple sharp relationships between intrinsic and extrinsic invariants of a Riemannian submanifold becomes one of the most fundamental problems in submanifold theory.The main extrinsic invariant of a submanifold is the squared mean curvature and the main intrinsic invariants of a manifold include the Ricci curvature and the scalar curvature.There were also many other important modern intrinsic invariants of(sub)manifolds introduced by Chen such as k-Ricci curvature(see[2-4]).

    In 1999,Chen[5]proved a basic inequality involving the Ricci curvature and the squared mean curvature of submanifolds in a real space form Rm(C).This inequality is now called Chen-Ricci inequality[6].In[5],Chen also defined the k-Ricci curvature of a k-plane section of TxMn,x∈M,where Mnis a submanifold of the real space form Rn+p(C).And he proved a basic inequality involving the k-Ricci curvature and the squared mean curvature of the submanifold Mn.These inequalities described relationships between the intrinsicinvariants and the extrinsic invariants of a Riemannian submanifold and drew attentions of many people.Similar inequalities are studied for different submanifolds in various ambient manifolds(see[7-10]).

    On the other hand,Hayden[11]introduced a notion of a semi-symmetric connection on a Riemannian manifold.Yano[12]studied Riemannaian manifolds endowed with a semisymmetric connection.Nakao[13]studied submanifolds of Riemannian manifolds with a semi-symmetric metric connection.Recently,Mihai andzgr[14,15]studied Chen inequalities for submanifolds of real space forms admitting a semi-symmetric metric connection and Chen inequalities for submanifolds of complex space forms and Sasakian space forms with a semi-symmetric metric connection,respectively.Motivated by studies of the above authors,in this paper we establish Chen-Ricci inequalities for submanifolds in generalized complex forms with a semi-symmetric metric connection.

    2 Preliminaries

    Let Nn+pbe an(n+p)-dimensional Riemannian manifold with Riemannian metric g and a linear connectionon Nn+p.If the torsion tensordefined by

    for a 1-form φ,then the connectionis called a semi-symmetric connection.Furthermore, ifsatisfies=0,thenis called a semi-symmetric metric connection.Letdenote the Levi-Civita connection with respect to the Riemannian metric g.In[12]Yano gave a semi-symmetric metric connectionwhich can be written as

    Let Mnbe an n-dimensional submanifold of Nn+pwith a semi-symmetric metric connectionand the Levi-Civita connection.On the submanifold Mnwe consider the induced semi-symmetric metric connection denoted by?and the induced Levi-Civita connection denoted by?'.The Gauss formulas with respect to?and?',respectively,can be written as

    for any vector fields X,Y on Mn,where h'is the second fundamental form of Mnin Nn+pand h is a(0,2)-tensor on Mn.According to formula(7)in[13],h is also symmetric.

    for any vector fields X,Y,Z,Won Mn,where α is a(0,2)-tensor field defined by

    Denote by λ the trace of α.The Gauss equation for the submanifold Mnin Nn+pis

    for any vector fields X,Y,Z,Won Mn.In[13],the Gauss equation with respect to the semi-symmetric metric connection is

    In Nn+pwe can choose a local orthonormal frame{e1,···,en,en+1,···,en+p}such that restricting to Mn,e1,···,enare tangent to Mn.Setting=g(h(ei,ej),er),then the squared length of h is

    The mean curvature vector of Mnassociated toh(ei,ei)and the mean curvature vector of Mnassociated to

    Let π?TxMnbe a 2-plane section for any x∈Mnand K(π)be the sectional curvature of π associated to the induced semi-symmetric metric connection?.The scalar curvature τ at x with respect to?is defined by

    The following lemmas will be used in the paper.

    Lemma 2.1(see[13])If U is a tangent vector field on Mn,we have H=H',h=h'.

    Lemma 2.2(see[13])Let Mnbe an n-dimensional submanifold of an(n+p)-dimensional Riemannian manifold Nn+pwith the semi-symmetric metric connectionThen

    (i)Mnis totally geodesic with respect to the Levi-Civita connection and with respect to the semi-symmetric metric connection if and only if U is tangent to Mn.

    (ii)Mnis totally umbilical with respect to the Levi-Civita connection if and only if Mnis totally umbilical with respect to the semi-symmetric metric connection.

    Lemma 2.3(see[10])Let f(x1,x2,···,xn)be a function on Rndefined by

    If x1+x2+···+xn=2ε,then we have

    with the equality holding if and only if x1=x2+xn+···+xn=ε.

    A 2m-dimensional almost Hermitian manifold(N,J,g)is said to be a generalized complex space form(see[16,17])if there exists two functions F1and F2on N such that

    for X,Y,Z,W on M,where M is a submanifold of N.

    Let M be an n-dimensional submanifold of a 2m-dimensional generalized complex space form N(F1,F2).We set JX=PX+FX for any vector field X tangent to M,where PX and FX are tangential and normal components of JX,respectively.

    3 Chen-Ricci Inequality

    In this section,we establish a sharp relation between the Ricci curvature along the direction of an unit tangent vector X and the mean curvature||H||with respect to the semi-symmetric metric connect

    Theorem 3.1 Let Mn,n≥2,be an n-dimensional submanifold of a 2m-dimensional generalized complex space form N(F1,F2)endowed with the semi-symmetric metric connectionFor each unit vector X∈TxM,we have

    (1)

    (2)If H(x)=0,then a unit tangent vector X at x satisfies the equality case of(3.1)if and only if X∈N(x)={X∈TxM:h(X,Y)=0,?Y∈TxM}.

    (3)The equality of inequality(3.1)holds identically for all unit tangent vectors at x if and only if in the case of n=0,i,j=1,2···,n;r=n+1,···,2m,or in the case of n=2,

    Proof (1)Let X∈TxM be an unit tangent vector at x.We choose an orthonormal basis e1,···,en,en+1···,e2msuch that e1,···,enare tangent to M at x and e1=X.

    When we set X=W=ei,Y=Z=ej,i,j=1,···,n,ij in(2.5)and(2.8),we have

    Using(3.2),we get

    We consider the maximum of the function

    From Lemma 2.3 we know the solution()of this problem must satisfy

    So it follows that

    From(3.3)and(3.5)we have

    (2)For the unit vector X at x,if the equality case of inequality(3.1)holds,using(3.3), (3.4)and(3.5)we have

    The converse is obvious.

    (3)For all unit vector X at x,the equality case of inequality(3.1)holds.Let X= ei,i=1,2···n,as in(2),we have

    We can distinguish two cases:

    (b)in the case of n=2,we have

    The converse is trivial.

    Corollary 3.2 If the equality case of inequality(3.1)holds for all unit tangent vector X of Mn,then we have

    (1)the equality case of inequality(3.1)holds for all unit tangent vector X of Mnif and only if Mnis a totally umbilical submanifold;

    (2)if U is a tangent field on Mnand n≥3,Mnis a totally geodesic submanifold.

    Proof (1)For n=2,from Theorem 3.1 we know the equality case of inequality(3.1) holds for all unit tangent vector X of M2if and only if M2is a totally umbilical submanifold with respect to the semi-symmetric metric connection.Then from Lemma 2.2,M2is a totally umbilical submanifold with respect to the Levi-Civita connection.

    For n≥3,from Theorem 3.1 we know the equality case of inequality(3.1)holds for all unit tangent vector X of Mnif and only=0,?i,j,r.According to formula(7)from [13],we have+krgij,where krare real-valued functions on M.Thus we have=krgij.So Mnis a totally umbilical submanifold.

    (2)If U is a tangent vector field on Mn,from Lemma 2.1 we have h'=h.For n≥3, from Theorem 3.1 the equality case of inequality(3.1)holds for all unit tangent vector X of Mnif and only if=0,?i,j,r.Thus we have=0,?i,j,r.So Mnis a totally geodesic submanifold.

    4 k-Ricci Curvature

    In this section,we establish a sharp relation between the k-Ricci curvature and the mean curvature||H||with respect to the semi-symmetric metric connect

    Let L be a k-plane section of TxMn,x∈Mn,and X be a unit vector in L.We choose an orthonormal frame e1,···,ekof L such that e1=X.In[5]the k-Ricci curvature of L at X is defined by

    The scalar curvature of a k-plane section L is given by

    For an integer k,2≤k≤n,the Riemannian invariant Θkon Mnat x∈Mndefined by

    where L runs over all k-plane sections in TxM and X runs over all unit vectors in L.From (2.6),(4.1)and(4.2)for any k-plane section Li1···ikspanned by{ei1,···,eik},it follows that

    and

    From(4.3),(4.4)and(4.5),we have

    Theorem 4.1 Let Mn,n≥3,be an n-dimensional submanifold of a 2m-dimensional generalized complex space form N(F1,F2)endowed with a semi-symmetric connectionThen we have

    Proof For x∈Mn,let{e1,···,en}and{en+1,···,e2m}be an orthonormal basis ofandM,respectively,where en+1is parallel to the mean curvature vector H.

    From(3.2),we have

    Setting||P||2=(Jei,ej).From(2.6),it follows that

    Then equation(4.8)can be also written as

    We choose an orthonormal basis{e1,···,en,en+1,···,e2m}such that e1,···,endiagonalize the shape operator Aen+1,i.e.,

    and Aer=(),i,j=1······n;r=n+2,···,2m,traceAer=0.So(4.9)turns into

    On the other hand,we get

    which implies

    From(4.10)and(4.11),it follows that

    which means

    Using Theorem 4.1 and(4.6)we can obtain the following theorem.

    Theorem 4.2 Let Mn,n≥3,be an n-dimensional submanifold of a 2m-dimensional generalized complex space form N(F1,F2)endowed with a semi-symmetric connectionThen for any integer k,2≤k≤n,and for any point x∈M,we have

    Proof Let{e1,···,en}be an orthonormal basis of TxMnat x∈Mn.The k-plane section spanned by ei1,···,eikis denoted by Li1···ik.

    Then from(4.6)and(4.12),we have

    Remark 4.3 For F1=F2=C(C is constant)in Theorem 3.1,we obtain a Chen-Ricci inequality for submanifolds of complex space forms with a semi-symmetric metric connection.

    For F1=F2=C(C is constant)in Theorem 4.1 and Theorem 4.2,the results can be found in[15].

    References

    [1]Nash J F.The imbedding problem for Riemannian manifolds[J].Ann.Math.,1956,63:20-63.

    [2]Chen B Y.Some pinching and classification theorems for minimal submanifolds[J].Arch.Math. (Basel),1993,60(6):568-578.

    [3]Chen B Y.Strings of Riemannian invariants,inequalities,ideal immersions and their applications[J]. Third Pacific Rim Geom.Conf.(Seoul),1996:7-60.

    [4]Chen B Y.Riemannian submanifolds[M].North-Holland,Amsterdam:Handbook Diff.Geom.,2000, 1:187-418.

    [5]Chen B Y.Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimensions[J].Glasg.Math.J.,1999,41(1):33-41.

    [6]Tripathi M M.Chen-Ricci inequality for submanifolds of contact metric manifolds[J].J.Adv.Math. Studies,2008,1(1-2):111-135.

    [7]Chen B Y.On Ricci curvature of isotropic and Lagrangian submanifolds in complex space forms[J]. Arch.Math.(Basel),2000,74:154-160.

    [8]Matsumoto K,Mihai I,Oiaga A.Ricci curvature of submanifolds in complex space forms[J].Rev. Roumaine Math.Pures Appl.,2001,46:775-782.

    [9]Mihai I.Ricci curvature of submanifolds in Sasakian space forms[J].J.Aust.Math.Soc.,2002, 72(2):247-256.

    [10]Zhang Pan,Zhang Liang,Song Wei-dong.Some remarks on geometric inequalities for submanifolds of a riemannian manifold of quasi-constant curvature[J].J.Math.,2016,36(3):445-457.

    [11]Haydan H A.Subspaces of a space with torsion[J].Proc.London Math.Soc.,1932,34:27-50.

    [12]Yano K.On semi-symmetric metric connection[J].Rev.Roumaine Math.Pures Appl.,1970,15: 1579-1586.

    [13]Nakao Z.Submanifolds of a Riemanian with semi-symmetric metric connections[J].Proc.Amer. Math.Soc.,1976,54:261-266.

    [16]Tricerri F,Vanhecke L.Curvature tensors on almost Hermitian manifolds[J].Trans.Amer.Math. Soc.,1981,267(2):365-397.

    [17]Vanhecke L.Almost Hermitian manifolds with J-invariant Riemann curvature tensor[J].Rend.Sem. Mat.Univ.Politec.Torino,1975,34:487-498.

    容有半對(duì)稱度量聯(lián)絡(luò)的廣義復(fù)空間中子流形上的Chen-Ricci不等式

    何國(guó)慶

    (安徽師范大學(xué)數(shù)學(xué)計(jì)算機(jī)科學(xué)學(xué)院,安徽蕪湖241000)

    本文研究了容有半對(duì)稱度量聯(lián)絡(luò)的廣義復(fù)空間中的子流形上的Chen-Ricci不等式.利用代數(shù)技巧,建立了子流形上的Chen-Ricci不等式.這些不等式給出了子流形的外在幾何量―關(guān)于半對(duì)稱聯(lián)絡(luò)的平均曲率與內(nèi)在幾何量―Ricci曲率及k-Ricci曲率之間的關(guān)系,推廣了Mihai和zgr的一些結(jié)果.

    Chen-Ricci不等式;k-Ricci曲率;廣義復(fù)空間;半對(duì)稱度量聯(lián)絡(luò)

    MR(2010)主題分類號(hào):53C40O186.12

    ?date:2014-09-13Accepted date:2015-11-09

    Supported by the Foundation for Excellent Young Talents of Higher Education of Anhui Province(2011SQRL021ZD).

    Biography:He Guoqing(1979-),female,born at Chaohu,Anhui,lecturer,major in differential geometry.

    猜你喜歡
    安徽師范大學(xué)流形計(jì)算機(jī)科學(xué)
    緊流形上的Schr?dinger算子的譜間隙估計(jì)
    《安徽師范大學(xué)學(xué)報(bào)》(人文社會(huì)科學(xué)版)第47卷總目次
    迷向表示分為6個(gè)不可約直和的旗流形上不變愛因斯坦度量
    探討計(jì)算機(jī)科學(xué)與技術(shù)跨越式發(fā)展
    Nearly Kaehler流形S3×S3上的切觸拉格朗日子流形
    Hemingway’s Marriage in Cat in the Rain
    淺談?dòng)?jì)算機(jī)科學(xué)與技術(shù)的現(xiàn)代化運(yùn)用
    電子制作(2017年2期)2017-05-17 03:55:01
    重慶第二師范學(xué)院計(jì)算機(jī)科學(xué)與技術(shù)專業(yè)簡(jiǎn)介
    《安徽師范大學(xué)學(xué)報(bào)( 自然科學(xué)版) 》2016 年總目次
    基于多故障流形的旋轉(zhuǎn)機(jī)械故障診斷
    久久精品国产亚洲av天美| 九色国产91popny在线| 天堂影院成人在线观看| 一本精品99久久精品77| 天堂网av新在线| 日日夜夜操网爽| 午夜视频国产福利| 国产精品亚洲美女久久久| 国产精品乱码一区二三区的特点| 欧美不卡视频在线免费观看| 欧美日韩综合久久久久久 | 精华霜和精华液先用哪个| 欧美日韩中文字幕国产精品一区二区三区| 亚洲国产色片| 可以在线观看毛片的网站| 国产精品亚洲一级av第二区| 高清日韩中文字幕在线| 亚洲国产精品成人综合色| 最新在线观看一区二区三区| 亚洲性久久影院| 欧美+亚洲+日韩+国产| 十八禁网站免费在线| 久久久久国内视频| 日韩欧美国产在线观看| 又黄又爽又免费观看的视频| 久久精品91蜜桃| 嫩草影视91久久| 欧美性猛交黑人性爽| 日本a在线网址| 国产日本99.免费观看| 久久人妻av系列| 亚洲精品一卡2卡三卡4卡5卡| 亚洲成人中文字幕在线播放| 日本免费a在线| 亚洲欧美激情综合另类| 亚洲精华国产精华液的使用体验 | 网址你懂的国产日韩在线| 精华霜和精华液先用哪个| 国产黄色小视频在线观看| 一进一出抽搐动态| 欧美高清成人免费视频www| 国产免费一级a男人的天堂| 波多野结衣高清作品| 男人的好看免费观看在线视频| 欧美国产日韩亚洲一区| 三级男女做爰猛烈吃奶摸视频| 国内揄拍国产精品人妻在线| 春色校园在线视频观看| 国产69精品久久久久777片| 老女人水多毛片| 人妻丰满熟妇av一区二区三区| 日韩大尺度精品在线看网址| 欧美+日韩+精品| 国产午夜福利久久久久久| 日本与韩国留学比较| 国产伦精品一区二区三区视频9| 长腿黑丝高跟| 国产伦人伦偷精品视频| 99riav亚洲国产免费| 热99re8久久精品国产| 日韩欧美在线二视频| 午夜视频国产福利| 亚洲欧美日韩无卡精品| 久久天躁狠狠躁夜夜2o2o| 亚洲男人的天堂狠狠| 天天一区二区日本电影三级| 国产高清激情床上av| 色精品久久人妻99蜜桃| 国产高清三级在线| 亚洲精品亚洲一区二区| 搡老妇女老女人老熟妇| 欧美日韩亚洲国产一区二区在线观看| 国产视频一区二区在线看| www.色视频.com| 日韩高清综合在线| 久久久久久久亚洲中文字幕| 亚洲 国产 在线| 国产一区二区激情短视频| 成人性生交大片免费视频hd| 欧美高清成人免费视频www| 国产男靠女视频免费网站| 亚洲性夜色夜夜综合| 免费看av在线观看网站| 一个人看的www免费观看视频| 草草在线视频免费看| 免费人成视频x8x8入口观看| 国产aⅴ精品一区二区三区波| 久久香蕉精品热| 久久久久久久久久黄片| 三级毛片av免费| 午夜日韩欧美国产| 午夜福利18| 成人午夜高清在线视频| 日本三级黄在线观看| 亚洲专区国产一区二区| 哪里可以看免费的av片| 啦啦啦啦在线视频资源| h日本视频在线播放| 久久婷婷人人爽人人干人人爱| 毛片一级片免费看久久久久 | 搡老岳熟女国产| 嫩草影院精品99| 久久99热6这里只有精品| 在线播放无遮挡| 日本黄大片高清| 九色成人免费人妻av| 国产成人aa在线观看| 亚洲精华国产精华液的使用体验 | 男女啪啪激烈高潮av片| 搡老妇女老女人老熟妇| 日本三级黄在线观看| 国产精品久久久久久久电影| 亚洲精品粉嫩美女一区| 免费看日本二区| 欧美不卡视频在线免费观看| 少妇的逼好多水| 一级黄片播放器| 国产午夜精品论理片| 18禁黄网站禁片免费观看直播| 岛国在线免费视频观看| 大又大粗又爽又黄少妇毛片口| 22中文网久久字幕| 欧美激情在线99| 在线播放国产精品三级| 久久久久久九九精品二区国产| 欧美日韩中文字幕国产精品一区二区三区| 校园春色视频在线观看| 国产精品一区二区性色av| 中文字幕熟女人妻在线| 日本在线视频免费播放| 亚洲 国产 在线| 国产黄色小视频在线观看| 别揉我奶头 嗯啊视频| 亚洲人成网站在线播放欧美日韩| 国产精品爽爽va在线观看网站| 国产单亲对白刺激| 在线观看免费视频日本深夜| 久久久久久大精品| 久久精品国产亚洲av天美| 国产一级毛片七仙女欲春2| 91久久精品国产一区二区三区| 日本黄色片子视频| 国产精品亚洲一级av第二区| 黄色视频,在线免费观看| 精品99又大又爽又粗少妇毛片 | 国产成人av教育| 欧美+日韩+精品| 丰满的人妻完整版| 一进一出抽搐动态| 亚洲专区国产一区二区| 欧美性猛交╳xxx乱大交人| 中文字幕免费在线视频6| 日韩中文字幕欧美一区二区| 国内毛片毛片毛片毛片毛片| 国产色爽女视频免费观看| 日韩欧美 国产精品| 国产精品自产拍在线观看55亚洲| 久久久久精品国产欧美久久久| 亚洲第一区二区三区不卡| 美女黄网站色视频| 性色avwww在线观看| 欧美日本视频| 国产精品一区二区性色av| 我的女老师完整版在线观看| 亚洲欧美日韩卡通动漫| 午夜激情福利司机影院| 观看免费一级毛片| 久久久久国产精品人妻aⅴ院| 免费看a级黄色片| or卡值多少钱| 国产成人aa在线观看| 国产探花在线观看一区二区| 亚洲中文字幕日韩| 成人特级av手机在线观看| 啦啦啦啦在线视频资源| 国产亚洲精品久久久久久毛片| 亚洲国产欧美人成| 中出人妻视频一区二区| 成人av一区二区三区在线看| 99久久无色码亚洲精品果冻| 欧美日本视频| 国产欧美日韩精品亚洲av| 在线看三级毛片| 少妇熟女aⅴ在线视频| 免费不卡的大黄色大毛片视频在线观看 | 麻豆成人午夜福利视频| 伦理电影大哥的女人| 国产精品一区二区三区四区久久| 午夜福利成人在线免费观看| 动漫黄色视频在线观看| 亚洲av第一区精品v没综合| 午夜福利成人在线免费观看| 国内精品一区二区在线观看| 国产精品国产三级国产av玫瑰| 真人一进一出gif抽搐免费| 亚洲国产精品久久男人天堂| 国产精品久久久久久亚洲av鲁大| 给我免费播放毛片高清在线观看| 成人高潮视频无遮挡免费网站| 99热只有精品国产| 成熟少妇高潮喷水视频| 国产精品一区二区性色av| 一夜夜www| 久久久精品大字幕| 最新中文字幕久久久久| 欧美xxxx性猛交bbbb| 亚洲av二区三区四区| 亚洲内射少妇av| 人妻少妇偷人精品九色| 啦啦啦观看免费观看视频高清| 熟女电影av网| 亚州av有码| 亚洲黑人精品在线| 在线国产一区二区在线| 精品一区二区三区视频在线观看免费| 国产黄a三级三级三级人| 久99久视频精品免费| 窝窝影院91人妻| 欧美+亚洲+日韩+国产| 俄罗斯特黄特色一大片| 干丝袜人妻中文字幕| 欧美精品啪啪一区二区三区| 美女免费视频网站| 日本爱情动作片www.在线观看 | 别揉我奶头 嗯啊视频| 波野结衣二区三区在线| 国产不卡一卡二| 午夜爱爱视频在线播放| 全区人妻精品视频| 免费观看人在逋| av在线老鸭窝| 一级a爱片免费观看的视频| 免费观看的影片在线观看| 国产伦在线观看视频一区| 99热只有精品国产| 日本在线视频免费播放| 亚洲精品成人久久久久久| 亚洲欧美日韩高清专用| 亚洲专区国产一区二区| 亚洲av熟女| 成人一区二区视频在线观看| 国产私拍福利视频在线观看| 欧美高清性xxxxhd video| 99久久久亚洲精品蜜臀av| 欧美激情在线99| 联通29元200g的流量卡| 日本 av在线| 狂野欧美白嫩少妇大欣赏| 国产精品1区2区在线观看.| 九九热线精品视视频播放| 在线播放国产精品三级| 日韩精品有码人妻一区| aaaaa片日本免费| 日本-黄色视频高清免费观看| 日本爱情动作片www.在线观看 | 又粗又爽又猛毛片免费看| 色精品久久人妻99蜜桃| 黄色一级大片看看| 国产精品女同一区二区软件 | 免费观看人在逋| 99精品在免费线老司机午夜| 久久中文看片网| 亚洲欧美精品综合久久99| 国内少妇人妻偷人精品xxx网站| 97热精品久久久久久| 欧美日本视频| 精品久久国产蜜桃| 九色国产91popny在线| 欧美日韩精品成人综合77777| 久99久视频精品免费| 久久香蕉精品热| 日日干狠狠操夜夜爽| 国产精品野战在线观看| 国产精品免费一区二区三区在线| 久久精品国产鲁丝片午夜精品 | av黄色大香蕉| av国产免费在线观看| 在线免费观看不下载黄p国产 | 两人在一起打扑克的视频| 两个人的视频大全免费| 18禁裸乳无遮挡免费网站照片| 特级一级黄色大片| 舔av片在线| 亚洲在线观看片| 一a级毛片在线观看| 美女 人体艺术 gogo| 欧美最新免费一区二区三区| 毛片一级片免费看久久久久 | 国国产精品蜜臀av免费| 窝窝影院91人妻| 丰满人妻一区二区三区视频av| 一进一出好大好爽视频| 国产精品久久久久久久久免| 国产男靠女视频免费网站| 在线免费十八禁| 日本成人三级电影网站| 99久久无色码亚洲精品果冻| 少妇高潮的动态图| 欧美在线一区亚洲| 国内精品一区二区在线观看| 一区二区三区四区激情视频 | 啦啦啦观看免费观看视频高清| 国产一区二区在线观看日韩| 国产视频内射| 久久久午夜欧美精品| 一本一本综合久久| 午夜福利在线在线| 国产伦一二天堂av在线观看| 黄色日韩在线| 精华霜和精华液先用哪个| 亚洲黑人精品在线| 精品人妻一区二区三区麻豆 | 精品久久久久久成人av| 全区人妻精品视频| 国产精品爽爽va在线观看网站| 中出人妻视频一区二区| 久久香蕉精品热| 狂野欧美激情性xxxx在线观看| 亚洲avbb在线观看| 麻豆久久精品国产亚洲av| 免费观看人在逋| 老女人水多毛片| 精品人妻1区二区| 国产精品久久久久久av不卡| 99久久精品一区二区三区| 亚洲美女视频黄频| 校园春色视频在线观看| 久久亚洲精品不卡| 日韩欧美在线二视频| eeuss影院久久| 久久久国产成人精品二区| av中文乱码字幕在线| 午夜激情欧美在线| 午夜免费成人在线视频| 少妇人妻精品综合一区二区 | 人妻丰满熟妇av一区二区三区| 高清日韩中文字幕在线| 国产高清三级在线| 在线免费观看的www视频| 欧美国产日韩亚洲一区| 99热网站在线观看| 日韩欧美国产在线观看| 亚洲av免费在线观看| 99久久成人亚洲精品观看| avwww免费| 成人亚洲精品av一区二区| 搡老岳熟女国产| 一级av片app| 午夜影院日韩av| 一本一本综合久久| 我的老师免费观看完整版| 在现免费观看毛片| 午夜福利在线观看免费完整高清在 | 自拍偷自拍亚洲精品老妇| 三级毛片av免费| 日韩一本色道免费dvd| 毛片女人毛片| 在线观看免费视频日本深夜| 国产亚洲精品久久久com| av天堂中文字幕网| 最后的刺客免费高清国语| 日本成人三级电影网站| 禁无遮挡网站| 一区二区三区高清视频在线| 少妇人妻精品综合一区二区 | 久久久久免费精品人妻一区二区| 欧美日韩乱码在线| 国产精品国产高清国产av| 久久久久久久精品吃奶| 国语自产精品视频在线第100页| 亚洲av熟女| 中文字幕av在线有码专区| 天堂√8在线中文| 真实男女啪啪啪动态图| 深夜精品福利| 99热这里只有是精品50| 国产成人福利小说| 国产亚洲精品av在线| 中文字幕熟女人妻在线| 两性午夜刺激爽爽歪歪视频在线观看| 舔av片在线| 黄色欧美视频在线观看| 国产精品久久久久久亚洲av鲁大| 国产亚洲av嫩草精品影院| 精品久久久久久久人妻蜜臀av| 91av网一区二区| 日韩亚洲欧美综合| 婷婷亚洲欧美| 深爱激情五月婷婷| 欧美潮喷喷水| www.色视频.com| 久久久国产成人精品二区| 国产精品综合久久久久久久免费| 搡老妇女老女人老熟妇| 免费一级毛片在线播放高清视频| 久久99热这里只有精品18| 在线免费观看不下载黄p国产 | 99久久精品国产国产毛片| 日韩,欧美,国产一区二区三区 | 国产日本99.免费观看| 身体一侧抽搐| 欧美黑人巨大hd| 国产精品亚洲美女久久久| 天堂√8在线中文| 精品人妻一区二区三区麻豆 | 国产乱人视频| 俺也久久电影网| 99久久九九国产精品国产免费| 两个人视频免费观看高清| 免费无遮挡裸体视频| 成人无遮挡网站| 国产极品精品免费视频能看的| 午夜精品久久久久久毛片777| 日韩一本色道免费dvd| 国产视频内射| 久久精品久久久久久噜噜老黄 | 国产精品日韩av在线免费观看| 赤兔流量卡办理| 国产精品三级大全| 欧美+日韩+精品| 亚洲aⅴ乱码一区二区在线播放| 网址你懂的国产日韩在线| 性色avwww在线观看| 精品一区二区三区人妻视频| 无人区码免费观看不卡| 91av网一区二区| 亚洲精品乱码久久久v下载方式| avwww免费| 国产又黄又爽又无遮挡在线| 久久人人爽人人爽人人片va| 精品久久久久久久人妻蜜臀av| 欧美性感艳星| 国产黄片美女视频| 一本一本综合久久| av中文乱码字幕在线| 精品午夜福利视频在线观看一区| 国产蜜桃级精品一区二区三区| 级片在线观看| 国产精品一区二区三区四区久久| 亚洲精华国产精华液的使用体验 | 露出奶头的视频| 不卡视频在线观看欧美| 亚洲五月天丁香| 永久网站在线| 国产视频内射| 久久99热这里只有精品18| 天堂网av新在线| 久久精品影院6| 国产色婷婷99| 亚洲一级一片aⅴ在线观看| 别揉我奶头 嗯啊视频| 男人舔女人下体高潮全视频| 热99re8久久精品国产| 麻豆久久精品国产亚洲av| 三级国产精品欧美在线观看| 欧美高清成人免费视频www| 色吧在线观看| 亚洲男人的天堂狠狠| 成人三级黄色视频| 日韩 亚洲 欧美在线| 国内精品美女久久久久久| 久久欧美精品欧美久久欧美| 麻豆国产av国片精品| 一级黄色大片毛片| 69av精品久久久久久| 伊人久久精品亚洲午夜| a级毛片免费高清观看在线播放| 精品久久久噜噜| 久久99热这里只有精品18| 成熟少妇高潮喷水视频| 亚洲精品日韩av片在线观看| 少妇人妻精品综合一区二区 | 我的女老师完整版在线观看| 久久久久久久久久久丰满 | 精品久久久久久久末码| 又黄又爽又免费观看的视频| 嫩草影院新地址| 不卡视频在线观看欧美| 黄色视频,在线免费观看| 成人欧美大片| 久久精品国产清高在天天线| 国产精品久久电影中文字幕| 日本与韩国留学比较| 国内精品久久久久久久电影| 亚洲精品亚洲一区二区| 国产成人aa在线观看| 不卡一级毛片| 性插视频无遮挡在线免费观看| 91在线观看av| 极品教师在线免费播放| 国内精品久久久久精免费| 久久精品国产清高在天天线| 久久精品国产亚洲av天美| 男女下面进入的视频免费午夜| 亚洲av电影不卡..在线观看| 国产三级在线视频| 能在线免费观看的黄片| 不卡一级毛片| 毛片一级片免费看久久久久 | 久久精品国产清高在天天线| 九九爱精品视频在线观看| 精品久久久久久,| 午夜激情欧美在线| 1000部很黄的大片| 一区二区三区免费毛片| 99视频精品全部免费 在线| 春色校园在线视频观看| 亚洲中文字幕日韩| 午夜免费激情av| 国产一级毛片七仙女欲春2| 久9热在线精品视频| 国内精品美女久久久久久| 麻豆国产av国片精品| 99久久久亚洲精品蜜臀av| 别揉我奶头~嗯~啊~动态视频| 婷婷精品国产亚洲av在线| 乱系列少妇在线播放| av在线观看视频网站免费| 中出人妻视频一区二区| 九九久久精品国产亚洲av麻豆| 久久久久精品国产欧美久久久| 99久久中文字幕三级久久日本| 一本精品99久久精品77| 国产私拍福利视频在线观看| 51国产日韩欧美| 色综合色国产| 日日干狠狠操夜夜爽| 成人国产综合亚洲| 日韩强制内射视频| 亚洲中文日韩欧美视频| 深爱激情五月婷婷| 熟妇人妻久久中文字幕3abv| 美女xxoo啪啪120秒动态图| 老司机深夜福利视频在线观看| 99国产精品一区二区蜜桃av| 一个人看视频在线观看www免费| 床上黄色一级片| 啦啦啦韩国在线观看视频| 深夜精品福利| 十八禁国产超污无遮挡网站| 久久99热这里只有精品18| 老司机福利观看| 一a级毛片在线观看| 色av中文字幕| 草草在线视频免费看| 99热这里只有是精品50| 久久久久久国产a免费观看| 日日摸夜夜添夜夜添小说| 成年女人永久免费观看视频| 小蜜桃在线观看免费完整版高清| 九九热线精品视视频播放| 亚洲性久久影院| 搡老妇女老女人老熟妇| 欧美日韩瑟瑟在线播放| 免费人成视频x8x8入口观看| 国产老妇女一区| 成年人黄色毛片网站| 我的老师免费观看完整版| 日韩 亚洲 欧美在线| 亚洲精品在线观看二区| 一级黄片播放器| 国产三级在线视频| 免费看av在线观看网站| 国产一区二区三区av在线 | 久久国产乱子免费精品| 校园春色视频在线观看| 在线免费观看的www视频| 啦啦啦观看免费观看视频高清| 变态另类丝袜制服| 亚洲精华国产精华液的使用体验 | 国产熟女欧美一区二区| 亚洲五月天丁香| 亚洲第一区二区三区不卡| 毛片女人毛片| 99久久久亚洲精品蜜臀av| 国产中年淑女户外野战色| 亚洲国产精品sss在线观看| 亚洲一区高清亚洲精品| 精品久久久久久久久亚洲 | 精品一区二区免费观看| 日韩大尺度精品在线看网址| 欧美性猛交黑人性爽| 欧美日韩国产亚洲二区| 一个人观看的视频www高清免费观看| 国产精品久久久久久久电影| 精品欧美国产一区二区三| 91午夜精品亚洲一区二区三区 | 国产 一区精品| 久久精品国产鲁丝片午夜精品 | 啦啦啦观看免费观看视频高清| 狂野欧美激情性xxxx在线观看| 伊人久久精品亚洲午夜| 中国美女看黄片| 动漫黄色视频在线观看| 午夜激情福利司机影院| 热99在线观看视频| 亚洲欧美日韩高清在线视频| 色哟哟·www| 亚洲午夜理论影院| 99久久无色码亚洲精品果冻| 精品一区二区三区人妻视频| aaaaa片日本免费| 久久久成人免费电影| 成人综合一区亚洲| 听说在线观看完整版免费高清| 内射极品少妇av片p| 毛片一级片免费看久久久久 | 99热只有精品国产| 国产伦精品一区二区三区四那| 女人十人毛片免费观看3o分钟| 全区人妻精品视频| 无人区码免费观看不卡| 热99在线观看视频| 天堂网av新在线| 天美传媒精品一区二区|