• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Robust SLAM using square-root cubature Kalman filter and Huber’s GM-estimator①

    2016-12-06 05:23:49XuWeijun徐巍軍JiangRongxinXieLiTianXiangChenYaowu
    High Technology Letters 2016年1期

    Xu Weijun(徐巍軍), Jiang Rongxin②, Xie Li, Tian Xiang, Chen Yaowu

    (*Institute of Advanced Digital Technology and Instrumentation, Zhejiang University, Hangzhou 310027, P.R.China)(**Zhejiang Provincial Key Laboratory for Network Multimedia Technologies, Zhejiang University, Hangzhou 310027, P.R.China)

    ?

    Robust SLAM using square-root cubature Kalman filter and Huber’s GM-estimator①

    Xu Weijun(徐巍軍)***, Jiang Rongxin②***, Xie Li***, Tian Xiang***, Chen Yaowu***

    (*Institute of Advanced Digital Technology and Instrumentation, Zhejiang University, Hangzhou 310027, P.R.China)(**Zhejiang Provincial Key Laboratory for Network Multimedia Technologies, Zhejiang University, Hangzhou 310027, P.R.China)

    Mobile robot systems performing simultaneous localization and mapping (SLAM) are generally plagued by non-Gaussian noise. To improve both accuracy and robustness under non-Gaussian measurement noise, a robust SLAM algorithm is proposed. It is based on the square-root cubature Kalman filter equipped with a Huber’s generalized maximum likelihood estimator (GM-estimator). In particular, the square-root cubature rule is applied to propagate the robot state vector and covariance matrix in the time update, the measurement update and the new landmark initialization stages of the SLAM. Moreover, gain weight matrices with respect to the measurement residuals are calculated by utilizing Huber’s technique in the measurement update step. The measurement outliers are suppressed by lower Kalman gains as merging into the system. The proposed algorithm can achieve better performance under the condition of non-Gaussian measurement noise in comparison with benchmark algorithms. The simulation results demonstrate the advantages of the proposed SLAM algorithm.

    square-root cubature Kalman filter, simultaneous localization and mapping (SLAM), Huber’s GM-estimator, robustness

    0 Introduction

    Simultaneous localization and mapping (SLAM)is a fundamental issue in the autonomous robot systems designed to realize more complex and advanced tasks, such as underground mining, planetary exploration, and disaster rescue. The objective of SLAM is to incrementally build a map of the unknown environment while concurrently using this map to localize the robot[1].

    The nonlinear discrete-time state-space model was typically formulated in the SLAM problem with Gaussian noise. The most popular filter implemented for SLAM is extended Kalman filter (EKF)[2]. However, EKF approach for SLAM tends to be inconsistent due to the accumulation of linearization error. The sigma-point Kalman filters (SPKF) which achieve second-order or higher accuracy have been proven to be far superior to standard EKF.Among the family of SPKF-class estimators, the unscented Kalman filter (UKF) and the cubature Kalman filter (CKF) have shown the capability to reduce linearization error effectively, and therefore are used in SLAM algorithms[3,4]. Especially,

    the third-order cubature rule of the CKF is claimed to be more theoretically justified and more accurate in mathematical terms than the unscented transformation of the UKF[5].

    However, the distribution of measurement noise in practical systems may deviate from the commonly assumed Gaussian model[6]. This non-Gaussian noise model is usually characterized by thick-tailed probability distributions and randomly appearing outliers, which may originate from glint noise of reflection[7]or are induced by unanticipated environment turbulence, temporary sensor failure, and incorrect modelling[8]. To deal with non-Gaussian noise model in the SLAM implementations, several methods have been proposed.For example, the Rao-Blackwellized particle filter based Fast SLAM[9]estimated the state posterior of arbitrary probability distribution by a finite number of particle samples.However, the algorithm will be computationally intensive in situations where the state vectors are high-dimensional. The H∝-filter based SLAM algorithms[4,10]are also able to estimate the state perturbed with non-Gaussian noise by treating the noise as unknown-but-bounded quantities. However the algorithms are prone to be diverged from in the presence of random outliers.

    In essence, the conventional Kalman type filters belong to the recursive minimuml2-norm or least mean-square technique, and the performance of the filters quickly degrades in the presence of outliers and thick-tailed noise. In contrast, Huber’s GM-estimator[11]is an estimation technique that gains robustness by optimizing a cost function represented in a combined minimuml1-andl2-norm. Using this estimator, the effect of the outliers is suppressed by down-weighting the normalized measurement residuals that are larger than a given threshold. Huber’s method has also shown its high robustness by integrating it into various Kalman type filters[12-14].

    Taking the advantage of square-root cubature rule’s numerical stability, a robust SLAM algorithm based on SCKF is proposed. Moreover, to accommodate the non-Gaussian measurement noise model, Huber’s GM-estimator is further introduced to improve the measurement update for each revisited landmark. Simulation results are provided to illustrate the effectiveness of the proposed algorithm in the complex scenarios with non-Gaussian measurement noise models.

    1 Problem formulation

    Consider the general discrete-time nonlinear SLAM system with the process model and measurement model

    xk=f(xk-1, uk-1)+vk-1

    zk=h(xk)+wk

    (1)

    where f(·) and h(·) are specific known nonlinear functions; xk=[xv,k, mk] is the state vector consisting of the robot pose xv,kand varying-size map of landmark mkat time step k; uk-1is the control input of the proprioceptive sensors; zkis the measurement obtained from the on-board sensors; vk-1and wkare additive process and measurement noise, respectively. The noises are assumed to be mutually independent Gaussian random variables with zero mean and covariances Qk-1and Rk, respectively.

    In this study, the third order spherical-radial cubature rule is utilized to approximate the nonlinear Gaussian integral with a set of 2N (N is the dimensionality of the state vector to be estimated) equally weighted cubature points. The set of cubature points is determined by {ξi, wi}, where ξiis thei-th element and wiis the corresponding weight factor:

    (2)

    2 SLAM based on square-root cubature rule

    The objective of the SLAM algorithm is to keep the system state estimate up to date by recursively evolving with the time update, measurement update and new landmark initialization steps. The square-root cubature rule is applied to all the SLAM steps to propagate the square-root factors of the predictive and posterior covariance directly. The complete procedure for the SCKF based SLAM(SCKF-SLAM) is derived in this section.

    2.1 Time update step

    When the robot moves according to the control signals from the proprioceptive sensors, the robot state has to be predicted based on its prior estimate of the state and the control inputs. As the process noise is non-additive, the robot state vector and its covariance squared root factor are required to be augmented as

    (3)

    The augmented state vector and its covariance squared root factor are used to determine a set of 2N1cubature points which are calculated by

    (4)

    where N1is the size of the augmented state vector. Each cubature point is propagated through the process model:

    (5)

    where uk-1is the control input. Note that the dimensionality of each propagated cubature point is the same as the original robot state vector, rather than the augmented one. The predicted robot state mean is estimated by

    (6)

    The square-root factor of the predicted robot covariance matrix is found by performing the QR decomposition

    (7)

    (8)

    2.2 Measurement update step

    Each time the robot revisits the landmarks that have already been mapped by means of its on-board sensors, the measurements are exploited to correct the estimate of both the robot state and the map of the landmarks. Landmark measurements are processed sequentially with a serial of update steps.

    The cubature points with respect to the current state are evaluated by

    (9)

    A specific landmark measurement depends only on the predicted robot pose and the particular landmark’s state, which are parts of the state vector. The propagated cubature points are evaluated with the measurement model by

    (10)

    The predicted measurement is estimated as

    (11)

    The square-root factor of the innovation matrix is found by performing the QR decomposition:

    Szz, k|k-1=qr([Zk|k-1SR,k])

    (12)

    where SR,kis the upper Cholesky factor of Rk, and Zk|k-1is a column matrix with each column calculated as

    [Zi, k|k-1]i=1,2,…,2N2

    (13)

    The cross-covariance matrix is obtained by matrix multiplying:

    (14)

    where χk|k-1is a column matrix with each column calculated as

    [χi, k|k-1]i=1,2,…,2N2

    (15)

    The Kalman gain of the SCKF is calculated by

    (16)

    The corrected state vector and corresponding square-root factor of the covariance matrix are finally obtained by

    (17)

    Sk|k=qr([χk|k-1-KZk|k-1KSR,k])

    (18)

    2.3 New landmark initialization step

    Landmark initialization happens when the robot detects a number of landmarks for the first time and decides to incorporate them into the map. The robot state vector and its covariance square-root factor are augmented with each new landmark measurement:

    (19)

    The expected position of the new landmark is calculated analogously using the cubature rule. A set of 2N3cubature points is calculated to represent the probability density of the augmented state:

    (20)

    where N3is the size of the augmented state vector. Each cubature point is propagated through the nonlinear inverse measurement model as

    (21)

    where h-1denotes the nonlinear inverse observation function, which transforms the new landmark measurements into the landmark coordinates in the global frame.

    The predicted mean of the augmented state is calculated by

    (22)

    The square-root factor of the corresponding covariance matrix is also obtained with the QR decomposition

    (23)

    (24)

    3 Huber-based SCKF SLAM

    (25)

    where δk|k-1is an unknown error vector.

    The nonlinear measurement function is also rewritten as a linear form by approximating:

    (26)

    where measurement matrix Hkis calculated by the predicted state covariance matrix and the cross-covariance matrix:

    (27)

    By combining Eqs(25) and (26) together, the linear regression equation can be obtained as

    (28)

    The error covariance matrix with respect to the far right component of the above equation is given by

    (29)

    where Skis the Cholesky factor of the error covariance.

    (30)

    (31)

    (32)

    The linear regression equation can be transformed to a compact form as

    yk=Mkxk+ξk

    (33)

    Huber’s GM-estimator is used to find the solution to this linear regression problem, by minimizing the cost function as

    (34)

    where ρ(·) is a symmetric, positive-define score function with a unique minimum at zero, dim(zk) is the size of a single landmark measurement, riis thei-th component of the residual between observation ykand its fitted value Mkxk, i.e., ri=[Mkxk-yk]. The solution of Eq.(34) is determined by the following implicit equation:

    (35)

    where the derivative ψ(ri)=dρ(ri)/dx is known as the influence function. By defining a weight function w(ri)=ψ(ri)/riand an associated diagonal weight matrix W=diag[w(ri)], it can be written in a matrix form as

    (36)

    This equation can be solved by using the iterated reweighted least-square algorithm, where the weight matrix W is recalculated in each iteration and is used in the next iteration. This process is represented as

    (37)

    (38)

    When Eq.(37) is converged, the final value of the corrected estimation of the state vector is achieved and the corresponding corrected covariance matrix is computed with the converged weight matrix:

    (39)

    Finally, the corrected square-root factor of the covariance matrix is achieved by performing the Cholesky factorization:

    Sk|k=CHOL(Pk|k)

    (40)

    The pseudo-code of the proposed Huber based SLAMalgorithm (HSCKF-SLAM) is summarized in “Algorithm 1”.

    Algorithm1 HSCKF-SLAMAlgorithmRequire:Initialrobotstatemeanx0andcovarianceP01. MainLoop:2. fork=1,2,…,Tdo3. Time-update:4. Computethepredictedrobotpose^xv,k|k-1anditsCholeskyfactorofthecovarianceSv,k|k-1via(4)-(8);5. ifnewmeasurementsreceivedthen6. Performdataassociationalgorithm;7. endif8. Measurementupdate:9. formeasurementsofrevisitedlandmarksdo10. Computethecross-covariancematrixPxz,k|k-1via(9)-(15);11. Computethecorrectedsystemstate^xk|kandthecorresponding CholeskyfactorofthecovarianceSk|kvia(25)-(40);12. endfor13. NewLandmarkinitialization:13. formeasurementsofnewlyvisitedlandmarksdo14. Performlandmarkinitializationstepvia(20)-(24);15. endfor16. endfor

    4 Simulations and results

    A series of simulations have been conducted to evaluate the performance of the proposed HSCKF-SLAM algorithm in comparison with the UKF-SLAM and the SCKF-SLAM. The publicly available UKF-SLAM simulator*https://svn.openslam.org/data/svn/bailey-slam/is modified as a benchmark platform.The other two algorithms have been implemented in Matlab R2012a on a 2.9GHz Intel Corei7-3520M Processor. As presented in Fig.1(a), the robot is assumed to move along the predefined trajectory in a rectangular plane. The robot starts from the origin of the

    global frame and detectsnearby landmarks with a laser sensor.The additive measurement noise is assumed to follow a Gaussian mixture distribution of the form:

    0≤α≤1, σ2=βσ1

    where α represents the noise model contamination, σ1and σ2are the standard deviations of the Gaussian mixture components, and β denotes the ratio between them.The process noise is 0.2m/s in wheel velocity and 2° in steering angle.Other simulation parameters are listed in Table 1.

    Table 1 Simulation parameters.

    Fig.1 The simulation results.True landmark (*) and robot path (thick solid lines), estimated landmark (diamonds)

    In order to evaluate the performance of the proposed algorithm under various measurement noise conditions,two simulation scenarios with different measurement noise models are considered: a Gaussian mixture contaminated noise model and an outlier contaminated noise model.For a fair comparison, all the SLAM algorithms are carried out with the same simulation parameters except that of the measurement noise.200 independent Monte Carlo simulation runs are conducted for each simulation scenario.

    4.1 Results in Gaussian mixture contaminated noise case

    In this simulation scenario,the measurement noise is assumed as a contaminated Gaussian model with two independent Gaussian mixtures. The standard deviation

    of the main mixture component σ1is set to 0.2m in range and 2° in bearing. Fig.1(b)~(d) show the results of a typical simulation run where the contamination and ratio parameters are set to 0.3 and 10, respectively. These plots indicate that both the robot trajectories and landmarks are estimated accurately at different time steps (k=36s, 72s, and 108s) by the proposed algorithm. The Kalman gain weights under different measurement residuals are also presented in Fig.2. It can be seen that the weights reach local minimums in the most time steps when either the range measurement residual or the bearing measurement residual is a high peak of the curve. Moreover, larger measurement residuals can bring about smaller weights. As a result, the measurement outliers are supressed to a great extent in the Kalman update process.

    Fig.2 Average Kalman gain weights under different measurement residuals

    The effects of different combinations of parameters α and β on accuracy are illustrated in Fig.3 and Fig.4. Fig.3 shows the relations between the average RMSE of the algorithms and contamination parameter α when ratio parameter β is fixed to 5. Similarly, the relations between average RMSE and ratio parameter β are shown in Fig.4, where α is set to 0.4. As observed in the figures, the HSCKF-SLAM outperforms the other algorithms in all cases. Besides, the superiority of the HSCKF-SLAM is more obvious as the parameters increase.The results indicate that the Huber based update plays a more important role when the distribution of the non-Gaussian noise has thicker tails. The SCKF-SLAM exhibits slightly better performance than the UKF-SLAM due to the reason that SCKF can approximate the nonlinear functions in higher order than UKF.The unscented transformation is no longer numerically stable and the Cholesky decomposition of the state covariance encounters troubles in cases of extremely large noise.

    Fig.3 Average RMSE under different contamination parameters

    Fig.4 Average RMSE under different ratio parameters

    4.2 Results in outlier contaminated noise case

    In this simulation scenario, the basic measurement noise follows a Gaussian distribution by setting contamination parameter to 0. This Gaussian noise model is then contaminated by a number of random measurement outliers which are induced periodically. Totally 21 measurements are selected and biased by an offset [5m, 5°]. Fig.5 depicts RMSE of the robot position and heading of the algorithms. It can be seen from the results that both the UKF-SLAM and the SCKF-SLAM suffer from estimation errors larger than the HSCKF-SLAM apparently. The position and heading RMSE are below 1m and 1.2° for HSCKF-SLAM.This proves that HSCKF-SLAM can detect all the measurement outliers and reduce their influence effectively. The average NEES of the outlier scenario are shown in Fig.6, where the two horizontal dashed lines are plotted to mark the 95% two-side confidence region.It can be seen that both SCKF-SLAM and UKF-SLAM become inconsistent for all the time steps, while HSCKF-SLAM retains consistent for more than 75 time steps.These results demonstrate that by making use of Huber’s update method, the conventional Kalman type filter is insensitive to the measurement outliers.

    Fig.5 Comparison of RMSE in outlier contaminated Gaussian measurement noise case

    Fig.6 Average NEES of the robot position in outlier case

    4.3 Computational cost

    The computational costs of these algorithms are also compared. As illustrated in Table 2, UKF-SLAM requires the minimum computational cost. SCKF-SLAM demands more running time because QR decompositions are employed to ensure numerical stability. HSCKF-SLAM takes the most computational effort due to the extra realization of robust linear regression in the measurement update stage. However, the increased average running time for one single update step with Huber’s method is of the order of a 3ms.This increase is a worthwhile price to be paid for robustness and consistency. Besides, such a level of increase is often acceptable in real-time SLAM applications.

    Table 2 Computational cost of algorithms

    5 Conclusions

    A robust SLAM algorithm based on SCKF and Huber’s GM-estimator is proposed for robot systems with non-Gaussian measurement noises. The integration of a GM-estimator doesn’t only retain the accurate merit of SCKF, but also provides an efficient way to work in non-Gaussian cases, with performance surpassing the benchmark algorithms in robustness and consistency.The influence of Huber’s GM-estimator on the convergence rate and efficiency properties with different score functions will be further studied and optimized.

    Reference

    [ 1] Dissanayake M W M G, Newman P, Clark S, et al. A solution to the simultaneous localization and map building (SLAM) problem.IEEETransactionsonRoboticsandAutomation, 2001, 17(3): 229-241

    [ 2] Durrant-Whyte H, Bailey T. Simultaneous localization and mapping: Part I.IEEERoboticsandAutomationMagazine, 2006, 13(2): 99-108

    [ 3] Martinez-Cantin R, Castellanos J A. Unscented SLAM for large-scale outdoor environments. In: Proceedings of the International Conference on Intelligent Robots and Systems, Edmonton, Canada, 2005. 328-333

    [ 4] Chandra K P B, Gu D, Postlethwaite I. A cubature H∞ filter and its square-root version.InternationalJournalofControl, 2014, 87(4): 764-776

    [ 5] Arasaratnam I, Haykin S. Cubature Kalman filters.IEEETransactionsonAutomaticControl, 2009, 54(6): 1254-1269

    [ 6] Gandhi M A, Mili L. Robust Kalman filter based on a generalized maximum-likelihood-type estimator.IEEETransactionsonSignalProcessing, 2010, 58(5): 2509-2520

    [ 7] Li X R, Jilkov V P. Survey of maneuvering target tracking. Part V. Multiple-model methods.IEEETransactionsonAerospaceandElectronicSystems, 2005, 41(4): 1255-1321

    [ 8] Zoubir A M, Koivunen V, Chakhchoukh Y, et al. Robust estimation in signal processing: A tutorial-style treatment of fundamental concepts.IEEESignalProcessingMagazine, 2012, 29(4): 61-80

    [ 9] Montemerlo M, Thrun S, Koller D, et al. FastSLAM: A factored solution to the simultaneous localization and mapping problem. In: Proceedings of the National Conference on Artificial Intelligence, Edmonton, Canada, 2002. 593-598

    [10] Ahmad H, Namerikawa T. Feasibility study of partial observability in H∞filtering for robot localization and mapping problem. In: Proceedings of the 2010 American Control Conference, Baltimore, USA, 2010.3980-3985

    [11] Huber P J. Robust Statistics. New Jersey: John Wiley & Sons, 2004. 43-48

    [12] Karlgaard C D, Schaub H. Huber-based divided difference filtering.JournalofGuidance,Control,andDynamics, 2007, 30(3): 885-891

    [13] Chang L, Hu B, Chang G, et al. Huber-based novel robust unscented Kalman filter.IETScience,Measurement&Technology, 2012, 6(6): 502-509

    [14] Wang X, Cui N, Guo J. Huber-based unscented filtering and its application to vision-based relative navigation.IETRadar,SonarandNavigation, 2010, 4(1): 134-141

    [15] Coleman D, Holland P, Kaden N, et al. System of subroutines for iteratively reweighted least squares computations.ACMTransactionsonMathematicalSoftware, 1980, 6(3): 327-336

    [16] Hampel F R, Ronchetti E M, Rousseeuw P J, et al. Robust Statistics: the Approach Based on Influence Functions. Published Online, John Wiley & Sons, 2011. 307-341

    Xu Weijun, born in 1985. He is a Ph.D. candidate in the College of Biomedical Engineering and Instrument Science of Zhejiang University. His main research fields arerobot simultaneous localization and mapping, multiple target tracking and multi-agent navigation.

    10.3772/j.issn.1006-6748.2016.01.006

    ① Supported by the National High Technology Research and Development Program of China (2010AA09Z104), and the Fundamental Research Funds of the Zhejiang University (2014FZA5020).

    ② To whom correspondence should be addressed. E-mail: rongxinj@zju.edu.cnReceived on Dec. 3, 2014

    国产精品人妻久久久影院| 欧美成人精品欧美一级黄| 亚洲在线观看片| 成年版毛片免费区| av播播在线观看一区| 中文精品一卡2卡3卡4更新| 毛片一级片免费看久久久久| 成人二区视频| 久久亚洲国产成人精品v| 永久网站在线| 国产精品av视频在线免费观看| 在线观看美女被高潮喷水网站| 国产精品99久久99久久久不卡 | 成人黄色视频免费在线看| 国产成人福利小说| 国产精品嫩草影院av在线观看| 亚洲国产精品国产精品| 插逼视频在线观看| 免费不卡的大黄色大毛片视频在线观看| 美女内射精品一级片tv| 欧美成人午夜免费资源| 三级男女做爰猛烈吃奶摸视频| av免费观看日本| 久久综合国产亚洲精品| 日本黄色片子视频| 联通29元200g的流量卡| 麻豆成人av视频| 亚洲婷婷狠狠爱综合网| 午夜福利视频精品| 综合色丁香网| 2021少妇久久久久久久久久久| 啦啦啦啦在线视频资源| 午夜激情福利司机影院| 成年免费大片在线观看| 狂野欧美激情性bbbbbb| 亚洲精品久久午夜乱码| 一级毛片我不卡| 久久久久久久精品精品| 91在线精品国自产拍蜜月| 听说在线观看完整版免费高清| 五月玫瑰六月丁香| 亚洲精品色激情综合| av国产免费在线观看| 日本免费在线观看一区| 亚洲精品一二三| 麻豆成人av视频| 观看免费一级毛片| 午夜激情福利司机影院| 美女xxoo啪啪120秒动态图| 国产伦精品一区二区三区视频9| 国产黄色免费在线视频| 99久久精品热视频| 久久久精品94久久精品| 久久午夜福利片| 国产中年淑女户外野战色| av在线app专区| 91精品一卡2卡3卡4卡| 欧美区成人在线视频| freevideosex欧美| 一级毛片 在线播放| 观看美女的网站| 国产淫片久久久久久久久| 免费黄色在线免费观看| 国产v大片淫在线免费观看| 97在线人人人人妻| 国产熟女欧美一区二区| 亚洲内射少妇av| 亚洲国产色片| 成年女人在线观看亚洲视频 | 一级毛片我不卡| 97在线人人人人妻| 亚洲国产高清在线一区二区三| 亚洲一级一片aⅴ在线观看| 久久午夜福利片| av黄色大香蕉| 一级毛片黄色毛片免费观看视频| 在线观看三级黄色| 少妇人妻精品综合一区二区| 国产成人精品一,二区| 亚洲人成网站在线播| 欧美日韩视频精品一区| 只有这里有精品99| 在线观看一区二区三区| 欧美性感艳星| 国产中年淑女户外野战色| 久久这里有精品视频免费| 国产av码专区亚洲av| 日韩精品有码人妻一区| 综合色丁香网| 女人被狂操c到高潮| 日韩在线高清观看一区二区三区| 欧美精品人与动牲交sv欧美| 草草在线视频免费看| 欧美日韩视频高清一区二区三区二| 在线 av 中文字幕| 国产乱人偷精品视频| 国产探花极品一区二区| 国产黄色免费在线视频| 草草在线视频免费看| 国产一区二区亚洲精品在线观看| 久久精品熟女亚洲av麻豆精品| 欧美一级a爱片免费观看看| 亚洲精品一二三| 中文字幕av成人在线电影| 一本色道久久久久久精品综合| 69人妻影院| 午夜福利视频1000在线观看| 性色avwww在线观看| 少妇 在线观看| 伊人久久国产一区二区| av在线app专区| 国产又色又爽无遮挡免| 国产成人精品福利久久| www.av在线官网国产| 亚洲电影在线观看av| 久久久亚洲精品成人影院| 日韩欧美精品v在线| 3wmmmm亚洲av在线观看| 亚洲国产精品专区欧美| 男女国产视频网站| 六月丁香七月| 三级国产精品片| 成人美女网站在线观看视频| 国产精品久久久久久久电影| 色吧在线观看| 亚洲va在线va天堂va国产| av黄色大香蕉| 国产午夜福利久久久久久| 成人国产av品久久久| 寂寞人妻少妇视频99o| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲精品色激情综合| 久久久色成人| 久久精品熟女亚洲av麻豆精品| 久久久久久九九精品二区国产| 男女国产视频网站| 成年免费大片在线观看| 亚洲国产日韩一区二区| 久久精品国产自在天天线| 久久韩国三级中文字幕| 丝瓜视频免费看黄片| 成人亚洲欧美一区二区av| av国产免费在线观看| 毛片一级片免费看久久久久| 97在线人人人人妻| 免费观看在线日韩| 又粗又硬又长又爽又黄的视频| 国产亚洲精品久久久com| 最近最新中文字幕大全电影3| 亚洲成人av在线免费| 日本wwww免费看| 亚洲高清免费不卡视频| 老师上课跳d突然被开到最大视频| 成人亚洲欧美一区二区av| 亚洲av男天堂| 18禁裸乳无遮挡免费网站照片| 男女那种视频在线观看| www.av在线官网国产| 2021天堂中文幕一二区在线观| 大片电影免费在线观看免费| 最近的中文字幕免费完整| 在线播放无遮挡| 精品人妻视频免费看| 免费观看无遮挡的男女| av线在线观看网站| 在线天堂最新版资源| 高清av免费在线| 麻豆精品久久久久久蜜桃| 精品少妇黑人巨大在线播放| 黄片wwwwww| 欧美成人一区二区免费高清观看| 免费少妇av软件| 22中文网久久字幕| 亚洲最大成人av| 久久久久国产精品人妻一区二区| 少妇的逼水好多| 男女边摸边吃奶| 国产国拍精品亚洲av在线观看| 免费观看的影片在线观看| 国产大屁股一区二区在线视频| av天堂中文字幕网| 日韩精品有码人妻一区| 免费观看性生交大片5| 18禁动态无遮挡网站| 日韩,欧美,国产一区二区三区| 美女脱内裤让男人舔精品视频| 丝瓜视频免费看黄片| 色5月婷婷丁香| 午夜福利在线在线| 视频区图区小说| 日本猛色少妇xxxxx猛交久久| 国产黄片视频在线免费观看| 老司机影院成人| 欧美成人午夜免费资源| 精品少妇黑人巨大在线播放| 神马国产精品三级电影在线观看| 亚洲av男天堂| 女人十人毛片免费观看3o分钟| 久久精品国产亚洲网站| 亚洲在线观看片| 欧美三级亚洲精品| 又大又黄又爽视频免费| 亚洲av一区综合| 成人鲁丝片一二三区免费| 国产男女超爽视频在线观看| 少妇裸体淫交视频免费看高清| av在线app专区| 汤姆久久久久久久影院中文字幕| 一本一本综合久久| 国产精品99久久久久久久久| 97在线视频观看| 亚洲av不卡在线观看| 寂寞人妻少妇视频99o| 国产黄片视频在线免费观看| 免费av观看视频| 精品久久久久久电影网| 极品教师在线视频| 亚洲精品乱码久久久久久按摩| 亚洲婷婷狠狠爱综合网| 亚洲欧美成人精品一区二区| 啦啦啦在线观看免费高清www| 成人鲁丝片一二三区免费| 国内精品美女久久久久久| 哪个播放器可以免费观看大片| 听说在线观看完整版免费高清| 国产精品久久久久久久久免| 亚洲欧美成人精品一区二区| 亚洲精品aⅴ在线观看| 我的女老师完整版在线观看| 亚洲国产精品成人综合色| 国产爽快片一区二区三区| 国产成人freesex在线| 久久久午夜欧美精品| 国国产精品蜜臀av免费| 国产亚洲精品久久久com| 亚洲国产成人一精品久久久| 特级一级黄色大片| 黄片无遮挡物在线观看| 嫩草影院新地址| 成人综合一区亚洲| 99热网站在线观看| 蜜桃久久精品国产亚洲av| 久久久亚洲精品成人影院| 97热精品久久久久久| 97超碰精品成人国产| 爱豆传媒免费全集在线观看| 内地一区二区视频在线| 交换朋友夫妻互换小说| 久久ye,这里只有精品| 欧美性猛交╳xxx乱大交人| 丰满乱子伦码专区| 狂野欧美白嫩少妇大欣赏| 中文资源天堂在线| 亚洲av二区三区四区| 国产精品人妻久久久久久| 亚洲精品乱码久久久久久按摩| 又粗又硬又长又爽又黄的视频| 国产精品国产三级国产专区5o| 亚洲国产日韩一区二区| 日本wwww免费看| 国产片特级美女逼逼视频| 亚洲,欧美,日韩| 精品久久久久久电影网| 久久久久国产精品人妻一区二区| 中国美白少妇内射xxxbb| 亚洲欧洲国产日韩| 日韩成人av中文字幕在线观看| 亚洲人成网站高清观看| 国产爱豆传媒在线观看| 久久精品久久精品一区二区三区| 精品一区二区三卡| 精品久久久久久久久亚洲| 久久97久久精品| 亚洲久久久久久中文字幕| 国内少妇人妻偷人精品xxx网站| 亚洲欧洲日产国产| 99热这里只有精品一区| 在线观看av片永久免费下载| av在线播放精品| av黄色大香蕉| 欧美三级亚洲精品| 欧美一区二区亚洲| av线在线观看网站| 欧美最新免费一区二区三区| 精品午夜福利在线看| 下体分泌物呈黄色| 成年女人在线观看亚洲视频 | 18禁在线无遮挡免费观看视频| 观看免费一级毛片| 国产高潮美女av| 欧美性猛交╳xxx乱大交人| 亚洲精品国产av蜜桃| 九九在线视频观看精品| 男女边吃奶边做爰视频| 男人狂女人下面高潮的视频| 在线a可以看的网站| 少妇的逼好多水| 国产亚洲一区二区精品| 人妻一区二区av| 欧美bdsm另类| 亚洲高清免费不卡视频| 老女人水多毛片| av天堂中文字幕网| 少妇人妻一区二区三区视频| 亚洲欧美日韩卡通动漫| 人妻少妇偷人精品九色| 80岁老熟妇乱子伦牲交| 久久久亚洲精品成人影院| 丰满乱子伦码专区| 中文字幕亚洲精品专区| 久久久久久九九精品二区国产| 一区二区三区四区激情视频| 国产探花极品一区二区| 午夜免费鲁丝| 欧美人与善性xxx| 欧美少妇被猛烈插入视频| 亚洲人成网站高清观看| av又黄又爽大尺度在线免费看| 18禁动态无遮挡网站| 91aial.com中文字幕在线观看| 熟女人妻精品中文字幕| 成人毛片a级毛片在线播放| 久久国内精品自在自线图片| 亚洲欧美精品自产自拍| 春色校园在线视频观看| 黄色日韩在线| 天天躁日日操中文字幕| 在线a可以看的网站| 久久97久久精品| 麻豆成人av视频| 中国国产av一级| 波多野结衣巨乳人妻| xxx大片免费视频| 丝袜喷水一区| 亚洲av男天堂| 免费黄频网站在线观看国产| 七月丁香在线播放| 国产亚洲av片在线观看秒播厂| 精品久久久久久电影网| videos熟女内射| 亚洲av成人精品一二三区| 国产精品久久久久久久久免| 精品国产乱码久久久久久小说| 免费看av在线观看网站| 哪个播放器可以免费观看大片| 免费看av在线观看网站| 日本与韩国留学比较| 97精品久久久久久久久久精品| 亚洲av欧美aⅴ国产| 99久国产av精品国产电影| 精品国产一区二区三区久久久樱花 | 久久久久久九九精品二区国产| 国产精品嫩草影院av在线观看| 成年女人看的毛片在线观看| 国产精品熟女久久久久浪| 精品国产露脸久久av麻豆| 欧美成人一区二区免费高清观看| 精品国产露脸久久av麻豆| 丰满少妇做爰视频| 国产午夜福利久久久久久| 久久国内精品自在自线图片| 亚洲精品aⅴ在线观看| 中文乱码字字幕精品一区二区三区| 寂寞人妻少妇视频99o| 国产精品熟女久久久久浪| 午夜福利在线观看免费完整高清在| 春色校园在线视频观看| 1000部很黄的大片| 在线免费观看不下载黄p国产| 91午夜精品亚洲一区二区三区| 欧美xxxx性猛交bbbb| 国产永久视频网站| 人妻系列 视频| 免费看a级黄色片| 国产亚洲一区二区精品| eeuss影院久久| 国产v大片淫在线免费观看| 哪个播放器可以免费观看大片| 久热久热在线精品观看| 日韩伦理黄色片| 国产探花极品一区二区| 久久综合国产亚洲精品| 国产毛片a区久久久久| 亚洲色图综合在线观看| 网址你懂的国产日韩在线| 69av精品久久久久久| www.av在线官网国产| 一二三四中文在线观看免费高清| 在线a可以看的网站| 一本久久精品| 边亲边吃奶的免费视频| 麻豆乱淫一区二区| 免费观看a级毛片全部| 亚洲精品456在线播放app| 精品久久久久久久久亚洲| 亚洲久久久久久中文字幕| 亚洲怡红院男人天堂| 日本三级黄在线观看| 亚洲国产av新网站| 日本一本二区三区精品| 亚洲国产欧美人成| 欧美日本视频| 精品少妇久久久久久888优播| 欧美激情久久久久久爽电影| 亚洲高清免费不卡视频| 国产午夜福利久久久久久| 国产片特级美女逼逼视频| 22中文网久久字幕| 干丝袜人妻中文字幕| 亚洲精品成人久久久久久| 蜜桃久久精品国产亚洲av| 久久久久久久久大av| 老女人水多毛片| 久久人人爽人人爽人人片va| 赤兔流量卡办理| 日韩强制内射视频| 天天一区二区日本电影三级| av在线天堂中文字幕| 国产爽快片一区二区三区| 亚洲一区二区三区欧美精品 | 午夜福利高清视频| a级毛片免费高清观看在线播放| av黄色大香蕉| 免费看光身美女| 午夜免费鲁丝| 国产精品99久久久久久久久| 嫩草影院精品99| tube8黄色片| 久久久久久九九精品二区国产| 亚洲aⅴ乱码一区二区在线播放| 亚洲无线观看免费| 18禁在线播放成人免费| 美女被艹到高潮喷水动态| 高清日韩中文字幕在线| 亚洲久久久久久中文字幕| 国产一区二区三区av在线| 免费黄色在线免费观看| 亚洲av日韩在线播放| 一本久久精品| 黄色日韩在线| 久久6这里有精品| 国产精品不卡视频一区二区| 午夜激情久久久久久久| 久久久a久久爽久久v久久| 国产伦精品一区二区三区视频9| 国产精品久久久久久久久免| 久久99精品国语久久久| 丝袜脚勾引网站| 国内精品美女久久久久久| 欧美成人a在线观看| av在线亚洲专区| 久久久久久国产a免费观看| 在线观看人妻少妇| 亚洲综合色惰| 高清毛片免费看| av国产免费在线观看| 女人被狂操c到高潮| 2021天堂中文幕一二区在线观| 久久人人爽人人片av| 国产极品天堂在线| 久久久久性生活片| 日韩人妻高清精品专区| 精品一区二区三区视频在线| 寂寞人妻少妇视频99o| 亚洲va在线va天堂va国产| .国产精品久久| 色播亚洲综合网| 亚洲,欧美,日韩| 嫩草影院精品99| 国产午夜精品一二区理论片| 国产黄a三级三级三级人| 天堂网av新在线| av免费在线看不卡| 亚洲精品一区蜜桃| 3wmmmm亚洲av在线观看| 嘟嘟电影网在线观看| 蜜臀久久99精品久久宅男| 97精品久久久久久久久久精品| 国产免费一级a男人的天堂| 亚洲欧美清纯卡通| 人体艺术视频欧美日本| 好男人视频免费观看在线| 成人亚洲精品一区在线观看 | 午夜激情久久久久久久| 国产免费又黄又爽又色| 久久久精品欧美日韩精品| 成人免费观看视频高清| 老司机影院成人| 黄片无遮挡物在线观看| 日日啪夜夜爽| 国产精品爽爽va在线观看网站| 亚洲在久久综合| av国产久精品久网站免费入址| 欧美精品人与动牲交sv欧美| 中文字幕制服av| 在线观看三级黄色| 亚洲在久久综合| 亚洲欧美清纯卡通| 久久99蜜桃精品久久| 又爽又黄a免费视频| 久久久久久久午夜电影| 国产黄片美女视频| 亚洲欧美一区二区三区国产| 99热国产这里只有精品6| 别揉我奶头 嗯啊视频| 亚洲美女视频黄频| 免费黄网站久久成人精品| 欧美bdsm另类| 晚上一个人看的免费电影| 男人舔奶头视频| 熟女人妻精品中文字幕| 亚洲欧美日韩无卡精品| 国产一区有黄有色的免费视频| 噜噜噜噜噜久久久久久91| 国产精品.久久久| 下体分泌物呈黄色| 男女下面进入的视频免费午夜| 中文字幕久久专区| 校园人妻丝袜中文字幕| 国产成人精品久久久久久| 干丝袜人妻中文字幕| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 看非洲黑人一级黄片| 中文字幕久久专区| 女人十人毛片免费观看3o分钟| 人妻夜夜爽99麻豆av| 香蕉精品网在线| 黑人高潮一二区| 久久亚洲国产成人精品v| 能在线免费看毛片的网站| 国产极品天堂在线| 国产日韩欧美亚洲二区| 美女xxoo啪啪120秒动态图| 在线天堂最新版资源| 色视频www国产| 免费av毛片视频| 亚洲欧美成人精品一区二区| 一本久久精品| 亚洲自拍偷在线| 国产成人a区在线观看| 校园人妻丝袜中文字幕| 成人毛片60女人毛片免费| 特大巨黑吊av在线直播| 麻豆国产97在线/欧美| 久久久久久久久久久免费av| 在线免费观看不下载黄p国产| 菩萨蛮人人尽说江南好唐韦庄| kizo精华| 亚洲va在线va天堂va国产| 亚洲欧美精品专区久久| 精品久久久噜噜| 一区二区三区四区激情视频| 久久久久久九九精品二区国产| 蜜桃久久精品国产亚洲av| 精品一区在线观看国产| 波野结衣二区三区在线| 亚洲精品第二区| 一级毛片 在线播放| 麻豆成人av视频| 日韩亚洲欧美综合| 五月伊人婷婷丁香| 免费人成在线观看视频色| 亚洲色图综合在线观看| 精品人妻偷拍中文字幕| 日日啪夜夜爽| 少妇裸体淫交视频免费看高清| 制服丝袜香蕉在线| 欧美极品一区二区三区四区| 麻豆国产97在线/欧美| 国产精品一区二区在线观看99| 少妇 在线观看| 日韩大片免费观看网站| 天天一区二区日本电影三级| 乱系列少妇在线播放| www.色视频.com| 欧美+日韩+精品| 国产男人的电影天堂91| 欧美激情久久久久久爽电影| 久久久久国产精品人妻一区二区| 99久久精品热视频| 熟女av电影| 99久久精品国产国产毛片| 五月伊人婷婷丁香| 精品久久久久久久人妻蜜臀av| 欧美成人a在线观看| 自拍偷自拍亚洲精品老妇| 在线观看一区二区三区激情| 69av精品久久久久久| 午夜福利在线在线| 天堂网av新在线| 天天躁日日操中文字幕| 日本与韩国留学比较| 国产淫语在线视频| 毛片一级片免费看久久久久| 国产精品偷伦视频观看了| 青春草视频在线免费观看| 好男人视频免费观看在线| 亚洲欧美日韩无卡精品| 国产伦精品一区二区三区四那| 性色avwww在线观看| 五月伊人婷婷丁香| 亚洲av中文字字幕乱码综合| 亚洲综合精品二区| 精品人妻视频免费看| 人妻 亚洲 视频| 美女cb高潮喷水在线观看| 在线观看一区二区三区| 尾随美女入室| 亚洲欧美中文字幕日韩二区| 亚洲国产av新网站| 特级一级黄色大片| 狂野欧美激情性bbbbbb| 国产欧美另类精品又又久久亚洲欧美| 成人免费观看视频高清| 热re99久久精品国产66热6|