• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Global optimization of manipulator base placementby means of rapidly-exploring random tree①

    2016-12-06 02:39:54ZhaoJingHuWeijianShangHongDuBin
    High Technology Letters 2016年1期

    Zhao Jing (趙 京), Hu Weijian②, Shang Hong, Du Bin

    (*College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing 100124, P.R.China)(**National Earthquake Response Support Server, Beijing 100049, P.R.China)

    ?

    Global optimization of manipulator base placement
    by means of rapidly-exploring random tree①

    Zhao Jing (趙 京)*, Hu Weijian②**, Shang Hong**, Du Bin*

    (*College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing 100124, P.R.China)(**National Earthquake Response Support Server, Beijing 100049, P.R.China)

    Due to the interrelationship between the base placement of the manipulator and its operation object, it is significant to analyze the accessibility and workspace of manipulators for the optimization of their base location. A new method is presented to optimize the base placement of manipulators through motion planning optimization and location optimization in the feasible area for manipulators. Firstly, research problems and contents are outlined. And then the feasible area for the manipulator base installation is discussed. Next, index depended on the joint movements and used to evaluate the kinematic performance of manipulators is defined. Although the mentioned indices in last section are regarded as the cost function of the latter,rapidly-exploring random tree (RRT) and rapidly-exploring random tree*(RRT*) algorithms are analyzed. And then, the proposed optimization method of manipulator base placement is studied by means of simulation research based on kinematic performance criteria. Finally, the conclusions could be proved effective from the simulation results.

    base placement, rapidly-exploring random tree (RRT), rapidly-exploring random Tree*(RRT*), optimization

    0 Introduction

    Because of the interrelationship between the base placement of the manipulator and its operation object, it is significant to analyze the accessibility and workspace of manipulators for the optimization of their base location. Kamrani, et al.[1]proposed a new approach for optimal base placement by using a response surface method on the concept of path translation and rotation. Aly, et al.[2]developed a method for base location optimization of manipulators in a specific workcell, where a genetic algorithm was applied for optimizing solutions in the finite point set generated in the discrete process of the workspace. Bu, et al.[3]presented an analysis of the feasible base area for manipulators based on operation sequence optimization, before that the area is calculated then divided into discrete grids to reduce computation time. Yang, et al.[4]described a numerical computation method of an open-loop manipulator end-effector reaching the base of a specified point. This method is characterized by translating the optimization of the base placement into the solution of the position and orientation of the base with the definition of a fixed reference frame.

    To estimate the implementation process of a specific task, performance measures are usually used to evaluate the base location of manipulators. Santos et al.[5]proposed a strategy to work out the optimal task location with power and manipulability being performance evaluation index, considering maximizing the manipulator accuracy and minimizing the mechanical power consumption. Hammond, et al.[6]addressed the use of a multi-objective weighted isotropy measure as a task agility index in optimizing base placement under the condition of a complex, multitask workcell. For heavy-duty manufacturing tasks, a torque-weighted isotropy measure[7]is proposed as the metric for the optimization of the manipulator base. The effectiveness lies in the decrease of energy consumption on the premise of adequate global isotropy. Nektarios, et al.[8]illustrated the approximation of the minimum manipulator velocity ratio(AMMVR) targeted at the optimization of velocity performance in the study on the base location of manipulator end-effector performing a position and orientation path following task of a given 3D curved path and orientation.

    At present, a number of algorithms could make motion planning in the joint space, such as A*[9,10]and genetic algorithm[11]. However, with the growth of dimensions, the computational complexity increases sharply and expectant results could not be obtained. And the rapidly-exploring random tree (RRT) algorithm[12]proposed by LaValle could find out the feasible solution quickly to solve the path planning problems in higher joint space, which is much better than the traditional methods. But, the optimal solution of joint movements have not carried out by this algorithm because there are redundant joint movements for a given end-effectors path. Even though many scholars have tried to induce the growth of the searching tree by generating nodes[13], optimizing paths[14]and defining index[15], as the algorithm itself fails to introduce the known information of the configuration nodes into the expansion of the next to calculate a certain target function between all candidate nodes and the impact point, the paths obtained is unlikely to be the optimum. Karaman et al.[16]proposed the rapidly-exploring random tree*(RRT*) algorithm on the basis of existing searching algorithm, which could make a redesign of the RRT expansion by adopting an incremental sampling-based technique to obtain an asymptotic optimal characteristic, which also could provide a guarantee of convergence to optimal solutions.

    1 Problem description

    In current study, mostly only the candidate base placement in the feasible area of base (FAB) is evaluated regardless of the quality of the implementing task. In fact, base placement optimization of manipulators should consider two factors: 1) the quality of manipulators performing a given task in a specific base placement; 2) global optimization of base placement in FAB.

    1.1 Optimal motion planning

    A manipulator is installed at arbitrary point Bjon the ground in the workcell as shown in Fig.1. The manipulator is placed vertically with its end-effector point being at PEin the initial state. End-effector point PSand point PTcorrespond to initial configure xinitand goal configure xgoalof the manipulator, respectively. The task which the manipulator must do is that the manipulator picks the bottle at point PS, and places it at point PT. During the process of completing the specific task, the RRT algorithm is employed to carry out the motion planning from point PEto point PS. Moreover, the RRT*algorithm could be applied in the motion planning for the manipulator moving from PSto PTwith index imposing constraints, thus to obtain the optimal path satisfying the limitations. Cost function c(·) is used to evaluate the path and the joint movements, the result of which will be the scores of manipulator base at Bj.

    Fig.1 Description of the pick-and-place operation

    1.2 Base placement optimization

    Fig.2 Flowchart of the base placement optimization process

    2 Analysis of FAB

    The feasible area of base is codetermined by three factors: workspace of the manipulator, position of the manipulation target and obstacles in the workcell. As for a spatial manipulator, It is supposed that without consideration of joint limits, its workspace is a solid sphere with a radius of R. The manipulator base locates in the center of the sphere, as showed in Fig.3. Move the sphere to reach a tangency with target point Pi. The horizontal plane with Piis tangent to the sphere and gets a circle of radius RT, where RTdenotes the maximum radius of FAB to specific point Pi, which is given by

    (1)

    whereRis the radius of the manipulator workspace, hPis the height of the point Pirelative to the ground, and hBis the height of the manipulator base relative to the ground.

    Fig.3 Determination of FAB of the given point

    Fig.4 FAB of the manipulator when the end-effector moves along a path

    In fact, there are other factors that can possibly influence base placement of manipulators. For example, installment of manipulators cannot interfere with operating platform. Joint movements of manipulators cannot collide with possible obstacles. The height of the target object relative to the ground directly determines the size of FAB of the specific point. At the same time, singular configurations during task implementation should be avoided.

    3 Mean manipulation capability

    In order to evaluate the kinematics dexterity quantitatively, Yoshikawa[17]defined the manipulability index as

    (2)

    Let wi(i=1,…,n) denote the manipulation capability corresponding to path points Pi(i=1,…,n) of manipulator end-effector, the total manipulation capability of the task implementation will be

    (3)

    In order to make path manipulability obtained from different base location comparable, the mean manipulation capability (MMC) index is defined as

    (4)

    4 An improved RRT*

    The RRT*algorithm makes a redesign of the RRT expansion by adopting an incremental sampling-based technique to obtain an asymptotic optimal characteristic, which provides guarantee of convergence to optimal solutions. The main feature is that the known information of the configuration nodes is introduced into the expansion of the next to calculate a certain objective function between all candidate nodes and the target point. It is seen as the index to decide if the candidate node belongs to optimal path nodes, thus to choose one with the optimal objective function to be the next path node. Index defined in the above section is used as cost function to limit the expansion of tree nodes in the RRT*algorithm to reach the optimal joint movements of manipulators under constraint conditions.

    Let the motion planning for manipulators obtain the minimum cost function an example. In the algorithm, a new node and near by nodes could be evaluated instead of being directly added to the node tree, which is divided into two steps:

    Step 1: Near configurations set is generated on the basis of a new configuration.

    For an arbitrary joint configuration xnewand a finite set V?X of near configurations, Near(x) procedure returns the set of all x∈V that are close to xnew. The relationship between xnewand x can be expressed as

    (5)

    where γ is a constant, N is the number of joint configurations in search tree, and d is the dimensions of joint space.

    Step 2: Father and child nodes of the new node are searched in near configurations.

    The essence of the search for father and child nodes in the set V is to go through the whole V to find a node xnearthat minimizes the cost function from the initial xinitto the goal xnew. The calculation criterion for searching father and child nodes are respectively represented as

    Cost(xnear)+c(xnear,xnew)

    (6)

    Cost(xnew)+c(xnear,xnew)

    (7)

    Where Cost(x′) is the total cost from initial node xinitto current node x′. c(xnear,xnew) represents the cost from xnearto xnew.

    To obtain the motion planning of manipulators by the algorithm above provides not only a guarantee of high efficiency in solving, but also optimization of manipulator joint movements. In the case of the same task implemented and the same initial state of manipulators, the shortest distance of manipulator end-effector as cost function for RRT*algorithm is taken. The solutions of motion planning for manipulators using RRT and RRT*are shown in Fig.5, which illustrates that compared with RRT, path length searched by RRT*has been shortened to a large extent and is approximate to the shortest one.

    Fig.5 Comparison of the motion planning for the same task by RRT and RRT*

    5 Case study

    5.1 Simulation object and environment

    Fig.6 Coordinate frames of the manipulator

    The maximum radius of FAB of a specific target point is figured out as RT=0.4305m by equation . According to analyses above, FAB of the pick-and-place operation is illustrated in the oblique line area in Fig.7. Choose the search area of the base, which is marked as the green rectangle area in Fig.7 within the coordinate rage of x=[0.46448, 0.65938]m, y=[0.53216, 0.69]m, in order to make it easier for the calculator program to work out the base placement, as well as to take the installment boundary of the manipulator into consideration. As the radius of the manipulator workspace mentioned in this paper is kind of smaller, the area of FAB is relatively smaller, too.

    Fig.7 Descriptions of FAB and the search area in GA

    5.2 Optimization simulation

    Let MMC during the implementation of a specific task be the optimization objective, in other words, to obtain the maximum MMC. The fitness function can be defined by

    (8)

    wherekis thekthchromosome in a generation.

    The size of the initial population generated randomly is 18 and the number of reproduction generation is 150. Each gene on the chromosome is encoded in 32-bit binary encoding with crossover probability being 0.75 and mutation being 0.10. The elite reserved strategy is adopted in the selection of chromosome. The positional accuracy of the RRT*algorithm reaching the target point is e=10-3m. The evolution process of the genetic algorithm is shown in Fig.8, where the thick line represents the converging conditions of the minimum joint total displacement and the thin denotes the average joint total displacement of population in each generation. It illustrates that the optimal solutions can be obtained as the algorithm implemented to the 94thgeneration, that is, there is no better solution in later iterative process and algorithmic convergence is to stabilize. The average of the joint total displacement shortens with the increase of search iterations and its convergence is tending to the value of the minimum joint total displacement. On the basis of the chromosome and its fitness function, the distribution of the joint total displacement in different locations in FAB is shown in Fig.9, which displays that the coordinate of the optimal base location is (0.5113, 0.5525)m and MMC will be 0.0104. The movement during the task implementation of the manipulator at this point is shown in Fig.10.

    Fig.8 Evolutions of the average and maximum solution for MMC

    Fig.9 Distribution of MMC in the search area

    Fig.10 Movements with the strongest MMC of the manipulator

    6 Conclusions

    A new optimization method of manipulator base placement are proposed in this paper. Compared to the traditional methods, the method in this study takes the influence of the motion planning on placement optimization into consideration. The planning process for the task by manipulators is accomplished to achieve optimal kinematic performance in every task, then to perform genetic algorithm in FAB of the manipulator to obtain the optimal base location. From the simulation results, optimization algorithm of manipulator base location based on kinematic performance criteria could be proved effective.

    According to the task of the manipulator end-effectors, to obtain the feasible area of the base location through analyzing the workspace of manipulators and obstacles in the workcell is a good way to facilitate the optimization solution. However, for the research complicated movement of the end-effector such as complex 3D curve of space, the analysis method of FAB should be improved.

    The simulation results show that the RRT*algorithm could obtain the optimal path by optimizing the path during the process of searching. Because the searching tree may be degenerated into RRT for limited optimization capability with an undersized γ and an oversized γ could cause this capability too high to search out enough path nodes for the use of practical controls has a great impact on the growth of RRT*.

    In future research, a dynamic index will be introduced into the RRT*algorithm. And this optimal method will also be applied to rescue robots.

    [ 1] Kamrani B, Berbyuk V, W?ppling D, et al. Optimal robot placement using response surface method.TheInternationalJournalofAdvancedManufacturingTechnology, 2009, 44(1-2): 201-210

    [ 2] Aly M F, Abbas A T, Megahed S M. Robot workspace estimation and base placement optimisation techniques for the conversion of conventional work cells into autonomous flexible manufacturing systems.InternationalJournalofComputerIntegratedManufacturing, 2010, 23(12): 1133-1148

    [ 3] Bu W H, Liu Z Y, Tan J R. Industrial robot layout based on operation sequence optimisation.InternationalJournalofProductionResearch, 2009, 47(15): 4125-4145

    [ 4] Yang J J, Yu W, Kim J, et al. On the placement of open-loop robotic manipulators for reachability.MechanismandMachineTheory, 2009, 44(4): 671-684

    [ 5] Santos R, Steffen V, Saramago S. Optimal task placement of a serial robot manipulator for manipulability and mechanical power optimization.IntelligentInformationManagement, 2010, 9(2): 512-525

    [ 6] Hammond Iii F L, Shimada K. Improvement of redundant manipulator task agility using multiobjective weighted isotropy-based placement optimization. In: 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO 2009), Guilin, China, 2009. 645-652

    [ 7] Hammond Iii F L, Shimada K. Improvement of kinematically redundant manipulator design and placement using torque-weighted isotropy measures. In: 2009 International Conference on Advanced Robotics (ICAR 2009), Munich, Germany, 2009. 1-8

    [ 8] Nektarios A, Aspragathos N A. Optimal location of a general position and orientation end-effector’s path relative to manipulator's base, considering velocity performance.RoboticsandComputer-IntegratedManufacturing, 2010, 26(2): 162-173

    [ 9] Sun L W, Yeung C K. Port placement and pose selection of the Da Vinci surgical system for collision-free intervention based on performance optimization. In: 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2007), San Diego, USA, 2007. 1951-1956

    [10] Jia Q, Chen G, Sun H, et al. Path planning for space manipulator to avoid obstacle based on A* algorithm.JixieGongchengXuebao/JournalofMechanicalEngineering, 2010, 46(13): 109-115

    [11] He G Z, Gao H M, Zhang G, et al. Using adaptive genetic algorithm to the placement of serial robot manipulator. In: IEEE International Conference on Engineering of Intelligent Systems (ICEIS 2006), Islamabad, Pakistan, 2006. 1-6

    [12] Lavalle S M. Rapidly-exploring random trees: a new tool for path planning[R]. Computer science Department, Iowa State University, 1998

    [13] Bertram D, Kuffner J, Dillmann R, et al. An integrated approach to inverse kinematics and path planning for redundant manipulators. In: 2006 IEEE International Conference on Robotics and Automation (ICRA 2006), Orlando, USA, 2006. 1874-1879

    [14] Scheurer C, Zimmermann U E. Path planning method for palletizing tasks using workspace cell decomposition. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, 2011. 1-4

    [15] Du B, Zhao J, Song C. Optimal base placement and motion planning for mobile manipulators. In: ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE2012), Chicago, USA, 2012. 1-8

    [16] Karaman S, Frazzoli E. Sampling-based algorithms for optimal motion planning.InternationalJournalofRoboticsResearch, 2011, 30(7): 846-894

    [17] Yoshikawa T. Manipulability of robotic mechanisms. In: Robotics Research, The Second International Symposium, Kyoto, Japan, 1985. 439-446

    Zhao Jing, born in 1961. He received his PhD degree from Beijing University of Technology in 1998. He is currently a professor in College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, China. His research interests include mechanism as well as robotic kinematics and dynamics.

    10.3772/j.issn.1006-6748.2016.01.004

    ① Supported by the National Science and Technology Support Program of China (No. 2013BAK03B01).

    ② To whom correspondence should be addressed. E-mail: huweijian.2008@163.comReceived on Dec. 1, 2014

    小蜜桃在线观看免费完整版高清| 精品久久国产蜜桃| 亚洲精品日韩av片在线观看| 九九久久精品国产亚洲av麻豆| 久久人人爽人人爽人人片va| 97热精品久久久久久| 国产视频内射| 日韩一区二区视频免费看| 91狼人影院| 欧美最新免费一区二区三区| 国产女主播在线喷水免费视频网站 | 午夜免费男女啪啪视频观看 | 成人特级av手机在线观看| 一级毛片久久久久久久久女| 男人的好看免费观看在线视频| 欧美中文日本在线观看视频| 午夜日韩欧美国产| 我的老师免费观看完整版| 午夜a级毛片| 床上黄色一级片| 国模一区二区三区四区视频| 99热这里只有精品一区| 黄色一级大片看看| 久久精品国产亚洲av香蕉五月| 嫩草影院精品99| 成人性生交大片免费视频hd| 亚洲三级黄色毛片| 免费在线观看影片大全网站| 亚洲熟妇熟女久久| 人妻少妇偷人精品九色| 久久久久久久久中文| 91久久精品电影网| 露出奶头的视频| 亚洲最大成人手机在线| 99精品在免费线老司机午夜| 大型黄色视频在线免费观看| 中文字幕熟女人妻在线| 国产精品一二三区在线看| 午夜视频国产福利| 国内少妇人妻偷人精品xxx网站| 国产精品久久久久久精品电影| 少妇的逼好多水| 九九热线精品视视频播放| 精品一区二区免费观看| 精品国产三级普通话版| 91av网一区二区| 成人三级黄色视频| 久久国产乱子免费精品| 自拍偷自拍亚洲精品老妇| 在线a可以看的网站| 亚洲中文字幕日韩| 高清午夜精品一区二区三区 | 亚洲人成网站在线播放欧美日韩| 欧美日韩综合久久久久久| 亚洲电影在线观看av| 在线天堂最新版资源| 日韩欧美 国产精品| 亚洲真实伦在线观看| 3wmmmm亚洲av在线观看| 国产一区亚洲一区在线观看| 亚洲精品一区av在线观看| 成年版毛片免费区| 身体一侧抽搐| 身体一侧抽搐| 淫秽高清视频在线观看| 一进一出好大好爽视频| 国产国拍精品亚洲av在线观看| 乱人视频在线观看| 最近手机中文字幕大全| 熟女人妻精品中文字幕| 老司机福利观看| 国产伦在线观看视频一区| 91午夜精品亚洲一区二区三区| 色吧在线观看| 俄罗斯特黄特色一大片| 91在线精品国自产拍蜜月| а√天堂www在线а√下载| 亚洲aⅴ乱码一区二区在线播放| 一边摸一边抽搐一进一小说| 亚洲国产精品成人久久小说 | 51国产日韩欧美| 免费在线观看成人毛片| 色尼玛亚洲综合影院| av专区在线播放| 国产精品乱码一区二三区的特点| av福利片在线观看| 国产三级中文精品| 免费av毛片视频| 成年女人永久免费观看视频| 精品人妻熟女av久视频| 色5月婷婷丁香| 亚洲成人中文字幕在线播放| 亚洲高清免费不卡视频| 一级毛片aaaaaa免费看小| 午夜福利高清视频| 精品久久久久久成人av| 搞女人的毛片| 少妇被粗大猛烈的视频| 久久精品国产自在天天线| 欧美在线一区亚洲| 国产在线精品亚洲第一网站| 亚洲激情五月婷婷啪啪| 一区二区三区四区激情视频 | 国产精品99久久久久久久久| 精华霜和精华液先用哪个| 在线观看美女被高潮喷水网站| 国产精品久久久久久久久免| av天堂中文字幕网| 国产一区二区亚洲精品在线观看| 蜜桃亚洲精品一区二区三区| 亚洲第一区二区三区不卡| 哪里可以看免费的av片| 男人狂女人下面高潮的视频| 女同久久另类99精品国产91| 国产一区二区亚洲精品在线观看| 欧美成人免费av一区二区三区| 黄色配什么色好看| 亚州av有码| 人妻少妇偷人精品九色| 亚洲无线观看免费| 香蕉av资源在线| 1024手机看黄色片| 熟妇人妻久久中文字幕3abv| 一进一出好大好爽视频| 亚洲国产色片| 国内精品一区二区在线观看| 亚洲av免费在线观看| 别揉我奶头~嗯~啊~动态视频| 久久久欧美国产精品| 亚洲自拍偷在线| 久久6这里有精品| 亚洲图色成人| 久久精品人妻少妇| 久久韩国三级中文字幕| 免费人成在线观看视频色| 日韩精品青青久久久久久| 99九九线精品视频在线观看视频| 成年av动漫网址| 欧美三级亚洲精品| 天美传媒精品一区二区| 欧美一级a爱片免费观看看| 小说图片视频综合网站| 一级毛片电影观看 | 免费在线观看成人毛片| 成人综合一区亚洲| 国产免费一级a男人的天堂| 男女边吃奶边做爰视频| 国产精品久久电影中文字幕| 国产精品一区二区三区四区免费观看 | 精品一区二区免费观看| 亚洲五月天丁香| 中文字幕久久专区| 成人av一区二区三区在线看| 国产欧美日韩精品亚洲av| 国产麻豆成人av免费视频| 天堂网av新在线| 亚洲av电影不卡..在线观看| 人人妻人人澡人人爽人人夜夜 | 激情 狠狠 欧美| 精品一区二区三区视频在线| 成年版毛片免费区| 亚洲av美国av| 成年女人毛片免费观看观看9| 日韩成人伦理影院| 久久婷婷人人爽人人干人人爱| 亚洲国产精品成人综合色| 老师上课跳d突然被开到最大视频| 亚洲成人av在线免费| 色在线成人网| 久久午夜福利片| 亚洲av不卡在线观看| 一个人看视频在线观看www免费| 婷婷六月久久综合丁香| 久久久久国内视频| 真实男女啪啪啪动态图| 国产av在哪里看| 日韩强制内射视频| 国产视频内射| 在线观看免费视频日本深夜| 精品午夜福利在线看| 国产亚洲av嫩草精品影院| 日日摸夜夜添夜夜爱| 国产麻豆成人av免费视频| 高清毛片免费看| 日韩欧美 国产精品| 露出奶头的视频| 日韩 亚洲 欧美在线| 亚洲av电影不卡..在线观看| 高清午夜精品一区二区三区 | 超碰av人人做人人爽久久| 热99re8久久精品国产| 国产伦精品一区二区三区四那| 色在线成人网| 日韩欧美精品免费久久| 国产av麻豆久久久久久久| 亚洲成人久久性| 亚洲av免费在线观看| videossex国产| 欧美国产日韩亚洲一区| 精品福利观看| av免费在线看不卡| 俺也久久电影网| 久久人妻av系列| 97碰自拍视频| 69人妻影院| 精品久久久久久成人av| 亚洲美女黄片视频| 亚洲精品国产av成人精品 | 国产精品av视频在线免费观看| 日韩成人av中文字幕在线观看 | 九九久久精品国产亚洲av麻豆| 亚洲高清免费不卡视频| 国产亚洲精品av在线| 日韩人妻高清精品专区| 乱人视频在线观看| 成人亚洲精品av一区二区| 少妇高潮的动态图| 91麻豆精品激情在线观看国产| 国产黄色小视频在线观看| 成人美女网站在线观看视频| 此物有八面人人有两片| 免费搜索国产男女视频| 尤物成人国产欧美一区二区三区| 婷婷精品国产亚洲av| 成年女人永久免费观看视频| 99热这里只有是精品在线观看| 欧美日本视频| 一a级毛片在线观看| 亚洲婷婷狠狠爱综合网| 欧美最黄视频在线播放免费| 久久这里只有精品中国| 午夜爱爱视频在线播放| 国产伦在线观看视频一区| 丰满人妻一区二区三区视频av| 亚洲国产色片| 国产精品乱码一区二三区的特点| 少妇的逼好多水| 成人鲁丝片一二三区免费| 成年女人看的毛片在线观看| 久久久久久大精品| 啦啦啦啦在线视频资源| 国产视频一区二区在线看| 99热只有精品国产| 日本三级黄在线观看| 日日啪夜夜撸| 午夜福利在线观看吧| 亚洲欧美成人精品一区二区| 草草在线视频免费看| 在线免费观看不下载黄p国产| 日韩成人伦理影院| 免费高清视频大片| 天堂影院成人在线观看| 97碰自拍视频| 国产精华一区二区三区| 国产亚洲精品综合一区在线观看| 久久人人精品亚洲av| 在现免费观看毛片| 特级一级黄色大片| 亚洲性夜色夜夜综合| 欧美极品一区二区三区四区| 成人特级黄色片久久久久久久| 搡老妇女老女人老熟妇| 亚洲天堂国产精品一区在线| 1000部很黄的大片| 一级毛片我不卡| 成人一区二区视频在线观看| 免费av毛片视频| 非洲黑人性xxxx精品又粗又长| 欧美+日韩+精品| 免费高清视频大片| 精品99又大又爽又粗少妇毛片| 人人妻人人澡人人爽人人夜夜 | 有码 亚洲区| 国产精品一二三区在线看| 国语自产精品视频在线第100页| 国产精品一及| 狂野欧美白嫩少妇大欣赏| 日本黄色视频三级网站网址| 91久久精品国产一区二区三区| 老司机影院成人| 少妇的逼水好多| 少妇被粗大猛烈的视频| 99久国产av精品| 午夜福利在线观看免费完整高清在 | 在线观看一区二区三区| 亚洲精品国产av成人精品 | 2021天堂中文幕一二区在线观| 亚洲av免费高清在线观看| 少妇的逼水好多| 一级a爱片免费观看的视频| 一本久久中文字幕| 亚洲人成网站在线观看播放| 97超视频在线观看视频| 非洲黑人性xxxx精品又粗又长| 成人高潮视频无遮挡免费网站| 免费不卡的大黄色大毛片视频在线观看 | 非洲黑人性xxxx精品又粗又长| 不卡视频在线观看欧美| 国产高清视频在线观看网站| 免费看日本二区| 日日啪夜夜撸| 嫩草影院入口| 免费av观看视频| www日本黄色视频网| 亚洲va在线va天堂va国产| 看片在线看免费视频| 亚洲精品日韩av片在线观看| 1024手机看黄色片| av.在线天堂| 一级毛片久久久久久久久女| 一本精品99久久精品77| 深夜a级毛片| videossex国产| 亚洲最大成人中文| 哪里可以看免费的av片| 免费黄网站久久成人精品| 99久久久亚洲精品蜜臀av| 国产私拍福利视频在线观看| 97超级碰碰碰精品色视频在线观看| 精品一区二区三区人妻视频| 成人午夜高清在线视频| 1024手机看黄色片| 少妇熟女aⅴ在线视频| 五月伊人婷婷丁香| a级毛色黄片| 国产精品1区2区在线观看.| 国产成年人精品一区二区| 午夜激情欧美在线| 小说图片视频综合网站| 日日摸夜夜添夜夜爱| 中文字幕久久专区| 免费av毛片视频| 国产黄色视频一区二区在线观看 | 久久草成人影院| 日本黄色视频三级网站网址| 亚洲av免费高清在线观看| 成人高潮视频无遮挡免费网站| 亚洲内射少妇av| 亚洲精品乱码久久久v下载方式| 日韩中字成人| 国产淫片久久久久久久久| 伦理电影大哥的女人| 国产一区亚洲一区在线观看| 最近2019中文字幕mv第一页| av在线蜜桃| 丝袜美腿在线中文| 久久久久国产精品人妻aⅴ院| 男女边吃奶边做爰视频| 国产精品久久电影中文字幕| 久久精品久久久久久噜噜老黄 | 久久中文看片网| 韩国av在线不卡| 午夜福利高清视频| 成人无遮挡网站| 国产免费男女视频| 国产高清有码在线观看视频| 赤兔流量卡办理| 免费av毛片视频| 久久久久久久久久久丰满| 国产男靠女视频免费网站| 一本一本综合久久| 午夜福利在线观看免费完整高清在 | 狂野欧美激情性xxxx在线观看| 国产精品久久电影中文字幕| 日韩精品有码人妻一区| 国产日本99.免费观看| 又粗又爽又猛毛片免费看| 午夜福利在线观看吧| 欧美日本视频| а√天堂www在线а√下载| 午夜视频国产福利| a级毛片免费高清观看在线播放| 亚洲第一电影网av| 亚洲真实伦在线观看| 久久人人爽人人片av| 国产午夜福利久久久久久| 美女cb高潮喷水在线观看| 国产免费男女视频| 久久九九热精品免费| 久久久a久久爽久久v久久| 神马国产精品三级电影在线观看| 成人性生交大片免费视频hd| 亚洲精品亚洲一区二区| 好男人在线观看高清免费视频| 99久久九九国产精品国产免费| av国产免费在线观看| 亚洲婷婷狠狠爱综合网| 日韩成人伦理影院| 亚洲精品粉嫩美女一区| 99热这里只有是精品在线观看| 不卡一级毛片| 最后的刺客免费高清国语| 国产精品亚洲一级av第二区| 观看美女的网站| 国产探花在线观看一区二区| 色吧在线观看| 内地一区二区视频在线| 亚洲欧美成人综合另类久久久 | 菩萨蛮人人尽说江南好唐韦庄 | 成人特级黄色片久久久久久久| 男插女下体视频免费在线播放| 亚洲欧美日韩东京热| 长腿黑丝高跟| 午夜视频国产福利| 床上黄色一级片| 日日摸夜夜添夜夜添小说| 香蕉av资源在线| 精品久久久久久久久久免费视频| 久久精品国产亚洲av香蕉五月| 天堂影院成人在线观看| 搡女人真爽免费视频火全软件 | 国产成人精品久久久久久| 99久国产av精品国产电影| 欧美激情久久久久久爽电影| 日韩强制内射视频| 久久鲁丝午夜福利片| 亚洲无线在线观看| 亚洲精华国产精华液的使用体验 | 国产精品爽爽va在线观看网站| 赤兔流量卡办理| 久久久久久久久久黄片| 亚洲在线观看片| 久久久成人免费电影| 欧美国产日韩亚洲一区| 日韩制服骚丝袜av| 桃色一区二区三区在线观看| 欧美日韩精品成人综合77777| 99热这里只有是精品在线观看| 日本色播在线视频| 国产单亲对白刺激| 久久精品国产亚洲av香蕉五月| 欧美另类亚洲清纯唯美| 精华霜和精华液先用哪个| 日本在线视频免费播放| 99久久精品热视频| 久久久久久久亚洲中文字幕| 国产精品久久久久久精品电影| 久久久a久久爽久久v久久| 色综合亚洲欧美另类图片| 蜜桃亚洲精品一区二区三区| 一进一出好大好爽视频| 久久久久精品国产欧美久久久| 日本精品一区二区三区蜜桃| 级片在线观看| 婷婷色综合大香蕉| 晚上一个人看的免费电影| 九九在线视频观看精品| 成人性生交大片免费视频hd| 人人妻,人人澡人人爽秒播| 日韩亚洲欧美综合| 嫩草影视91久久| 国产精品嫩草影院av在线观看| 在线观看66精品国产| 禁无遮挡网站| 国产老妇女一区| 亚洲国产欧洲综合997久久,| 男人狂女人下面高潮的视频| 人人妻,人人澡人人爽秒播| 麻豆精品久久久久久蜜桃| 国产女主播在线喷水免费视频网站 | 精品日产1卡2卡| 国产精品福利在线免费观看| 一夜夜www| 成人高潮视频无遮挡免费网站| 男女之事视频高清在线观看| h日本视频在线播放| 一级毛片久久久久久久久女| av专区在线播放| 九九热线精品视视频播放| 国产欧美日韩精品一区二区| 成人漫画全彩无遮挡| 国产在线男女| 99在线人妻在线中文字幕| 国产亚洲精品av在线| 97在线视频观看| 内射极品少妇av片p| 偷拍熟女少妇极品色| 亚洲欧美日韩高清在线视频| 免费大片18禁| 在线观看免费视频日本深夜| 美女内射精品一级片tv| 亚洲专区国产一区二区| 欧美成人a在线观看| 亚洲一区二区三区色噜噜| 卡戴珊不雅视频在线播放| 亚洲第一区二区三区不卡| 中文字幕精品亚洲无线码一区| 婷婷精品国产亚洲av在线| 成人亚洲精品av一区二区| 久久中文看片网| 又爽又黄a免费视频| 麻豆国产97在线/欧美| 精品国内亚洲2022精品成人| 成人特级av手机在线观看| 国产在线男女| 色综合站精品国产| 欧美日本视频| 国产黄色小视频在线观看| 久久鲁丝午夜福利片| 一个人免费在线观看电影| 欧美不卡视频在线免费观看| 亚洲国产精品成人久久小说 | 国产免费一级a男人的天堂| 一本久久中文字幕| 国产亚洲精品av在线| 听说在线观看完整版免费高清| 久久久久久久久久久丰满| 欧美日韩精品成人综合77777| 蜜桃久久精品国产亚洲av| 99在线人妻在线中文字幕| 日本一本二区三区精品| 免费观看人在逋| 你懂的网址亚洲精品在线观看 | 国产精品一及| 欧美国产日韩亚洲一区| 国产av不卡久久| 日本熟妇午夜| 69av精品久久久久久| 国产极品精品免费视频能看的| 俺也久久电影网| 国产男靠女视频免费网站| 麻豆av噜噜一区二区三区| 国产成人91sexporn| 天堂影院成人在线观看| 狂野欧美激情性xxxx在线观看| 欧美+日韩+精品| 最近手机中文字幕大全| 欧美一区二区精品小视频在线| 久久久久九九精品影院| 99久久久亚洲精品蜜臀av| 男人狂女人下面高潮的视频| 亚洲乱码一区二区免费版| 又爽又黄a免费视频| 久久久精品欧美日韩精品| 欧美绝顶高潮抽搐喷水| 亚洲欧美日韩高清专用| av在线蜜桃| 老司机福利观看| 美女大奶头视频| 尤物成人国产欧美一区二区三区| 舔av片在线| 乱码一卡2卡4卡精品| 乱人视频在线观看| 国产精品久久久久久久电影| 国产淫片久久久久久久久| 一a级毛片在线观看| 精品日产1卡2卡| 一进一出好大好爽视频| 亚洲精品456在线播放app| 亚洲av中文av极速乱| 免费看av在线观看网站| 精品国产三级普通话版| 欧美国产日韩亚洲一区| 中国国产av一级| 亚洲专区国产一区二区| 国产淫片久久久久久久久| 最新中文字幕久久久久| 国产色爽女视频免费观看| 美女xxoo啪啪120秒动态图| 少妇熟女aⅴ在线视频| 成人性生交大片免费视频hd| 国产三级中文精品| 国产 一区 欧美 日韩| 国产精品一区二区三区四区久久| 国内精品一区二区在线观看| 日本a在线网址| 不卡一级毛片| 亚洲人成网站在线播| 久久久久久久久久黄片| 天天一区二区日本电影三级| av卡一久久| 亚洲精品在线观看二区| 欧美极品一区二区三区四区| 成人特级av手机在线观看| 黄色配什么色好看| 简卡轻食公司| 午夜福利18| 成人亚洲精品av一区二区| 少妇被粗大猛烈的视频| 大又大粗又爽又黄少妇毛片口| 菩萨蛮人人尽说江南好唐韦庄 | 久久国内精品自在自线图片| 搡老岳熟女国产| 亚洲av中文字字幕乱码综合| 亚洲五月天丁香| 国产精品一区二区三区四区免费观看 | 国产aⅴ精品一区二区三区波| 精品乱码久久久久久99久播| 日本熟妇午夜| 色播亚洲综合网| 国产精品久久久久久亚洲av鲁大| 99热这里只有是精品在线观看| 97超视频在线观看视频| 日韩一区二区视频免费看| 久久久久国内视频| 亚洲欧美精品自产自拍| 老司机福利观看| 精品乱码久久久久久99久播| 97超碰精品成人国产| 国产亚洲av嫩草精品影院| 22中文网久久字幕| 日韩欧美国产在线观看| 少妇的逼好多水| 国产精品亚洲一级av第二区| 好男人在线观看高清免费视频| 国产伦精品一区二区三区视频9| 丝袜喷水一区| 最近中文字幕高清免费大全6| 欧美一区二区精品小视频在线| 久久久国产成人精品二区| 国产一区二区激情短视频| 高清午夜精品一区二区三区 | 人妻久久中文字幕网| 久久亚洲精品不卡| 欧美激情国产日韩精品一区|