• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cu含量對Pd-Cu/鋁土礦CO氧化催化劑結(jié)構(gòu)和性能的影響

    2016-12-05 11:49:30詹瑛瑛徐聰波陳崇啟馬永德江莉龍
    無機化學(xué)學(xué)報 2016年10期
    關(guān)鍵詞:分散度雙金屬鋁土礦

    詹瑛瑛 徐聰波 陳崇啟 劉 弦 馬永德 江莉龍

    (福州大學(xué)化肥催化劑國家工程研究中心,福州350002)

    Cu含量對Pd-Cu/鋁土礦CO氧化催化劑結(jié)構(gòu)和性能的影響

    詹瑛瑛 徐聰波 陳崇啟 劉 弦 馬永德 江莉龍*

    (福州大學(xué)化肥催化劑國家工程研究中心,福州350002)

    利用資源豐富的天然鋁土礦經(jīng)NaOH溶液水熱處理后焙燒,獲得比表面積達174m2·g-1鋁土礦載體,制備了雙金屬Pd-Cu為活性組分的催化劑,金屬Pd負載量為0.5%(質(zhì)量百分數(shù)),以CO氧化反應(yīng)為探針反應(yīng),詳細考察了Cu含量的變化對催化劑物化性能的影響。研究發(fā)現(xiàn),Cu的引入有利于提高金屬Pd的分散度,同時隨著Cu含量的變化,金屬Pd與Cu之間以及金屬與鋁土礦載體之間的相互作用隨之改變。催化劑的CO氧化反應(yīng)性能評價結(jié)果表明,Pd和Cu負載量分別為0.5%和4%的樣品(PdCu4/MB)催化反應(yīng)性能最佳。結(jié)合表征結(jié)果認為,PdCu4/MB的高活性歸因于良好的Pd和Cu分散度,金屬Pd、Cu以及金屬與載體之間較強的相互作用。此外,CO-TPD表征結(jié)果說明較強的CO吸附能力和從載體中獲取氧的能力也有利于提高PdCu4/MB樣品的CO氧化反應(yīng)性能。

    鈀-銅雙金屬;堿溶液處理鋁土礦;一氧化碳氧化;銅含量

    0 Introduction

    CO oxidation(CO-Ox)is considered as one of the most direct and cheap methods to achieve CO tolerance in various applications,i.e.hydrogen purification for polymer electrolyte membrane fuel cells(PEMFCs)[1],CO gas sensor[2-3],and CO removal in automotive application[4-5]etc.An ideal catalyst for CO-Ox should be cost effective and exhibit high activity,selectivity and thermal stability.

    The noble metals(Pt[6-7],Pd[8-9],Au[10-11],etc.)and non-noble metal catalysts,such as Cu[12-13],Mn[14], Co[15-16],etc.,have been extensively studied for CO-Ox applications.In addition,noble metal and non-noble metal bimetallic catalysts were also developed due to their synergistic activity[17-19].A series of Au-based bimetallic catalysts were studied by Wang et al.[17],it was found that Au-M bimetallic catalysts showed greater tunability in structure and chemical composition than the single-metal analogues,thus providing more possibilities for improvement in activity,selectivity,and/or stability.Liu et al.[19]also reported that SBA-15-supported Au-Cu showed much better performance than monometallic(Au-or Cu-) particleswith the rich present of H2.Pd-M(M=Pt,Cu, Ni,etc.)bimetallic catalysts were also extensively investigated[20-23].A series of bimetallic Pd-Cu catalysts were synthesized from different copper precursors by Wang et al.[23],and distinguished dispersion of Cu was obtained.The Pd and Cu existed in alloy state can be reduced easily,thus showing excellent performance in CO-Ox.

    The chemically synthesized metal oxides,such as CeO2[9,24],Al2O3[22],TiO2[10]etc,were selected as supports for CO-Ox catalysts.The natural abounded and costeffective mineral,such as bauxite,diatomite or rectorite,is rarely explored for catalyst support. Natural rectoritemineralwas used as raw material for synthesis ZSM-5 by Bao et al.,and it was found that hierarchical pore structure and enhanced catalytic performance can be obtained[25].Natural bauxite, composed of Al2O3,FeOx,TiO2,CaO,SiO2[26],is found to be an excellent support for the NOxreduction in our previous work[26-28].Yet,it has not been investigated as support for CO-Ox.Herein the natural bauxite was firstly treated by hydrothermal method without any additive,following by impregnated with active metal. It is well known that NaOH can react with the Al2O3, TiO2and SiO2,hence the composition and texture(i.e. pore volume,pore diameter and surface area)of bauxitemay bemodulated by NaOH treatment.To the best of our know ledge,the investigation of NaOH-treated bauxite as support for catalyst is still unexplored.

    Therefore,herein a series of catalysts of Pd-Cu supported on bauxite,which is hydrothermal treated in NaOH aqueous solution,were fabricated.Their catalytic performances for CO-Ox were investigated. The chemical and physical properties of those catalysts were characterized by XRD,N2-physisorption,H2-TPR,CO-TPD and CO2-TPD techniques,and the relationship between their physicochemical properties and catalytic performances are discussed in detail.

    1 Experimental

    1.1 Catalysts preparation

    1.1.1 Materials

    Natural bauxite(technical grade)is from Zhangpu County,Fujian Provice,China;Palladium chloride(PdCl2),Copper(II)nitrate(Cu(NO3)2·3H2O) and Sodium hydroxide(NaOH)are all analytical grades and used without further purification.

    1.1.2 Synthesis

    Firstly,the natural bauxite was pre-treated with NaOH by hydrothermal method.Typically,10 g natural bauxite,which had been washed by deionized water and dried at100℃for 10 h,was dispersed in a certain amount of NaOH solution by ultrasonication. After that the suspension was transferred to a Teflonlined stainless steel autoclave of 100 mL capacity, sealed and heated at 120℃for 36 h.When the autoclave was cooled to room temperature naturally, the precipitate was centrifuged,dried at 110℃for 4 h,and calcined at 450℃for 2 h.The as-prepared support is named asmodified bauxite(MB).Secondly,

    the Pd and/or Cu was loaded on MB by incipient impregnationmethod,and the loading amount of Pd is fixed to 0.5%(weight percentage,wt.)with different amounts of Cu loading,e.g.0%,2%,4%,and 6%.In detail,5g of the MB and a certain amount of PdCl2and/or Cu(NO3)2·3H2O aqueous solution were mixed and soaked for 12 h at room temperature; subsequently,the as-obtained slurry was dried at 120℃for 4 h,following by calcination at 500℃for 3 h. The as-prepared Pd-Cu/bauxite catalyst is denoted as PdCux/MB,where the X is the weight ratio of Cu.

    For comparison,the monometallic Cu/MB catalysts were prepared by the same incipient impregnation method and calcined under air at 500℃for 3 h.The loading of Cu is 2%.

    1.2 Characterizations

    The powder X-ray diffraction(XRD)patterns of the samples were recorded by a PANalytical X Pert Pro diffractometer using Co Kαradiation(λ=0.179 nm)at 40 kV and 40 mA.To determine the textural properties of the as-prepared samples,nitrogen adsorption-desorption measurements were carried out at 77 K using a Micrometrics ASAP 2020 system after the sample was degassed at 200℃in a vacuum for 4 h.Temperature-programmed reduction of hydrogen (H2-TPR)measurement was carried out on an AutoChem 2920 instrument.The H2-TPR was performed by passing 10%H2/Ar(flowing rate=30 mL·min-1)on 50mg catalystata heating rate of 10℃·min-1.Prior to the measurement,the samples were pre-treated under He atmosphere at 250℃for 60 min,then cooled to ambient temperature purging with pure Argon gas.The hydrogen consumption was monitored using a Thermal Conductivity Detector (TCD).The temperature-programmed desorption of CO or CO2(CO-TPD or CO2-TPD)was also performed on the AutoChem 2920 instrument equipped with a mass spectrometer(Hiden,HPR 20).Firstly,50 mg of the sample was pre-treated with 10%H2-Ar(300℃for CO-TPD)or pure He(250℃for CO2-TPD)for 1 h. After cooling to the room temperature,the sample was purged with 5%CO-He(for CO-TPD)or pure CO2(for CO2-TPD)for 1 h.Subsequently,the sample was purging with He for 60 min until the baseline was stable,then heating to 900℃at a rate of 10℃·min-1with He.

    1.3 Evaluation of catalytic perform ance

    The catalytic activity of the catalyst for CO catalytic oxidation was tested in a fixed bed reactor at atmospheric pressure from 150 to 250℃at an interval of 25℃.Typically,1 mL of catalyst(20~40 mesh)was used and the space velocity was calculated to be 5 000 h-1;feed gas was 3%CO(volume percentage),3%O2and balance with He.Prior to the catalytic test,the catalyst was first reduced with 10% H2/N2at 250℃for 2 h.The inlet and outlet concentrations of CO were monitored by a gas chromatograph(Shimadzu GC-8A)equipped with a thermal conductivity detector(TCD).The activity was expressed by the conversion of CO,defined as:

    where VCOand VCOare the inlet and outlet content of CO,respectively.

    2 Results and discussion

    2.1 Characterizations

    2.1.1 Crystal structure and texture of the Pd-Cu/MB catalyst

    The XRD patterns of the as-prepared Pd-Cu/MB catalysts are shown in Fig.1.Those characteristic diffraction peaks of SiO2(JCPDSNo.77-1060,labeled with“#”)and Fe2O3(JCPDS No.84-0307,labeled with“*”)are ascribed to the MB support.According to the XRF characterization,the MB support ismainly composed of SiO2(13.0%,weight percentage),Fe2O3(19.7%)and Al2O3(57.6%,amorphous).When PdO and/or CuO are loaded,some diffraction peaks(2θ= 40.1°,50.2°and 65.2°)of PdO(JCPDSNo.88-2434, labeled with“?”)and CuO(JCPDS No.05-0661, labelled with“?”)are observed.By carefully examining those characteristic peaks of PdO and CuO, it can be found that their intensities are distinguished from each other with the variation of Cu loading.For the Pd/MB sample with no CuO,the diffraction peaks are sharp and narrow(Fig.1a);with the increase of

    CuO loading,the peak intensity becomes weaker. When 4%Cu was introduced,no characteristic peaks for PdO can be observed,suggesting that there must be interaction between PdO and CuO.It can be concluded that the introduction of CuO is favor for the dispersion of PdO on MB support and acquiring small crystal size of PdO.

    Fig.1 XRD patterns of the as-prepared Pd-Cu/MB catalysts

    The BET surface area(SBET)of the natural bauxite is 40 m2·g-1with pore volume(Vp)of 0.09 cm3·g-1and average pore diameter(Dp)of 13.7 nm.After hydrothermal treated with NaOH aqueous solution (MB),the SBETand Vpincrease to 174 m2·g-1and 0.25 cm3·g-1,respectively,and the Dpis greatly decrease to 5.3 nm.It is suggested that the MB provides a possibility to serve as an ideal support for CO-Ox catalyst with good texture parameters after NaOH modification.After impregnated with Pd and/or Cu, the specific surface area of those Pd-Cu/MB catalysts decrease while their Dpincrease oppositely,suggesting that the PdO and/or CuO are loaded on the surface of MB,thus blocking the partialmicro-pore ofMB.

    Table 1 Textural parameters of Pd-Cu/MB catalystwith different Cu loading

    2.1.2 Reduction property of the Pd-Cu/MB catalyst

    As seen in Fig.2,only two reduction peaks(460 and 689℃)can be observed for the MB support, which is ascribed to the reduction of Fe2O3→Fe3O4and Fe3O4→Fe,respectively;after the introduction of Pd and/or Cu,new reduction peaks are detected in the temperature range of 50~250℃.H2-TPR analysis for 5%PdO/Fe2O3catalyst was carried out by Kast et al.[8],and the PdO was started to be reduced at around 325 K.In our case,the small peak at ca.75℃for monometallic Pd/MB sample(Fig.2)can be assigned to the reduction of PdO→Pd,as is in agreement with the diffraction peaks of PdO are clearly observed in the XRD investigation(Fig.1a). Meanwhile,the reduction process of Fe2O3is greater enhanced when small amount of Pd was added, suggesting that theremust be interaction between MB support and impregnated Pd.It was reported that the formation of Pd would induce the H-spillover from Pd to support[8,29],thus lowing the reduction temperature of Fe2O3.It should be also noted that there is a broad signal in the temperature of 100~200℃(rectangle by dash line in Fig.2),suggesting the strong interaction between PdO and MB support[8].After loading with CuO(CuO/MB),a sharp peak locates at 208℃is detected to the reduction of CuO→Cu,and the shift of Fe2O3reduction temperature to lower also occurs, owing to the H-spillover effect of Cu,which originates from the interaction between CuO and MB support.As for bimetallic PdCu2/MB sample,a broad peak

    centered at 132℃up to 276℃is detected,no separate peak for the reduction of PdO can be seen, indicating that the presence of Pd alongwith Cumakes the reduction of CuO and PdO as a single broad peak. This reveals that a Pd-Cu interaction also exists in the Pd-Cu/MB catalyst,as is in good agreement with the result of XRD characterization,and the synergistic interaction between Cu and Pd further improves the reducibility of Cu species.In order to carefully examine the effectof differentamountof CuO on the reducibility of the Pd-Cu/MB catalyst,whose H2-TPR characterizationwasalso carried out,and the resultsare shown in Fig.3.

    Fig.2 H2-TPR profiles of the MB supportand as-prepared catalysts

    Fig.3 H2-TPR profiles of the as-prepared Pd-Cu/MB catalysts

    From Fig.3,it can be seen that the lowest reduction temperature for Fe2O3→Fe3O4is found for the one loaded with monometallic Pd(Fig.3a), suggesting the interaction between Pd and MB ismore efficacious in promoting the reduction of Fe2O3than that of Cu species.With the increase of CuO loading, the reduction peaks of Fe2O3→Fe3O4and Fe3O4→Fe slightly shift to higher temperature.The differences in temperature shift could be ascribed to the blocking effect of bulk CuO.Themore the CuO is introduced, the stronger the blocking effectwill be.This view will be detailedly discussed subsequently.

    In Fig.3,those peaks locate below the 300℃are assigned to the reduction of PdO and/or CuO species. H2-TPR characterization for bimetallic CuPd/CeO2catalyst was carried out by Fox et al.[30],and an intense peak centered around 160℃with a broad envelop up to 310℃was detected;after treated with HNO3,the CuO particles(similar to the bulk CuO) was removed,and only a sharp peak centering at 130℃was found,which can be attributed to the reduction of CuO clusters that highly dispersed on the CeO2surface and interacted closely with PdO.It is noteworthy in Fig.3 that all peaks of the bimetallic Pd-Cu/MB catalyst for PdO and/or CuO reduction are asymmetric,which can be decomposed to amain peak and a shoulder.Therefore there must be more than one CuOxspecies(highly dispersed and bulk CuO)in the catalysts.

    Based on the above analysis,it can be inferred that the added 2%Cu iswell dispersed on the surface of MB with extremely small amount of bulk;when more Cu is introduced,more CuO particle(bulk) appears,which is identified by the higher reduction temperature,i.e.240 and 225℃for PdCu4/MB and PdCu6/MB,respectively.As seen in Fig.3,the areas of the reduction peaks of bulk CuO increase with the increase of CuO addition,resulting in enhancing the blocking effect between Pd(and/or Cu)and MB support.The largest amount of highly dispersed CuO

    is found for the PdCu4/MB,which is thought to be favor for the catalytic CO oxidation.

    2.1.3 Surface basicity of the Pd-Cu/MB catalyst

    CO2isextensively used asa probemolecule for the investigation ofbasic property of catalyst[31-32].Different species can be formed on basic sites with diverse strengths when CO2is chemisorbed on the surface of solid bases[33].The formation of bicarbonate species involves surface hydroxyl groups(OH-,weak basic sites),whereas unidentate and bidentate carbonates are formed on surface oxygen atoms(medium-strength basic sites).CO2adsorbed as unidentate species on lowcoordinated oxygen ions shows strong basic strength (isolated O2-ions).Asaproductof catalytic CO oxidation reaction,CO2can strongly affect catalyst performance through its adsorption properties[34].Hence,the CO2-TPD analysis was carried out for the Pd-Cu/MB catalysts,and the results are shown in Fig.4.

    Fig.4 TCD signals of CO2-TPD characterizations Pd-Cu/ MB catalysts:

    Fig.5 CO2signals of CO-TPD characterizations for MBsupport and Pd-Cu/MB catalysts

    It is evident from Fig.4 that the basic properties of the as-prepared Pd-Cu/MB catalysts are influenced by the introduction of CuO.Four types of CO2-desorption peaks are collected:a weak peak(<100℃, peakα)is detected for each sample with similar intensity;a peak(peakβ)is evidence in the medium temperature range of 150~300℃,and the peak slightly increases in intensity and shifts to lower temperature with increased Cu loading;two hightemperature peaks(>300℃),peakγ(300~500℃) and peakδ(500~900℃)appear for all four catalysts, and the peak dissolves into two peaks with the increasing addition of Cu.The peakαis assigned to the weak basic sites that is associated with the bicarbonate absorbed on surface OH groups.The peak βis ascribed to the medium-strength basic sites absorbed on the M2+-O2-pairs(M=Pd or Cu),and the increase of peak intensity might be attributed to the increase of M2+-O2-pairs with rising Cu loading.The high-temperature peaks may be unidentate species strongly absorbed on low-coordinated O2-ions,and the addition of Cu results in the formation of new basic site,thus leading to the peakδdissolved.

    2.1.4 CO-TPD characterization of the Pd-Cu/MB catalyst

    Furthermore,to obtain a highly active catalyst, enough sites for catalytic adsorption of CO and providing oxygen from support are essential. Thereafter,the CO-TPD characterization for the asprepared Pd-Cu/MB was carried out,and the results are shown in Fig.5.

    The effluents of CO-TPD analysiswere traced by amass spectrometer,only CO2(m/e=44)was detected, indicating that the absorbed CO is chemical bonded to the catalyst.The chemical bonded CO interacts with

    the surface hydroxyl groups and/or oxygen species (including surface oxygen,lattice oxygen,interfacial oxygen,etc.),and desorbed as CO2during the heating process[31,35].Three desorption peaks are collected for the supported catalysts.With the increase of Cu loading,the intensity of peakαincreases accordingly, while the intensity of peakβdecreases linearly.The increase in the amount of CO2desorbs at low temperature(peakα)reflects that the ability to extract oxygen from the support by the adsorbed CO is enhanced.The largest intensity of peakαis found for the PdCu4/MB sample.

    2.2 Catalytic activity for CO oxidation of the Pd-Cu/MB catalyst The catalytic performances of the series Pd-Cu/ MB catalysts modified with different content of CuO for CO oxidation are presented in Fig.6.The catalytic activity of CuO/MB and MB support are also present for comparison.Compared to the monometallic CuO/ MB and Pd/MB,the catalytic activity is enhanced for Cu modified bimetallic Pd-Cu/MB catalysts.It also can be seen that the amount of Cu loading strongly affects their catalytic performance.When small amount of Cu was introduced(PdCu2/MB and PdCu4/ MB),the added Cu has greatly positive effect on their catalytic performances for CO oxidation,and the optimized Cu loading is found to be 4%.However, further increase in Cu loading(PdCu6/MB)leads to lower CO conversion,which is possibly related to the blocking effect of bulk CuO on the interaction between Pd and MB support and/or excessively strong adsorption of surface carbonates on the new basic sites.

    Fig.6 Catalytic activities of the as-prepared Pd-Cu/MB catalysts

    2.3 Discussions

    In the Pd-rich bimetallic Pd-Cu catalysts,the beneficial effect of copper specie is related to the formation of an active Pd-rich Pd-Cu alloy,which is more reactive than either of the monometallic(Cu orPd)clusters[36].Whereas for the Cu-rich samples, effects of copper specie are complicated,it is highly depended on the amountof Cu loading.

    Based on the above analysis,the addition of Cu is favor for the Pd dispersion,and lowering the particle size of Pd,no evident diffraction peaks for PdO can be observed when the Cu loading is higher than 4%.The good dispersion of PdO and small size of PdO particles can also be confirmed by the CO2-TPD characterization:the medium-strength basic sites increase with the increasing of Cu loading,suggesting thatmore M2+-O2-pairs(M=Pd or Cu)were generated due to the highly dispersion of Pd.Moreover,the strong interaction between metal and support or bimetallic components plays an important role in modulating the catalytic performance of supported catalyst[6,37].In Fig.2,the reduction of Fe2O3is promoted by the addition of Pd or Cu,owing to the metal-support interaction;besides,the Pd-Cu interaction can also be evidenced by the better dispersion of Pd after Cu introduction as well as asymmetric reduction peaks for the reduction of PdO and CuO shown in Fig.3.Therefore,it is reasonable to infer that the increase of Cu loading leads to better catalytic activity of the Pd-Cu/MB for CO oxidation. Actually,as seen in Fig.5,the sequitur is only fitted for the Cu loading lower than 4%,the reason is that the negative effect of the addition of excessive Cu should be taken into account.Supported Cu catalyst is reported to be also effective in catalytic CO oxidation[24,38],those Cu nanoparticles with highly

    dispersion and strongly interacts with the support are supposed to be the active sites.As clearly seen in Fig.3,the reduction peak of highly dispersed and bulk CuO can be found for the Pd-Cu/MB,and the PdCu4/ MB shows the largest amount of highly dispersion CuO nanoparticles(peak at 202℃in Fig.3c),which is thought to be favor for the catalytic CO oxidation; meanwhile,blocking effect of CuO is validated by the shift of reduction temperature of Fe2O3.Furthermore, the largest intensity of peakα(in Fig.5)is found for the PdCu4/MB sample,suggesting that for PdCu4/MB catalyst,the CO is themost easily reacts with oxygen species generating CO2.Hence,the PdCu4/MB is reasonable to show the highest catalytic activity due to the loading ofmoderate Cu.

    3 Conclusions

    A series of bim etallic Pd-Cu/MB catalysts were successfully fabricated by impregnation method using earth-abundant bauxite materials as supports.It is demonstrated that the dispersion of Pd can be enhanced by the introduction of Cu;the interaction between metal(Pd or Cu)and MB support as well as Pd with Cu results in lowering the reduction temperature of Fe2O3in MB and supported CuO.In addition,the introduction of extremely high content of Cu leads to the formation of bulk CuO and shows blocking effect on Pd-MB interaction.The highest catalytic activity for PdCu4/MB sample is ascribed to the best dispersion of Pd and Cu,strongest interaction between metal(Pd or Cu)and support as well as Pd and Cu.

    [1]Zhang Q,Liu X,Fan W,et al.Appl.Catal.B:Environ., 2011,102(1/2):207-214

    [2]Yamaura H,Moriya K,Miura N,et al.Sens.Actuators B: Chem.,2000,65(1/2/3):39-41

    [3]NishiboriM,Shin W,Izu N,et al.Catal.Today,2013,201: 85-91

    [4]Heo I,Wiebenga M H,Gaudet JR,et al.Appl.Catal.B: Environ.,2014,160-161:365-373

    [5]Seyfi B,Baghalha M,Kazemian H.Chem.Eng.J.,2009,148 (2/3):306-311

    [6]Ivanova A S,Slavinskaya E M,Gulyaev R V,et al.Appl. Catal.B:Environ.,2010,97(1/2):57-71

    [7]Li N,Chen Q,Luo L,et al.Appl.Catal.B:Environ.,2013,1 42-143:523-532

    [8]Kast P,Friedrich M,Teschner D,et al.Appl.Catal.A:Gen., 2015,502:8-17

    [9]Slavinskaya EM,Gulyaev R V,Zadesenets A V,et al.Appl. Catal.B:Environ.,2015,166-167:91-103

    [10]Kast P,KuerováG,Behm R J.Catal.Today,2015,244: 146-160

    [11]Laguna O H,Pérez A,Centeno M A,et al.Appl.Catal. B:Environ.,2015,176-177:385-395

    [12]Li J,Han Y,Zhu Y,et al.Appl.Catal.B:Environ.,2011, 108-109:72-80

    [13]de Oliveira Jardim E,Rico-Francés S,Abdelouahab-Reddam Z,etal.Appl.Catal.A:Gen.,2015,502:129-137

    [14]Zhu J,Gao Q.Microporous Mesopor Mater.,2009,124(1/2/ 3):144-152

    [15]Yu Y,Takei T,Ohashi H,et al.J.Catal.,2009,267(2):121-128

    [16]Sun S,Gao Q,Wang H,et al.Appl.Catal.B:Environ., 2010,97(1/2):284-291

    [17]Wang A,Liu X Y,Mou C Y,et al.J.Catal.,2013,308:258-271

    [18]Nikolaev S A,Golubina E V,Krotova I N,et al.Appl. Catal.B:Environ.,2015,168-169:303-312

    [19]Liu X,Wang A,Wang X,etal.Chem.Commun.,2008,(27): 3187-3189

    [20]Rosseler O,Ulhaq-Bouillet C,Bonnefont A,et al.Appl. Catal.B:Environ.,2015,166-167:381-392

    [21]Hilli Y,Kinnunen N M,Suvanto M,et al.App l.Catal.A: Gen.,2015,497:85-95

    [22]Estifaee P,Haghighi M,Mohammadi N,et al.Ultrason. Sonochem.,2014,21(3):1155-1165

    [23]Wang F,Lu G.Int.J.Hydrogen Energy,2010,35(13):7253-7260

    [24]Barbato P S,Di Benedetto A,Landi G,et al.Chem.Eng.J., 2015,279:983-993

    [25]Yue Y,Liu H,Yuan P,etal.J.Catal.,2014,319:200-210

    [26]Wang X,Chen Z,Luo Y,etal.Sci.Rep.,2013,3:1559

    [27]Wang X,Jiang L,Wang J,et al.Appl.Catal.B:Environ., 2015,165:700-705

    [28]Wang X,Wu W,Chen Z,etal.Sci.Rep.,2015,5:9766

    [29]Xu G,Zhu Y,Ma J,et al.Stud.Surf.Sci.Catal.,1997,112: 333-338

    [30]Fox E B,Velu S,Engelhard M H,et al.J.Catal.,2008,260 (2):358-370

    [31]Lin X,Chen C,Ma J,et al.Int.J.Hydrogen Energy, 2013,38(27):11847-11852

    [32]Zhu X,Shen M,Lobban L L,et al.J.Catal.,2011,278(1): 123-132

    [33]Liu Q,Wang L,Wang C,et al.Appl.Catal.B:Environ., 2013,136-137:210-217

    [34]Di Cosimo J I,Díez V K,Xu M,et al.J.Catal.,1998,178 (2):499-510

    [35]Martínez-Arias A,Fernández-Garca M,Gálvez O,et al.J. Catal.,2000,195(1):207-216

    [36]Vinod C P,Harikumar K R,Kulkarni G U,et al.Top. Catal.,2000,11-12(1/2/3/4):293-298

    [37]Li L,Song L,Wang H,et al.Int.J.Hydrogen Energy, 2011,36(15):8839-8849

    [38]Cecilia J A,Arango-Díaz A,Rico-Pérez V,et al.Catal. Today,2015,253:115-125

    Effect of Cu Content on Structure and Catalytic Performance of Pd-Cu/Bauxite for CO Oxidation Reaction

    ZHAN Ying-Ying XU Cong-Bo CHEN Chong-Qi LIU Xian MA Yong-De JIANG Li-Long*
    (National Engineering Research Center of Chemical Fertilizer Catalyst,Fuzhou University,Fuzhou 350002,China)

    We develop a bimetallic Pd-Cu catalyst that takes the advantage of Pd-Cu bimetal as active species and earth-abundant bauxite as support.The bauxite support with high surface area was obtained by hydrothermal NaOH aqueous solution treatment,and the amount of Pd is fixed to a low concentration of 0.5%(weight percentage)by incipient-wetness impregnation method.Their catalytic activity for CO oxidation reaction has also been studied.The effect of different Cu loading content on the chemical-physical properties of the as-prepared catalysts is investigated in detail.It is found that the dispersion of Pd species is promoted by the introduction of Cu species;and both Pd-Cu interaction andmetal(Pd-Cu bimetals)-support(modified bauxite(MB)interaction are modulated by varying the Cu content.Furthermore,the catalytic activities with respect to the catalytic CO oxidation are performed,and the catalyst loaded with 0.5%Pd and 4%Cu(PdCu4/MB)shows the highest catalytic activity.It is believed that the well dispersion of Pd and Cu,the strong interactions between themetals and the support as well as between Pd and Cu are responsible for the highest catalytic activity of PdCu4/MB.Moreover,it can be concluded from the CO-TPD investigation that superior abilities in adsorption of CO and extraction of oxygen from the support are favor for high catalytic activity of PdCu4/MB catalyst in CO oxidation.

    Pd-Cu bimetallic;alkali-modified bauxite;CO oxidation;Cu loading

    O643.3;O614.121

    A

    1001-4861(2016)10-1867-09

    10.11862/CJIC.2016.248

    2016-04-17。收修改稿日期:2016-09-08。

    國家高技術(shù)研究發(fā)展計劃(No.2015AA03A402)資助項目。

    *通信聯(lián)系人。E-mail:jll@fzu.edu.cn

    猜你喜歡
    分散度雙金屬鋁土礦
    雙金屬支承圈擴散焊替代技術(shù)研究
    雙金屬復(fù)合管液壓脹形機控制系統(tǒng)
    重型機械(2020年2期)2020-07-24 08:16:08
    燃氣輪機燃燒室部件故障研究
    熱力透平(2020年2期)2020-06-22 06:27:12
    雙金屬復(fù)合管焊接方法選用
    9FA燃機燃燒監(jiān)測系統(tǒng)介紹及案例分析
    今日自動化(2018年4期)2018-05-06 00:58:28
    雙金屬復(fù)合板的拉伸回彈特性研究
    開煉機混煉膠炭黑分散度數(shù)學(xué)模型研究
    農(nóng)藥分散度對藥效的影響
    CSAMT法在隱伏鋁土礦探測中的應(yīng)用研究
    河南科技(2014年7期)2014-02-27 14:11:09
    貴州省務(wù)正道鋁土礦床礦物學(xué)特征
    久久久国产精品麻豆| 丝袜人妻中文字幕| 天天躁狠狠躁夜夜躁狠狠躁| 国精品久久久久久国模美| 国产黄频视频在线观看| 久久久国产精品麻豆| 激情视频va一区二区三区| 熟女少妇亚洲综合色aaa.| 亚洲av电影在线进入| 亚洲自偷自拍图片 自拍| 欧美精品高潮呻吟av久久| 久久精品亚洲av国产电影网| 精品少妇内射三级| 十八禁人妻一区二区| 好男人电影高清在线观看| e午夜精品久久久久久久| 看十八女毛片水多多多| 国产欧美日韩一区二区三区在线| 自拍欧美九色日韩亚洲蝌蚪91| 国产一卡二卡三卡精品| 国产亚洲精品第一综合不卡| 欧美日韩国产mv在线观看视频| 色视频在线一区二区三区| 七月丁香在线播放| 久久精品国产亚洲av高清一级| 久久鲁丝午夜福利片| 人人妻人人爽人人添夜夜欢视频| 精品少妇一区二区三区视频日本电影| 咕卡用的链子| av片东京热男人的天堂| 久久精品亚洲av国产电影网| 看十八女毛片水多多多| 美女午夜性视频免费| 欧美日韩精品网址| netflix在线观看网站| 人人妻,人人澡人人爽秒播 | 新久久久久国产一级毛片| 欧美大码av| 国产欧美日韩综合在线一区二区| 大话2 男鬼变身卡| 黄色一级大片看看| avwww免费| 极品少妇高潮喷水抽搐| 超碰97精品在线观看| 一边摸一边抽搐一进一出视频| 一区二区三区四区激情视频| 国产片内射在线| 久久久久久亚洲精品国产蜜桃av| 亚洲人成电影免费在线| 欧美亚洲 丝袜 人妻 在线| 久久人妻福利社区极品人妻图片 | 天堂中文最新版在线下载| av有码第一页| 青春草视频在线免费观看| 水蜜桃什么品种好| av电影中文网址| 欧美乱码精品一区二区三区| 美女扒开内裤让男人捅视频| 欧美日韩成人在线一区二区| 欧美精品人与动牲交sv欧美| 黑丝袜美女国产一区| 国产欧美日韩精品亚洲av| 在现免费观看毛片| 黄色a级毛片大全视频| 各种免费的搞黄视频| 一区二区三区精品91| 大话2 男鬼变身卡| 精品国产一区二区三区久久久樱花| av视频免费观看在线观看| 涩涩av久久男人的天堂| 久久久精品区二区三区| 欧美国产精品va在线观看不卡| 久久国产亚洲av麻豆专区| 国产人伦9x9x在线观看| 精品欧美一区二区三区在线| bbb黄色大片| 亚洲av日韩精品久久久久久密 | 亚洲av在线观看美女高潮| 欧美 日韩 精品 国产| 亚洲图色成人| 国产高清视频在线播放一区 | 十八禁人妻一区二区| 免费观看人在逋| 国产精品二区激情视频| 人体艺术视频欧美日本| 成年人午夜在线观看视频| 亚洲成国产人片在线观看| 91麻豆av在线| 国产精品一区二区在线不卡| 丁香六月欧美| 9191精品国产免费久久| av电影中文网址| 日韩中文字幕欧美一区二区 | 尾随美女入室| 少妇裸体淫交视频免费看高清 | 久久国产精品人妻蜜桃| 久久精品久久久久久噜噜老黄| 久久99精品国语久久久| 高清视频免费观看一区二区| 亚洲成av片中文字幕在线观看| 午夜福利一区二区在线看| 国产在线一区二区三区精| 乱人伦中国视频| 妹子高潮喷水视频| 欧美精品啪啪一区二区三区 | 曰老女人黄片| 午夜福利影视在线免费观看| 在线观看免费高清a一片| 国产高清videossex| 亚洲免费av在线视频| 国产成人一区二区三区免费视频网站 | 观看av在线不卡| 亚洲色图 男人天堂 中文字幕| 18在线观看网站| 久久人人97超碰香蕉20202| 水蜜桃什么品种好| 免费在线观看视频国产中文字幕亚洲 | 久9热在线精品视频| 欧美精品av麻豆av| 中文字幕高清在线视频| 亚洲精品一卡2卡三卡4卡5卡 | 999精品在线视频| 久久国产亚洲av麻豆专区| 欧美另类一区| 少妇人妻久久综合中文| 精品国产乱码久久久久久男人| 每晚都被弄得嗷嗷叫到高潮| 在线 av 中文字幕| 久久精品国产综合久久久| 色播在线永久视频| 中文字幕最新亚洲高清| 别揉我奶头~嗯~啊~动态视频 | 亚洲国产看品久久| 亚洲图色成人| 亚洲专区中文字幕在线| 嫩草影视91久久| av在线老鸭窝| 一区二区三区激情视频| 在线观看一区二区三区激情| videosex国产| 亚洲人成电影观看| 丝袜人妻中文字幕| 美女扒开内裤让男人捅视频| 欧美 亚洲 国产 日韩一| 午夜精品国产一区二区电影| 精品少妇黑人巨大在线播放| 日韩大码丰满熟妇| 一级毛片电影观看| 制服人妻中文乱码| 午夜激情av网站| 丁香六月天网| 午夜福利在线免费观看网站| 亚洲av国产av综合av卡| 91麻豆av在线| 真人做人爱边吃奶动态| 国产亚洲一区二区精品| 黄片小视频在线播放| 亚洲国产精品一区二区三区在线| 久久久精品国产亚洲av高清涩受| 国产一区二区 视频在线| 日本欧美国产在线视频| 老司机靠b影院| 在线观看免费视频网站a站| 在线观看人妻少妇| 国产伦人伦偷精品视频| 亚洲人成电影观看| 婷婷丁香在线五月| 一区二区三区乱码不卡18| 国产精品一二三区在线看| 国产免费又黄又爽又色| 看十八女毛片水多多多| 久久这里只有精品19| 美国免费a级毛片| 亚洲第一av免费看| 亚洲美女黄色视频免费看| 国产1区2区3区精品| 国产高清视频在线播放一区 | 超色免费av| 高潮久久久久久久久久久不卡| 亚洲av成人不卡在线观看播放网 | 色婷婷av一区二区三区视频| 亚洲欧美一区二区三区国产| 国产免费现黄频在线看| 极品人妻少妇av视频| 中文字幕最新亚洲高清| 人妻 亚洲 视频| 国产欧美日韩一区二区三 | 99久久99久久久精品蜜桃| 久久国产精品影院| 久久人人97超碰香蕉20202| 久久亚洲国产成人精品v| 99精国产麻豆久久婷婷| 国产精品成人在线| 又粗又硬又长又爽又黄的视频| 亚洲成人手机| 国产精品国产三级国产专区5o| 亚洲熟女毛片儿| 午夜视频精品福利| 国产成人a∨麻豆精品| 国产日韩一区二区三区精品不卡| 国产激情久久老熟女| 伦理电影免费视频| 两人在一起打扑克的视频| 久久精品成人免费网站| 亚洲国产精品一区二区三区在线| 久久中文字幕一级| 免费观看av网站的网址| 国产av精品麻豆| 黄色视频不卡| av在线app专区| 国产爽快片一区二区三区| 欧美日韩亚洲高清精品| 每晚都被弄得嗷嗷叫到高潮| 亚洲精品成人av观看孕妇| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲伊人色综图| 一区二区三区激情视频| 久久人人爽人人片av| 亚洲三区欧美一区| 欧美亚洲日本最大视频资源| 涩涩av久久男人的天堂| 涩涩av久久男人的天堂| 日韩 欧美 亚洲 中文字幕| 欧美在线黄色| 黄片小视频在线播放| 视频区欧美日本亚洲| 女人久久www免费人成看片| 美女大奶头黄色视频| 丝袜美腿诱惑在线| 国产精品 国内视频| 欧美亚洲 丝袜 人妻 在线| 18禁黄网站禁片午夜丰满| 麻豆国产av国片精品| 观看av在线不卡| 一级毛片 在线播放| 久9热在线精品视频| 国产免费福利视频在线观看| 大话2 男鬼变身卡| 成人免费观看视频高清| 五月开心婷婷网| 亚洲男人天堂网一区| 国产免费现黄频在线看| 一区二区日韩欧美中文字幕| 国产午夜精品一二区理论片| 熟女av电影| 日韩,欧美,国产一区二区三区| 国产精品一区二区在线观看99| 国产成人精品无人区| 一区二区三区精品91| 性少妇av在线| 狂野欧美激情性xxxx| av网站在线播放免费| 青青草视频在线视频观看| 又粗又硬又长又爽又黄的视频| 久久综合国产亚洲精品| 国产片内射在线| 亚洲成国产人片在线观看| 一边亲一边摸免费视频| 91老司机精品| 欧美性长视频在线观看| 国产精品一二三区在线看| 天天影视国产精品| a级毛片黄视频| 99国产精品免费福利视频| 侵犯人妻中文字幕一二三四区| 成年动漫av网址| 午夜福利在线免费观看网站| 一区在线观看完整版| 亚洲情色 制服丝袜| 亚洲国产精品成人久久小说| 悠悠久久av| 亚洲第一青青草原| 这个男人来自地球电影免费观看| 男女边吃奶边做爰视频| 欧美日韩国产mv在线观看视频| 18禁观看日本| av有码第一页| 操美女的视频在线观看| 亚洲成人手机| 精品亚洲乱码少妇综合久久| 国产高清不卡午夜福利| 性少妇av在线| 2021少妇久久久久久久久久久| 在线观看一区二区三区激情| 亚洲黑人精品在线| 成人影院久久| 久久精品久久久久久久性| 一本一本久久a久久精品综合妖精| 嫁个100分男人电影在线观看 | av在线老鸭窝| 国产福利在线免费观看视频| 精品一区二区三区四区五区乱码 | 国产成人系列免费观看| 黄频高清免费视频| av网站在线播放免费| 午夜激情av网站| 亚洲av成人不卡在线观看播放网 | 秋霞在线观看毛片| 18禁观看日本| 精品一区二区三卡| 欧美老熟妇乱子伦牲交| 亚洲成色77777| 黄频高清免费视频| 久久精品成人免费网站| 亚洲一区二区三区欧美精品| 国产国语露脸激情在线看| 韩国高清视频一区二区三区| 亚洲欧洲国产日韩| 视频区图区小说| 操美女的视频在线观看| 国产精品免费大片| 免费久久久久久久精品成人欧美视频| 国产激情久久老熟女| 精品少妇久久久久久888优播| 国产99久久九九免费精品| 久久久久久久精品精品| 欧美日韩视频高清一区二区三区二| 中文字幕高清在线视频| 无限看片的www在线观看| 丝袜在线中文字幕| 日韩熟女老妇一区二区性免费视频| 精品熟女少妇八av免费久了| 高清不卡的av网站| 日韩制服丝袜自拍偷拍| 丝袜美腿诱惑在线| 亚洲国产欧美在线一区| 97人妻天天添夜夜摸| 久久久欧美国产精品| 嫁个100分男人电影在线观看 | 午夜免费观看性视频| 视频在线观看一区二区三区| 欧美久久黑人一区二区| 飞空精品影院首页| 性高湖久久久久久久久免费观看| 极品人妻少妇av视频| 欧美国产精品va在线观看不卡| 日韩电影二区| 麻豆av在线久日| 国产高清国产精品国产三级| 欧美 日韩 精品 国产| 人人妻人人澡人人爽人人夜夜| 少妇人妻 视频| 亚洲精品国产av成人精品| 国产真人三级小视频在线观看| 一级,二级,三级黄色视频| 搡老乐熟女国产| 蜜桃国产av成人99| 天天添夜夜摸| 十分钟在线观看高清视频www| 亚洲精品日本国产第一区| avwww免费| 久久人人97超碰香蕉20202| 夫妻性生交免费视频一级片| 国产成人一区二区三区免费视频网站 | 亚洲免费av在线视频| 无限看片的www在线观看| 国产真人三级小视频在线观看| 永久免费av网站大全| 伦理电影免费视频| 妹子高潮喷水视频| 国产精品九九99| 日本vs欧美在线观看视频| 9191精品国产免费久久| 日韩 欧美 亚洲 中文字幕| 日韩一本色道免费dvd| 久久久久久久久免费视频了| 国产爽快片一区二区三区| 看十八女毛片水多多多| 国产精品久久久久久精品古装| 久久久国产精品麻豆| 超碰97精品在线观看| 一级黄片播放器| 久久久久久人人人人人| 美女中出高潮动态图| av有码第一页| 只有这里有精品99| 亚洲免费av在线视频| 看免费av毛片| 水蜜桃什么品种好| videos熟女内射| 国产三级黄色录像| 大香蕉久久成人网| 久久久久国产一级毛片高清牌| 国产免费视频播放在线视频| 国产黄色视频一区二区在线观看| 国产野战对白在线观看| 精品人妻熟女毛片av久久网站| 电影成人av| 自拍欧美九色日韩亚洲蝌蚪91| 91精品国产国语对白视频| 黄网站色视频无遮挡免费观看| 国产成人系列免费观看| av有码第一页| 日韩人妻精品一区2区三区| 最新在线观看一区二区三区 | 老司机亚洲免费影院| 亚洲精品久久成人aⅴ小说| 麻豆国产av国片精品| 热re99久久国产66热| 美女午夜性视频免费| 母亲3免费完整高清在线观看| 久久久久精品国产欧美久久久 | 丰满迷人的少妇在线观看| 亚洲 国产 在线| 免费女性裸体啪啪无遮挡网站| 黑人猛操日本美女一级片| 国产高清视频在线播放一区 | 婷婷色综合www| avwww免费| 18禁黄网站禁片午夜丰满| 亚洲自偷自拍图片 自拍| 亚洲久久久国产精品| 亚洲免费av在线视频| 又紧又爽又黄一区二区| 国产不卡av网站在线观看| 精品国产一区二区久久| 国产精品一二三区在线看| 99精国产麻豆久久婷婷| 少妇人妻 视频| 精品熟女少妇八av免费久了| 亚洲精品国产av成人精品| 午夜福利,免费看| 亚洲成国产人片在线观看| 欧美亚洲日本最大视频资源| 亚洲国产精品一区二区三区在线| 久久青草综合色| 少妇被粗大的猛进出69影院| 亚洲免费av在线视频| 亚洲av综合色区一区| 亚洲av欧美aⅴ国产| 亚洲中文日韩欧美视频| 1024香蕉在线观看| 99久久精品国产亚洲精品| 午夜两性在线视频| 国产成人精品久久久久久| 国精品久久久久久国模美| 少妇被粗大的猛进出69影院| 日韩大片免费观看网站| 亚洲国产成人一精品久久久| 日韩大码丰满熟妇| 老司机在亚洲福利影院| 久久中文字幕一级| 精品少妇内射三级| 中文字幕人妻丝袜一区二区| 狠狠精品人妻久久久久久综合| 欧美激情 高清一区二区三区| 伦理电影免费视频| 国产精品麻豆人妻色哟哟久久| 最黄视频免费看| 亚洲精品中文字幕在线视频| 亚洲精品日韩在线中文字幕| 曰老女人黄片| 天天添夜夜摸| 我的亚洲天堂| 久久狼人影院| 麻豆国产av国片精品| 亚洲中文字幕日韩| 国产高清不卡午夜福利| 久久精品久久精品一区二区三区| 亚洲国产看品久久| 日本vs欧美在线观看视频| 欧美成人午夜精品| cao死你这个sao货| 精品国产国语对白av| 欧美老熟妇乱子伦牲交| √禁漫天堂资源中文www| 亚洲图色成人| 国产极品粉嫩免费观看在线| 啦啦啦啦在线视频资源| 丝袜美腿诱惑在线| 国产视频首页在线观看| 国产精品久久久人人做人人爽| 一级片'在线观看视频| 亚洲国产毛片av蜜桃av| 国产色视频综合| 一区二区三区激情视频| 日韩人妻精品一区2区三区| 最近手机中文字幕大全| 久久久国产精品麻豆| 91精品国产国语对白视频| 大香蕉久久网| 国产成人av激情在线播放| 亚洲视频免费观看视频| 伦理电影免费视频| 久久亚洲精品不卡| 最新在线观看一区二区三区 | 欧美日韩精品网址| 日韩熟女老妇一区二区性免费视频| 亚洲情色 制服丝袜| 十八禁网站网址无遮挡| 国产激情久久老熟女| 精品亚洲成国产av| 少妇人妻久久综合中文| 天天躁夜夜躁狠狠躁躁| 久久精品久久久久久噜噜老黄| 国产无遮挡羞羞视频在线观看| 亚洲人成电影观看| 亚洲五月色婷婷综合| 国产亚洲精品久久久久5区| 日韩免费高清中文字幕av| 视频区欧美日本亚洲| 在线观看国产h片| 国产精品香港三级国产av潘金莲 | 亚洲精品在线美女| 一区二区三区精品91| 欧美性长视频在线观看| 男女免费视频国产| 国产精品久久久久成人av| 欧美老熟妇乱子伦牲交| 日韩中文字幕视频在线看片| 免费在线观看影片大全网站 | 啦啦啦在线免费观看视频4| 欧美老熟妇乱子伦牲交| 国产高清videossex| 少妇被粗大的猛进出69影院| 欧美中文综合在线视频| 久久国产精品男人的天堂亚洲| 国产成人av教育| 亚洲精品国产av蜜桃| 精品熟女少妇八av免费久了| 欧美 日韩 精品 国产| 日本午夜av视频| 蜜桃国产av成人99| 亚洲色图 男人天堂 中文字幕| 超碰97精品在线观看| 这个男人来自地球电影免费观看| 亚洲精品第二区| 国产成人精品久久二区二区91| 一边摸一边抽搐一进一出视频| 亚洲av日韩在线播放| 日韩免费高清中文字幕av| 国产亚洲精品久久久久5区| 成年人午夜在线观看视频| 永久免费av网站大全| 曰老女人黄片| 色精品久久人妻99蜜桃| 狂野欧美激情性bbbbbb| 亚洲人成电影免费在线| a 毛片基地| 国产成人精品无人区| 九色亚洲精品在线播放| 亚洲精品自拍成人| 老司机在亚洲福利影院| 一级片免费观看大全| 日韩 亚洲 欧美在线| 又大又爽又粗| 一级黄色大片毛片| 亚洲av国产av综合av卡| a级毛片黄视频| 久久免费观看电影| 一级a爱视频在线免费观看| 这个男人来自地球电影免费观看| 亚洲一区中文字幕在线| 国产成人精品久久久久久| 夜夜骑夜夜射夜夜干| 国产福利在线免费观看视频| a 毛片基地| 十八禁人妻一区二区| 丝袜在线中文字幕| 亚洲国产av影院在线观看| 久久久国产欧美日韩av| 亚洲av男天堂| 国产亚洲精品第一综合不卡| 日本vs欧美在线观看视频| 男人舔女人的私密视频| 精品国产乱码久久久久久小说| 999久久久国产精品视频| 99精品久久久久人妻精品| 亚洲成人免费电影在线观看 | 丰满迷人的少妇在线观看| 久久毛片免费看一区二区三区| svipshipincom国产片| 少妇被粗大的猛进出69影院| 久久国产精品人妻蜜桃| 精品人妻在线不人妻| 成人影院久久| 91麻豆精品激情在线观看国产 | 91精品三级在线观看| 黄色毛片三级朝国网站| 大香蕉久久网| 色播在线永久视频| 天天添夜夜摸| 国语对白做爰xxxⅹ性视频网站| 人人澡人人妻人| 丝袜喷水一区| 国产成人免费观看mmmm| 新久久久久国产一级毛片| 各种免费的搞黄视频| 久久久久久久大尺度免费视频| 别揉我奶头~嗯~啊~动态视频 | 精品亚洲成a人片在线观看| 国产成人一区二区三区免费视频网站 | 咕卡用的链子| 精品久久久久久久毛片微露脸 | 午夜av观看不卡| 丝袜在线中文字幕| 69精品国产乱码久久久| 亚洲精品av麻豆狂野| 亚洲av在线观看美女高潮| 亚洲国产av影院在线观看| 日韩制服丝袜自拍偷拍| 成人黄色视频免费在线看| 999精品在线视频| 中文字幕人妻熟女乱码| 黑人巨大精品欧美一区二区蜜桃| 桃花免费在线播放| 久久狼人影院| 精品第一国产精品| 九草在线视频观看| 欧美日韩国产mv在线观看视频| 欧美在线一区亚洲| 国产亚洲av高清不卡| 男人操女人黄网站| 91字幕亚洲| 成人国语在线视频|