李 松,徐建俊,伍發(fā)芬,李彪,劉 玲,蔣然然,李樹紅
(1.達(dá)州市農(nóng)業(yè)科學(xué)研究所,四川達(dá)州 635000;2.達(dá)州市魚種站,四川達(dá)州 635000;3.宜賓市江安縣農(nóng)業(yè)局,四川宜賓 644200;4.四川農(nóng)業(yè)大學(xué)食品學(xué)院水產(chǎn)品加工理論與技術(shù)研究室,四川雅安 625014)
?
Kininogen及其在魚類中的研究進(jìn)展
李 松,徐建俊,伍發(fā)芬,李彪,劉 玲,蔣然然,李樹紅
(1.達(dá)州市農(nóng)業(yè)科學(xué)研究所,四川達(dá)州 635000;2.達(dá)州市魚種站,四川達(dá)州 635000;3.宜賓市江安縣農(nóng)業(yè)局,四川宜賓 644200;4.四川農(nóng)業(yè)大學(xué)食品學(xué)院水產(chǎn)品加工理論與技術(shù)研究室,四川雅安 625014)
本文主要首先介紹了半胱氨酸蛋白酶抑制因子超家族中kininogen(家族III)及其各結(jié)構(gòu)域的功能。在此基礎(chǔ)上,闡述了魚類kininogen在分離純化、活性和結(jié)構(gòu)特征的研究進(jìn)展。最后,分析探討了魚類kininogen在食品、醫(yī)藥領(lǐng)域的應(yīng)用前景,并展望了魚類加工下腳料中kininogen的開發(fā)利用方向。
魚類kininogen,純化鑒定,結(jié)構(gòu)特征,研究進(jìn)展,應(yīng)用前景
半胱氨酸蛋白酶抑制因子(cysteine proteinase inhibitors),又稱巰基蛋白酶抑制劑,是一類專門抑制活性中心含有半胱氨酸(Cy-SH)殘基的蛋白酶抑制因子。Cystatins超家族是其中的一個類群,除少數(shù)低等原核生物外,該類抑制劑廣泛地存在于生物體中,包括動植物體的組織、器官及分泌液中。動物組織來源的如雞蛋清[1]、豬血漿[2]、魚皮[3]中的cystatins,人類來源的如人肝臟[4]、尿液[5]cystatins等,植物來源的包括小麥[6]、玉米[7]等。
激肽原(kininogen)屬于Cystatins超家族成員,相比較于其它家族成員,kininogen分子量較高,結(jié)構(gòu)更加復(fù)雜。此外,魚類作為水生動物由于生活環(huán)境的特殊性,其kininogen與陸生動物存在很大不同。因此,本文對kininogen的結(jié)構(gòu)和功能,尤其是魚類kininogen的純化鑒定、結(jié)構(gòu)以及糖基化研究進(jìn)展進(jìn)行了綜述,以期在清晰理解魚類kininogen的基礎(chǔ)上,充分開發(fā)利用魚類kininogen資源。
1968年首次從雞蛋清中發(fā)現(xiàn)了第一個抑制木瓜蛋白酶活性的抑制劑[8],經(jīng)進(jìn)一步鑒定,將該蛋白命名為半胱氨酸蛋白酶抑制劑,并成為該超家族的第一個成員。隨著更多其他的半胱氨酸蛋白酶抑制劑被陸續(xù)研究報道[9-11],奠定了形成半胱氨酸蛋白酶抑制劑超家族的基礎(chǔ)。1985年首屆半胱氨酸蛋白酶及其抑制劑國際論談會確定了半胱氨酸蛋白酶抑制劑的命名和種類[12]。
1.1 Cystatins超家族分類
根據(jù)氨基酸個數(shù)、分子量大小、二硫鍵數(shù)目以及有無糖基化位點(diǎn)等分子結(jié)構(gòu)特性,將Cystatins超家族劃分為3個家族:即Stefin(Ⅰ)、Cystatin(Ⅱ)和Kininogen(Ⅲ)。
家族Ⅰ stefin是超家族的原型,是一種單鏈蛋白,由約100個氨基酸構(gòu)成,分子量約為11 ku,無二硫鍵和糖基化位點(diǎn),主要發(fā)現(xiàn)于哺乳動物的細(xì)胞和組織中[13-14]。
家族Ⅱ cystatin是超家族中最早發(fā)現(xiàn)的抑制劑,分子結(jié)構(gòu)與stefin相似,也是一種單鏈的蛋白,具有115個氨基酸,分子量約為13 ku,除鼠cystatin外,均無糖側(cè)鏈,但在其C端存在兩個保守的鏈內(nèi)二硫鍵[13-14]。該族抑制因子廣泛分布于多種生物的細(xì)胞外間隙及細(xì)胞中。
家族Ⅲ kininogen是一種單鏈的糖蛋白,同時是超家族中分子量最高的抑制劑,約為68~120 ku。目前已知的kininogen可分為高分子kininogen(HMW-kininogen,HK)、低分子kininogen(LMW-kininogen,LK)以及鼠來源的T-kininogen三類[15]。Kininogen大多存在于哺乳動物的血液中。
1.2 Kininogen的結(jié)構(gòu)
Cystatins超家族中kininogen的結(jié)構(gòu)最為復(fù)雜,HK由626個氨基酸殘基組成,分子量為120 ku。其N端由重鏈(heavy chain)和輕鏈(light chain)組成,分為6個結(jié)構(gòu)域(圖1)。重鏈由3個重復(fù)的類cystatin結(jié)構(gòu)域組成,即Domain 1,Domain 2和Domain 3。重鏈后緊連血管舒緩激肽(Bradykinin,Domain 4),而在重鏈前端是一個含18個氨基酸的信號肽(Signal peptide),信號肽在蛋白質(zhì)分子轉(zhuǎn)譯完成后斷裂。重鏈含8個鏈內(nèi)二硫鍵(Domain 1含有2個,Domain 2和Domain 3分別含3個)和3個糖基化位點(diǎn)(Domain 2含2個,Domain 3含1個)。此外,Domain 1還存在1個連接輕鏈Domain 6的鏈間二硫鍵。輕鏈主要由Domain 5H和Domain 6H組成,其決定了kininogen分子量的大小[16]。
LK由409個氨基酸殘基組成,分子量為68 ku,其結(jié)構(gòu)和HK的結(jié)構(gòu)相似,由Domain 1、Domain 2、Domain 3、Domain 4和Domain 5L組成,但不含Domain 6結(jié)構(gòu)[16]。
HK、LK的結(jié)構(gòu)如圖1所示。
圖1 HK和LK的結(jié)構(gòu)和功能示意圖[17]Fig.1 Schematic of structure and function of HK and LK[17]
1.3 Kininogen各結(jié)構(gòu)域的功能
目前對HK的各結(jié)構(gòu)域的功能研究較多。HK作為一種多功能的血漿糖蛋白,不僅可以抑制內(nèi)源半胱氨酸蛋白酶的活性,而且在病理生理進(jìn)程中發(fā)揮多種功能,如釋放緩激肽作用于血管,參與血栓生成[18]、血管發(fā)生[19]、還在炎癥反應(yīng)[20-21]、抗菌[22]、免疫[23]、抑制腫瘤的生長[24]中發(fā)揮重要作用,每個結(jié)構(gòu)域都有各自的功能。
Domain 1是唯一不具有抑制活性的區(qū)段,但含有一個較弱的Ca2+結(jié)合位點(diǎn)[25]。
Domain 2和Domain 3均含有Cystatins超家族中高度保守的氨基酸序列QXXAG,都能抑制半胱氨酸蛋白酶(如papain[26],cathepsin B、H、L[27]),且對不同蛋白酶的抑制作用不同。Domain 2還能抑制鈣激活中性蛋白酶(Calpain),而Cystatins超家族其他成員均不能抑制該酶[28]。而Domain 3還具有兩個功能截然不同的位點(diǎn),一個是作為內(nèi)皮細(xì)胞結(jié)合到血小板的功能位點(diǎn),另一個是抑制凝血酶結(jié)合到血小板的功能位點(diǎn)[29]。此外,Domain 3還可以與凝血栓蛋白(thrombospordin 1,TSP-1)結(jié)合[29]。在體內(nèi)動脈損傷時,kininogen的抗血栓形成活性,是通過Domain 3的抑制活性來介導(dǎo)的[18]。
Domain 4包含一個緩激肽序列bradykinin,當(dāng)kininogen與激肽釋放酶(kallikrein)結(jié)合相互作用時,Domain 4能釋放其中的bradykinin,從而抑制α-凝血酶(α-thrombin)[30]。
LK的輕鏈(D5L)的分子量為4~5 ku,但其功能尚未知曉[31]。而HK的輕鏈(D5H)分子量為45~58 ku,組成上甘氨酸、組氨酸和賴氨酸較多,具有能與內(nèi)皮細(xì)胞[32]、血小板[29]和負(fù)離子結(jié)合的蛋白表面結(jié)合位點(diǎn),在接觸反應(yīng)中發(fā)揮功能[16]。此外Domain 5與腫瘤關(guān)系密切。Kininogen中的Domain 5(Gly402-Lys493)及其合成肽能抑制體外連接蛋白介導(dǎo)的人骨肉瘤細(xì)胞(MG-63)遷移及侵襲[33],而Domain 5中的His485-Gly486-Lys487(HGK)是發(fā)揮該抑制作用的核心基序[34]。最新研究還發(fā)現(xiàn)Domain 5中的8肽片段GHGKHKNK,能抑制高轉(zhuǎn)移的肝癌細(xì)胞HCCLM3 轉(zhuǎn)移,其機(jī)制則是基于對基質(zhì)金屬蛋白酶2(matrix metalloproteinases-2,MMP-2)蛋白的調(diào)節(jié)[35]。此外,HKa還能抑制血管新生,但具體的抑制機(jī)制尚不十分清楚。腫瘤生長依賴于血管新生[36],所以HKa可以起到抑制腫瘤的作用。另外,HKa能通過誘導(dǎo)新生的內(nèi)皮細(xì)胞凋亡來抑制內(nèi)皮細(xì)胞的增殖[37-40]。
Domain6H有血漿前激肽釋放酶(prekallikrein)和凝血因子十一(Factor XI,FXI)的交疊結(jié)合位點(diǎn)[41]。雖然D5H和D6H均使HK具有凝血活性[42],二者作用機(jī)制不同,D5H通過與負(fù)離子表面結(jié)合參與促凝血作用,而D6H則通過與prekallikrein和FXI結(jié)合發(fā)揮作用。
此外,激肽釋放酶(kallikren)還能使HK在Lys362~Arg363和Arg371~Ser372之間裂解,釋放出bradykinin,產(chǎn)生一個62 ku的重鏈和一個56 ku的輕鏈,該兩條鏈通過Domain 1中的Cys10和Domain 6中的Cys596之間形成的二硫鍵連接,HK轉(zhuǎn)變?yōu)镠Ka,即HK的活性形式[34,43]。輕鏈的Domain 5是HKa的活性中心,發(fā)揮重要的作用,如介導(dǎo)炎癥反應(yīng),抑制血管內(nèi)細(xì)胞的增殖和轉(zhuǎn)移,誘導(dǎo)腫瘤細(xì)胞的凋亡,抑制腫瘤的生長和轉(zhuǎn)移,且重鏈也參與此進(jìn)程[44]。
2.1 魚類kininogen的純化鑒定
目前,對哺乳動物來源kininogen的結(jié)構(gòu)和功能研究相對深入,魚類由于進(jìn)化地位和生存環(huán)境的明顯差異,魚類來源的kininogen很可能有某些特殊的性質(zhì)或活性,然而對魚類來源的kininogen研究尚十分有限。
目前僅對大西洋鮭魚Atlantic salmon(SalmosalarL.)、花狼鳚Spotted wolffish(Anarhichasminor)、大西洋鱈魚Atlantic cod(GadusmorhuaL.)中的kininogen進(jìn)行了深入研究,并明確歸類為家族III的kininogen。Ylonen[45]等通過papain親和層析、凝膠過濾、陰離子層析和反相層析從大西洋鮭魚皮中純化出了salmon kininogen,表觀分子量為76 ku,而基質(zhì)輔助激光解析電離飛行時間質(zhì)譜(MALDI-TOF)測定為52 ku,pI為4.0,4.2和4.6,鑒定均為N-和O-糖基化的。該學(xué)者還從花狼鳚和大西洋鱈魚中純化出了wolfish kininogen(67 ku)和cod kininogen(78 ku),MALDI-TOF測得wolfish kininogen分子量為45.8 ku,pI為4.1、4.3、4.35和4.4,cod kininogen分子量為51 ku,pI為3.6,3.9和4.4。該兩種kininogen與已知人kininogen的同源性極高,且在鱈魚中還發(fā)現(xiàn)了高度保守序列QVVAG[46]。
也有學(xué)者相繼從其他魚類中純化出了高分子的Cystatin,但有關(guān)其分類,結(jié)構(gòu)性質(zhì),家族歸屬等均有待進(jìn)一步鑒定。1988年首次報道了魚類中的半胱氨酸蛋白酶抑制劑,該抑制劑是從鯉魚(Cyprinuscarpio)肌肉中分離到的,分子量為50 ku,且它能同時抑制papain和calpain,但未對其結(jié)構(gòu)、性質(zhì)進(jìn)行深入鑒定,僅根據(jù)其分子量大小和能抑制calpain這一特性判斷其可能是kininogen家族[47]。隨后報道了大西洋鮭魚皮中高分子cystatins成員Tromsin I(49 ku)和Tromsin II(76 ku),其pI分別為4.5和5.2,PAS染色初步鑒定兩者均是糖蛋白。此外,在大西洋鮭魚Atlantic salmon(SalmosalarL.)皮[45]、嘉魚Arctic charr(SalvelinusalpinesL.)[48]和虹鱒Rainbow trout(Oncorhynchus mykiss)[48]中均發(fā)現(xiàn)分子量為43 ku(含5.2 ku的聚糖,實(shí)際分子量37.5 ku)的salarin,含323個氨基酸,其中含19個氨基酸的信號肽,由4個幾乎相同的結(jié)構(gòu)域組成的成熟蛋白[49]。
大麻哈魚Chum salmon(Oncorhynchusketa)血漿(70 ku)[50]和卵(72.6 ku)[51]中也含高分子Cystatins。血漿Cystatin在pH7.0時和溫度低于50 ℃時穩(wěn)定,對Papain是一種非競爭性的抑制劑,其Ki為105 nmol·L-1。而卵中Cystatin在pH6.0的弱酸性環(huán)境和20~40 ℃范圍內(nèi)穩(wěn)定,能抑制Papain和Cathepsin,不能抑制胰凝乳蛋白酶(Chymotrypsin)。其他魚類如鮭魚血漿(70 ku)[52]、玻璃魚卵Glassfish(Liparitanakai)(67 ku)[53]、阿拉斯加鱈魚Alaska pollock(Theragrachalcogramma)(66.7 ku)[54]、太平洋鯡魚Pacific herring(clupea pallasi)(66 ku)[54]、鰱魚Silver carp(Hypophthalmichthysmolitrix)卵[55]等中均含有高分子量的Cystatins。但對其家族歸屬、結(jié)構(gòu)性質(zhì)和生理功能等有待進(jìn)一步的鑒定研究。
2.2 魚類高分子kininogen的結(jié)構(gòu)域
通過對克隆的少數(shù)幾種硬骨魚(包括真骨附綱和硬骨魚中的原始魚)kininogen推導(dǎo)的氨基酸序列比對分析,結(jié)果表明一些硬骨魚kininogen中僅含有Domain1及Domain3兩個類Cystatin結(jié)構(gòu)域以及Domain 4,而缺少Domain 5和Domain 6。這幾種硬骨魚雖然都具有較短的保守序列(如cystatin結(jié)構(gòu)域中的QXXXG序列及bradykinin的RRPPGWSPLR序列),但其它序列差異較大,因此相似性較低[56-57]。此外,腔棘魚類(硬骨魚中的原始魚)kininogen則是由Domain 1及Domain 3以及Domain 4、Domain 5和Domain 6構(gòu)成。而圓口綱的七鰓鰻(不屬于硬骨魚)kininogen是由具有Cystatin-like序列的抗菌肽(屬于Cathelicidin家族)和Domain 4構(gòu)成的[58]。由于目前已克隆的魚類kininogen序列十分有限,所以魚類kininogen是否還有其他形式,尚未定論。
2.3 魚類kininogen蛋白的糖基化結(jié)構(gòu)
糖基化是在酶的控制下,蛋白質(zhì)附加上糖類的過程,是蛋白質(zhì)的一種重要的翻譯后修飾,對蛋白質(zhì)的結(jié)構(gòu)和功能有重要的影響,糖基化的類型可以決定蛋白質(zhì)的結(jié)構(gòu)和功能。
脊椎動物含有兩個主要的寡糖類型,即N-連接型和O-連接型。
目前糖蛋白的鑒定方法主要有PAS染色法,N-糖苷酶F處理后結(jié)合電泳法以及MALDI-TOF法。PAS染色法初步表明大麻哈魚血漿[50]、虹鱒[48]、鰱魚[55]等中的高分子Cystatins均是糖蛋白。有關(guān)魚類糖基化的詳細(xì)結(jié)構(gòu)報道較少,僅在大西洋鮭魚Atlantic salmon(SalmosalarL.)[59]、大西洋鱈魚Atlantic cod(GadusmorhuaL.)[60]和花狼鳚Spotted wolffish(Anarhichasminor)[46]中有所深入研究,3種魚kininogen都含有在脊椎動物常見的唾液酸化的二天線或三天線型N-糖苷多糖,和雙唾液酸化I型核心O-糖苷多糖。此外,大西洋鮭魚kininogen中還發(fā)現(xiàn)存在十分廣泛的唾液酸的O-乙?;F(xiàn)象,而該類kininogen N-聚糖中這種O-乙?;亩嗑弁僖核徭溎艿种莆⑸锓置诘耐僖核崦傅姆纸鈁48]。此外,cod kininogen的N-聚糖結(jié)構(gòu)中約1/3的聚糖在其N-乙酰葡糖胺觸角單元中是硫酸化的(salmon kininogen和wolffish kininogen中不存在硫酸化結(jié)構(gòu))[48]。這種硫酸化不僅能使糖復(fù)合物發(fā)生酸化和交聯(lián)化增強(qiáng)結(jié)構(gòu)多樣性以便于起到識別和信號傳導(dǎo)的作用[61]。
在魚糜制品加工過程中殘留的蛋白酶是導(dǎo)致魚糜凝膠軟化的主要原因,主要為組織蛋白酶類和[62]肌原纖維結(jié)合的絲氨酸蛋白酶[60]。目前利用各種動物來源的Cystatins抑制魚糜凝膠軟化的研究較多,如豬血漿蛋白L-kininogen[63]、雞血漿中的Cystatin(122 Ku)[64]均對魚糜凝膠軟化有抑制作用。而有關(guān)魚類高分子Cystatins對魚糜凝膠劣化的研究較少,現(xiàn)有研究表明大麻哈魚血漿[52]、卵[65]和玻璃魚卵[53]中的kininogen應(yīng)用到魚糜凝膠劣化中,且活性高于雞蛋白Cystatin。
魚類kininogen作為自身的內(nèi)源性抑制劑添加到魚糜制品中,將發(fā)揮增強(qiáng)魚糜凝膠強(qiáng)度、彈性的作用,促進(jìn)魚糜制品的組織特性、保水性和粘結(jié)性,取之于魚,用之于魚。因此若將魚類高分子kininogen開發(fā)為魚糜制品改良劑,必將具有一定的應(yīng)用價值。
目前,盡管對魚類來源kininogen的生理活性和功能的研究尚處于空白,但作者所在團(tuán)隊前期從鰱魚(Hypophthalmichthysmolitrix)卵中分離的一種糖基化的高分子Cystatin的降解物,在體外抑制了子宮內(nèi)膜癌(Ishikawa)細(xì)胞的增殖,使其遷移及粘附能力顯著下降[66]。由于硬骨魚類kininogen不存在Domain5和Domain6,因此,其抑制癌細(xì)胞可能與其降解物中的類-cystatin域有關(guān),而具體的作用機(jī)制,仍有待深入研究。
魚類加工產(chǎn)生大量下腳料,如卵、皮、血液等,其中必然存在豐富的kininogen,而鑒于kininogen在調(diào)節(jié)巰基半胱氨酸蛋白活性、抑制腫瘤、抑菌等方面發(fā)揮重要作用。進(jìn)一步系統(tǒng)深入的研究魚類kininogen的結(jié)構(gòu)、活性特征和生物功能,探究其在食品(抑制魚糜凝膠軟化及抑菌保鮮等)和醫(yī)藥(抗腫瘤、抗炎癥藥物等)領(lǐng)域的應(yīng)用價值,是充分利用魚類加工下腳料中kininogen,變廢為寶的科學(xué)有效途徑,其必定具有廣闊的應(yīng)用前景。
[1]Bode W,Engh R,Musil D,et al. The 2.0 A X-ray crystal structure of chicken egg white cystatin and its possible mode of interaction with cysteine proteinases[J]. The EMBO journal,1988,7(8):2593-2599.
[2]Benjakul S,Visessanguan W. Pig plasma protein:potential use as proteinase inhibitor for surimi manufacture;inhibitory activity and the active components[J]. Journal of the science of food and agriculture,2000,80(9):1351-1356.
[3]Synnes M. Purification and characterization of two cysteine proteinase inhibitors from the skin of Atlantic salmon(SalmoSalarL.)[J]. Comparative biochemistry and physiology part B,1998,121(3):257-264.
[4]Green G D,Kembhavi A A,uvies ME,et al. Cystatin-like cysteine proteinase inhibitors from human liver[J]. Biochemical Journal,1984,218(3):939-946.
[5]Abrahamson M,Barrett A J,Salvesen G,et al. Isolation of six cysteine proteinase inhibitors from human urine. Their physicochemical and enzyme kinetic properties and concentrations in biological fluids[J]. The Journal of Biological Chemistry,1986,261(24):11282-11289.
[6]Dutt S,Pandey D and Kumar A. Jasmonate signal induced expression of cystatin genes for providing resistance against Karnal bunt in wheat[J]. Plant Signal Behavior 2011,6(6):821-830.
[7]Riazi G. Cloning of corn cystatin cDNA and evaluation of its protein inhibitory effectinvitro[J]. Journal of Science and Technology of Agriculture and Natural Resources,2007,11(1):367-380.
[8]Fossum K,Whitaker J R. Ficin and papain inhibitor from chicken egg white[J]. Archives of Biochemistry & Biophysics,1968,125(1):367-375.
[9]Fraki J E. Human skin proteases. Separation and characterization of two acid proteases resembling cathepsin B1 and cathepsin D and of an inhibitor of cathepsin B1[J]. Archives of Dermatological Research,1976,255(3):217-220.
[10]Jarvinen M. Purification and properties of two protease inhibitors from rat skin inhibiting papain and other SH-proteases[J]. Acta Chemica Scandinavica B,1976,30(10):933-940.
[11]Barrett A J. Cystatin,the egg white inhibitor of cysteine proteinases[J]. Proteolytic Enzymes,Part C,1981,80:771-778.
[12]Vicik R,Busemann M,Baumann K,et al. Inhibitors of cysteine proteases[J]. Current topics medicinal chemistry,2006,6(4):331-353.
[13]Bobek L A,Levine M J. Cystatins--inhibitors of cysteine proteinases[J]. Critical Reviews in Oral Biology & Medicine. 1992,3(4):307-332.
[14]Otto HH,Schirmeister T. Cysteine proteases and their inhibitors[J]. Chemical Reviews,1997,97(3):133-171.
[15]Lee C,Bongcam-Rudloff E,Sollner C,et al. Type 3 cystatins;fetuins,kininogen and histidine-rich glycoprotein[J]. Frontiers in Bioscience(Landmark Edition),2009,14:2911-2922.
[16]Kaufmann J,Haasemann M,Modrow S,et al. Structural dissection of the multidomain kininogen:fine mapping of the target epitopes of antibodies interfering with their functional properties[J]. Journal of Biological Chemistry,1993,268(12):9079-9091.
[17]Colman R W,Schmaier A H. Contact system:a vascular biology modulator with anticoagulant,profibrinolytic,antiadhesive,and proinflammatory attributes[J]. Blood,1997,90(10):3819-3843.
[18]Hassan S,Sainz I M,Khan M M,et al. Antithrombotic activity of kininogen is mediated by inhibitory effects of domain 3 during arterial injuryinvivo[J]. Heart and criculatory physiolopy,2007,292(6):H2959-2965.
[19]Khan S T,Pixley R A,Liu Y,et al. Inhibition of metastasis of syngeneic murine melanomainvivoand vasculogenesisinvitroby monoclonal antibody C11C1 targeted to domain 5 of high molecular weight kininogen[J]. Cancer Immunol Immunother,2010,59(12):1885-1893.
[20]Zipplies J K,Hauck S M,Schoeffmann S,et al. Kininogen in autoimmune uveitis:decrease in peripheral blood stream versus increase in target tissue[J].Investigative Ophthalmology & Visual Science,2010,51(1):375-382.
[21]Isordia-Salas I,Sainz I M,Pixley R A,et al. High molecular weight kininogen in inflammation and angiogenesis:a review of its properties and therapeutic applications[J]. Revista Investigacion Clinica,2005,57(6):802-813.
[22]Karkowska-Kuleta J,Kedracka-Krok S,Rapala-Kozik M,et al. Molecular determinants of the interaction between human high molecular weight kininogen and Candida albicanscell wall:Identification of kininogen-binding proteins on fungal cell wall and mapping the cell wall-binding regions on kininogen molecule[J]. Peptides,2011,32(12):2488-2496.
[23]Scharfstein J,Schmitz V,Svensj? E,et al. Kininogens coordinate adaptive immunity through the proteolytic release of bradykinin,an endogenous danger signal driving dendritic cell maturation[J].Sandinavian journal of immunology,2007,66(2-3):128-136.
[24]Han X,An L,Xu G,et al. Impact of amino acid substitutions in domain 5 of high molecular weight kininogen on suppression of breast cancer cCells invasion[C]. International conference on human health and biomedical engineering,2011,19(22):395-398.
[25]Ishiguro H,Higashiyama S,Ohkubo I,et al. Heavy chain of human high molecular weight and low molecular weight kininogen binds calciumion[J]. Biochemistry,1987,26(23):7450-7458.
[26]Salvesen G,Parkes C,Abrahamson M,et al. Human low-Mr kininogen contains three copies of a cystatin sequence that are divergent in structure and in inhibitory activity for cysteine proteinases[J]. Biochemical Journal,1986,234(2):429-434.
[27]Bano B,Kunapuli S P,Bradford H N,et al. Structural requirements for cathepsin B and cathepsin H inhibition by kininogen[J]. Journal of Protein Chemistry,1996,15(6):519-525.
[28]Bradford H N,Jameson B A,Adam A A,et al. Contiguous binding and inhibitory sites on kininogen required for the inhibition of platelet calpain[J]. Journal of Biological Chemistry,1993,268(35):26546-26551.
[29]Puri R N,Zhou F,Hu C J,et al. High molecular weight kininogen inhibits thrombin-induced platelet aggregation and cleavage of aggregin by inhibiting binding of thrombin to platelets[J]. Blood,1991,77(3):500-507.
[30]Colman R W,Guo Y L. Two faces of high-molecular-weight kininogen(HK)in angiogenesis:bradykinin turns it on and cleaved HK(HKa)turns it off[J]. Journal of Thrombosis Haemostasis,2005,3(4):670-676.
[31]華慧,周思翔,王正榮.組織激肽釋放酶家族、激肽釋放酶-激肽原-激肽系統(tǒng)及其重要應(yīng)用[J].國外醫(yī)學(xué)生物醫(yī)學(xué)工程分冊,2004,27(5):301-306.
[32]Reddigari S R,Kuna P,Miragliotta G,et al. Human high molecular weight kininogen binds to human umbilical vein endothelial cells via its heavy and light chains[J]. Blood,1993,81(5):1306-1311.
[33]Kamiyama F,Maeda T,Yamane T,et al. Inhibition of vitronectin-mediated haptotaxis and haptoinvasion of MG-63 cells by domain 5(D5H)of human high-molecular-weight kininogen and identification of a minimal amino acid sequence[J]. Biochemical and Biophysical Research Communications,2001,288(4):975-980.
[34]Ohkubo,M K,Toshinaga M. Effect of his-gly-lys motif derived from domain 5 of high molecular weight kininogen on suppression of cancer etastasis bothinvitroandinvivo[J]. Biological Chemistry,2003,278(49):49301-49307.
[35]Han X,Yan D M,Zhao X F,et al. GHGKHKNK octapeptide(P-5 m)inhibits metastasis of HCCLM3 cell lines via regulation of MMP-2 expression in invitro andinvivostudies[J]. Molecules(Basel,Switzerland),2012,17(2):1357-1372.
[37]Bior A D,Pixley R A,Colman R W. Domain 5 of kininogen inhibits proliferation of human colon cancer cell line(HCT-116)by interfering with G1/S in the cell cycle[J]. Journal of thrombosis and haemostasis:JTH,2007,5(2):403-411.
[38]徐秀月,楊威,吳斌,等. HKa輕鏈D5區(qū)及其合成肽對MDA-MB-231細(xì)胞增殖和凋亡的影響[J]. 中國醫(yī)科大學(xué)學(xué)報,2008,37(4):494-499.
[39]Colman R W,Jameson B A,Lin Y,et al. Domain 5 of high molecular weight kininogen(kininostatin)down-regulates endothelial cell proliferation and migration and inhibits angiogenesis[J]. Blood,2000,95(2):543-550
[40]Colman R W. Inhibition of angiogenesis by a monoclonal antibody to kininogen as well as by kininostatin which block proangiogenic high molecular weight kininogen[J]. International Immunopharmacology,2002,2(13-14):1887-1894.
[41]Joseph K,Tholanikunnel B G,Kaplan A P. Factor XII-independent cleavage of high-molecular-weight kininogen by prekallikrein and inhibition by C1 inhibitor[J].The Journal of allergy and clinical immunology,2009,124(1):143-149.
[42]Hanahan D,Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis[J]. Cell,1996,86(3):353-364.
[43]Asakursa S,Yang W,Sottile J,et al. Opposing effects of low and high molecular weight kininogens on cell adhesion[J]. Journal of Biochemistry,1998,124(3):473-484.
[44]呂 剛,杜培革,張秀娟,等.高分子量激肽原第5結(jié)構(gòu)域的研究進(jìn)展[J].北華大學(xué)學(xué)報(自然科學(xué)版),2007,6(8),513-516.
[45]Yl?nen A,Rinne A,Herttuainen J,et al. Atlantic salmon(Salmo salar L.)skin contains a novel kininogen and another cysteine proteinase inhibitor[J]. European Journal of Biochemistry,1999,266(3):1066-1072.
[46]Yl?nen A,Helin J,Bogwald J,et al. Purification and characterization of novel kininogen from spotted wolffish and Atlantic cod[J]. European Journal of Biochemistry,2002,269(11):2639-2646.
[47]Toyohara H.,Makinodan Y,Ikeda S. Detection of a cysteine protease inhibitor in carp muscle[J]. Nippon Suisan Gakkaishi,1988,54,157-163.
[48]Olonen A. High Molecular Weight Cysteine Proteinase Inhibitors in Atlantic Salmon and Other Fish Species[D]. Finland:University of Helsinki,2004.
[49]Olonen A,Kalkkinen N,Paulin L. A new type of cysteine proteinase inhibitor—the salarin gene from Atlantic salmon(Salmo salar L.)and Arctic charr(Salvelinus alpinus)[J]. Biochimie,2003,85(7):677-681.
[50]Li D K,Lin H,Kim S M. Purification and characterization of a cysteine Protease inhibitor from chum salmon(Oncorhynchus keta)Plasma[J]. Journal of Agricultural and Food Chemistry,2008,56(1):106-111.
[51]Yamashita M,Konagaya S. Cysteine protease inhibitor in egg of chum salmon[J]. Journal of Biochemistry,1991,110(5):762-766.
[52]李德昆,蛋白酶抑制劑的制備及其抑制鱈魚糜凝膠劣化的研究[D]. 青島:中國海洋大學(xué),2008.
[53]Ustadi U,Kim K Y,Kim S M. Purification and Identification of a Protease Inhibitor from Glassfish(Liparis tanakai)Eggs[J]. Journal of Agricultural and Food Chemistry,2005,53(20):7667-7672.
[54]Ustadi U,Kim K Y,Kim S M. Comparative Study on the Protease Inhibitors from Fish Eggs[J]. Journal of Ocean University of China(Oceanic and Coastal Sea Research),2005,4(3):198-204.
[55]宋川,李艷芳,任陽陽等. 鰱魚卵高分子質(zhì)量CPI-I的純化與鑒定[J]. 食品科學(xué),2012,33(13):100-103.
[56]Wong M K,Takei Y. Lack of plasma kallikrein-kinin system cascade in teleosts[J]. PLoS One,2013,8(11):e81057.
[57]Zhou L,Li-Ling J,Huang H,et al. Phylogenetic analysis of vertebrate kininogen genes[J]. Genomics,2008,91(2):129-141.
[58]Zhou L,Liu X,Jin P,et al. Cloning of the kininogen gene from Lampetra japonica provides insights into its phylogeny in vertebrates[J]. Journal of genetics and genomics,2009,36(2):109-115.
[59]Yl?nen A,Kalkkinen N,Saarinen J,et al. Glycosylation analysis of two cysteine proteinase inhibitors from Atlantic salmon skin:di-O-acetylated sialic acids are the major sialic acid species on N-glycans[J]. Glycobiology,2001,11(7):523-531.
[60]Park J W. Ingredient technology and formulation development. In Surimi and surimi seafood[M]. New York:Marcel Dekker,2000,343-391.
[61]Lo-Guidice J M,Wieruszeski J M,Lemoine J,et al. Sialylation and sulfation of the carbohydrate chains in respiratory mucins from a patient with cystic fibrosis[J]. The Journal of Biological Chemistry,1994,269(29):18794-18813.
[62]Ho M L,Chen G H,Jiang S T. Effects of mackerel cathepsins L and L-like,and calpain on the degradation of mackerel surimi[J]. Fishers Science,2000,66(3):558-568.
[63]Lee J J,Tzeng S S,Wu J,et al. Inhibition of thermal degradation of Mackerel surimi by pig plasma protein and L-kininogen[J]. Journal of Food Science,2000,65(7):1124-1129.
[64]Rawdkuen S,Benjakul S,Visessanguan W,et al. Partial purification and characterization of cysteine proteinase inhibitor from chicken plasma[J]. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,2006,144(4):544-552.
[65]Koide Y,Noso T. The complete amino acid sequence of pituitary cystatin from chum salmon[J]. Bioscience,Biotechnolgy,and Biochemistry,1994,58(1):164-169.
[66]劉玲. 鰱魚卵中高分子CPIs的純化鑒定及其對Ishikawa細(xì)胞影響的初探研究[D]. 雅安,四川農(nóng)業(yè)大學(xué),2014.
Kininogen and the research progression in fish
LI Song1,XU Jian-jun1,WU Fa-fen2,LI Biao1,LIU Lin3,JIANG Ran-ran4,LI Shu-hong4,*
(1.Agricultural Science Institute of Dazhou,Dazhou,635000,China;2.The Fish Fingerling Institutes of Dazhou,Dazhou 635000,China;3.Agriculture Bureau of Jiang’an,Yibing 644200,China;4.Fish Processing Theory and Technique of Food Institute,Sichuan Agriculture University,Ya’an 625000,China)
In this paper,the structural feature and function of every structural domain of kininogen(family III)which belonged to cysteine proteinase inhibitors superfamily was introduced. Then,the research progression of fish kininogen on purification,activation and structural feature was explained. Furthermore,the application perspective of fish kininogen on food and medicine was introduced,and the exploitation and utilization of fish kininogen from processing offcuts was looked forward to especially.
fish kininogen;purification and identification;structural feature;research progression;application perspective
2016-03-08
李松(1988-),男,碩士研究生,研究方向:農(nóng)產(chǎn)品貯藏與加工,E-mail:306368980@qq.com。
*通訊作者:李樹紅(1975-),女,副教授,研究方向:水產(chǎn)品加工理論與技術(shù),E-mail:xiaoshu928@126.com。
國家自然科學(xué)基金青年科學(xué)基金項目(31101249)。
TS254.1
A
1002-0306(2016)20-0000-00
10.13386/j.issn1002-0306.2016.20.000