• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    原位水解沉積制備高效氮化鉭微球太陽能分解水光陽極

    2016-12-05 11:49:24楊立恒羅文俊李明雪鄒志剛
    無機(jī)化學(xué)學(xué)報 2016年10期
    關(guān)鍵詞:南京大學(xué)原位微球

    楊立恒 羅文俊 李明雪 鄒志剛

    (1南京大學(xué)現(xiàn)代工程與應(yīng)用科學(xué)學(xué)院,南京210093)

    (2江蘇省柔性電子重點(diǎn)實(shí)驗(yàn)室,先進(jìn)材料研究院,江蘇先進(jìn)生物與化學(xué)制造協(xié)同創(chuàng)新中心,南京工業(yè)大學(xué),南京211816)

    (3南京大學(xué)環(huán)境材料與再生能源研究中心,固體微結(jié)構(gòu)國家重點(diǎn)實(shí)驗(yàn)室,南京大學(xué)物理學(xué)院,南京210093)

    (4中國礦業(yè)大學(xué)物理學(xué)院,徐州221116)

    原位水解沉積制備高效氮化鉭微球太陽能分解水光陽極

    楊立恒1羅文俊*,2,3李明雪4鄒志剛*,3

    (1南京大學(xué)現(xiàn)代工程與應(yīng)用科學(xué)學(xué)院,南京210093)

    (2江蘇省柔性電子重點(diǎn)實(shí)驗(yàn)室,先進(jìn)材料研究院,江蘇先進(jìn)生物與化學(xué)制造協(xié)同創(chuàng)新中心,南京工業(yè)大學(xué),南京211816)

    (3南京大學(xué)環(huán)境材料與再生能源研究中心,固體微結(jié)構(gòu)國家重點(diǎn)實(shí)驗(yàn)室,南京大學(xué)物理學(xué)院,南京210093)

    (4中國礦業(yè)大學(xué)物理學(xué)院,徐州221116)

    利用一種新的原位水解沉積方法,以在高濕度空氣中老化的甲醇中作為溶劑,通過乙醇鉭水解而成前驅(qū)體微球顆粒沉積,制備出了高效的Ta3N5微球光電極,其1.6 V(vs RHE)電極電位下的光電流值達(dá)到了6.6 mA·cm-2。相反地,在新鮮的甲醇溶液中沒有鉭前驅(qū)體微球顆粒沉積。這表明甲醇中水的含量對Ta3N5微球光電極的形成十分重要。另外,本制備方法也能方便地在其他透明導(dǎo)電襯底上制備出Ta3N5。

    太陽能水分解;Ta3N5光陽極;微球;原位沉積;濕度

    (3Eco-materials and Renewable Energy Research Center(ERERC),National Laboratory of Solid State(Microstructures,Colledge of Physics,Nanjing University,Nanjing 210093,China)

    (4Department of Physics,China University of Mining and Technology,Xuzhou,Jiangsu 221116,China)

    0 Introduction

    Since a TiO2-based photoelectrochemical(PEC) cell was reported to split water into H2and O2under illumination,solar water splitting has been considered to be a promising technology to produce H2on a large scale[1].Ta3N5is regarded as one of themost promising candidates due to its high theoretical energy conversion efficiency(15.9%)and suitable band positions[2-3].Many preparation methods,such as thermal oxidation and nitridation of Ta foil,throughmask anodization,anodization combined with hydrothermalmethod,electrophoretic deposition,dropcasting andmagnetron sputtering,havebeen reported to prepare Ta3N5[4-9].However,p-n tandem photoelectrochemical cell requires efficient and translucent/ transparent Ta3N5photoanode,which still remains unfulfilled.Therefore,it isstilldesirable toexplorenew preparation methods of Ta3N5films.In addition, spherical structure can lead to efficient light absorption and improve performance of a photoelectrode[10-11]. However,current preparation methods for spheres are often in the assistance of additional reagents,which increasespreparation cost[12-13].

    Herein,an efficient microsphere Ta3N5photoanode was prepared by a new in situ hydrolysis deposition method without any additional reagents. Microsphere precursor films were firstly deposited on substrates in tantalum ethoxide(Ta(OEt)5)solution of aged methanol.After oxidation and nitridation, microsphere Ta3N5films were obtained.A 6.6 mA· cm-2photocurrent was achieved at 1.6 V vs RHE.In this context,exploration of new preparation method and the synthesis mechanism of Ta3N5film are our research focus and we hope it can give some hints for preparation of efficient and translucent/transparent Ta3N5.

    1 Experimental

    1.1 Preparation of Ta3N5m icrosphere photoanodes

    A typical preparation procedure of Ta3N5microsphere photoanode is as follows.Firstly, methanol(Purity≥99.5%,Nanjing Chemical Reagent Co.,Ltd.)was aged in airwith 7%relative humidity at 25℃for 4 h before use.Secondly,10 mmol·L-1precursor solution of tantalum ethoxide(Purity≥99.95%,Zhuzhou Cemented Carbide Group Corp., Ltd)was prepared with aged methanol.Then,Ta foils (Purity≥99.95%,Zhongnuo Advanced Material Technology Co.,Ltd)were immersed in Ta(OEt)5methanol solution and films were deposited at 7℃for 48 h.Next,the obtained films were rinsed with deionized water and dried in air at room temperature, followed by calcination in air at250℃for 30minutes. Finally,Ta3N5microsphere photoanodes were obtained by nitridation of oxidized samples in a horizontal tube furnace at 850℃for 500 min under 800 mL·min-1NH3flow(Referred as Ta3N5/aged and Ta3N5/aged/Co-Pi for pristine and Co-Pi loaded samples, respectively).In order to investigate the effect of aging methanol,a reference sample was prepared in fresh methanol as solvent under the same conditions (Referred as Ta3N5/fresh and Ta3N5/fresh/Co-Pi for pristine and Co-Pi loaded samples,respectively).

    1.2 Photo-assisted electrodeposition of Co-Pi co-catalyst

    Following previous studies,Co-Pi co-catalyst was electrodeposited on Ta3N5film by chronopotentiometry under illumination with constant current of 50μA for 4 min[5].The electrodeposition was conducted in a three-electrode cell,with the solution of 0.5 mmol·L-1Co(NO3)2·6H2O(Purity≥99.0%,Shanghai Zhenxin Reagent Factory)and 0.1 mol·L-1K2HPO4·3H2O (Purity≥99.0%,Shanghai Lingfeng Chemical Reagent Co.,Ltd.)buffer at pH=7 as electrolyte.Ta3N5was used as working electrode,Pt foil as counter electrode and saturated calomel electrode(SCE)as reference electrode.An AM 1.5G-simulated sunlight simulator (Oriel 92251A-1000,light intensity=100 mW·cm-2) wasused as light source.During the deposition process, Co2+was oxidized into Co3+[14-15].The total amount of charge was about20mC·cm-2.Assuming that Faradaic efficiency was 100%,the amount of deposited Co was calculated as follow:

    Where NCois the amount of Co-Pi deposited on Ta3N5per square centimeter.96 485(C·mol-1)is the Faradaic constant.

    After Co-Pi deposition,the electrode was rinsed with deionized water and dried in air for use.

    1.3 Characterization of sam p les

    The crystal structures of samples were determined by an X-ray diffractometer(XRD,Rigaku UltimaⅢ)with Cu Kαray(λ=0.154 3 nm)at 40 kV and 40 mA.The range is from 10°to 80°. Morphologies of electrodes were observed on a field emission scanning electron microscope(SEM,Zeiss, Ultra 55-44-08)at an accelerating voltage of 15 kV. Water content of methanol was measured on a moisture analyzer(Metrohm,KF787 Titrino). Absorption spectra were investigated on a UV-vis spectrophotometer(Shimadzu,UV-2550).FTIR spectra were obtained on a Nexus870 spectrophotometer in the range of 4 000~400 cm-1.Thermogravimetric analysis was carried out in air with a Netzsch STA 449F3 instrument by increasing temperature from 30 to 600℃with 5℃·min-1.

    1.4 Photoelectrochem icalmeasurements

    Photoelectrochemical performance was measured in a three-electrode cell using an electrochemical analyzer(CHI-633C,Shanghai Chenhua).Ta3N5microsphere electrode was used as working electrode, Pt foil as counter electrode and saturated calomel electrode(SCE)as reference electrode.Aqueous solution of 1 mol·L-1NaOH was employed as electrolyte.A commercial AM 1.5G-simulated sunlight simulator(Oriel 92251A-1000,light intensity=100 mW·cm-2)was used as light source.Current-potential curveswere recorded at a scan rate of 10mV·s-1.The potential of working electrode versus SCE was converted into RHE(reversible hydrogen electrode) potential scale according to the following formula:

    where VRHEis the potential versus RHE(V),VSCEis the potential versus SCE(V),and pH is the pH value of electrolyte.The incident photon-to-current efficiency (IPCE)was determined under the irradiation of differentwavelength light generated bymonochromatic filters according to the following formula:

    where Iphis the photocurrent density(μA·cm-2),P and λare the incident light intensity(μW·cm-2)and wavelength(nm),respectively.The incident light intensity wasmeasured by a photometer(Newport,84 0-C,USA).

    Fig.1 Photographs of precursor solution of(a)fresh and(b)aged methanol before and after deposition

    2 Results and discussion

    Fig.1 shows photographs of Ta(OEt)5solution of fresh and aged methanol before and after deposition, respectively.Both solutions are transparent at the beginning.After depositing at 7℃for 48 h,solution of aged methanol became white(Fig.1(b)).However, solution of fresh methanolwas still transparent.White films were deposited on substrates in solution of aged methanol,whereas there were no samples on substrates in solution of fresh methanol.The results suggest that film deposition comes from hydrolysis of Ta(OEt)5in aged methanol.Since the only difference between the two kinds ofmethanol was the methanol whether exposed in moist air or not,little water in methanol was essential for the formation of films.The water content was measured about 0.15%(w/w)by a moisture analyzer.The detail effect of water will be

    discussed below.

    Fig.2 XRD patterns of Ta3N5/fresh and Ta3N5/aged

    Fig.3 High magnification SEM images of Ta3N5/fresh(a)and Ta3N5/aged(b);Cross-sectional images of Ta3N5/fresh(d)and Ta3N5/aged(d)

    XRD patterns were measured to determine phases and crystal structures of the two samples,as shown in Fig.2.Orthorhombic phase Ta3N5(PDF No. 19-1291)was obtained for Ta3N5/aged.In contrast, Ta3N5/fresh shows no peaks of Ta3N5.Fig.3 shows scanning electron microscopy(SEM)images of Ta3N5/ fresh and Ta3N5/aged.Surface and cross-sectional SEM images in Fig.3(a,c)indicate that Ta3N5/fresh shows only morphology of Ta substrate and no Ta3N5is observed.The result is in agreement with the XRD data.However,Fig.3(b)shows that Ta3N5/aged is composed of spherical particles,with the diameter around 1μm.Discernible roughness,many nanopores and cracks are observed on the surface,which come from volume shrinkage from transition of Ta2O5into Ta3N5and the decomposition of residual organics (Fig.4)during nitridation[12].High magnification SEM image of precursor is displayed in the inset picture of Fig.3(b).The result suggests that microspheres are formed during precipitation.Fig.3(d)is the crosssectional image of Ta3N5/aged.It shows that Ta3N5film electrode is composed of microsphere particles and the thickness is about 7.5μm.From the inset in Fig.3 (d),Ta3N5microsphere is solid and composed of smaller particles,which suggests that Ta3N5microsphere originates from the agglomeration of nanoparticles.

    Spherical structure is one of favorable microstructures in both photoelectrochemical and solar cells[10-11].Usually,spherical Ta3N5particles obtained by solution methods are assisted with additional agents[12-13].Though the distribution size of Ta3N5spheres can be narrowed,introduction of additional reagents actually increases the possibility of inclusion of impurities,as well as experimental difficulties and preparation cost.In our study,however,Ta3N5microsphere was prepared in a more simple way, without any additional agents,and thus those shortcomings are avoided.

    FTIR spectra were used to investigate formation process of microsphere,and the results are shown in Fig.4.Peaks below 1 000 cm-1are attributed to stretching,bending and torsion modes of Ta-O[16-17].

    The broad absorption between 800 and 1 000 cm-1corresponds to the presence of Ta suboxides[18].A peak at~3 342 cm-1is assigned to OH stretching modes, and peak at~1 626 cm-1is associated with OH bending modes[17,19].Both of them are weakened after calcination at 250℃.The existence of-OH group confirms that microsphere is from the hydrolysis of tantalum ethoxide.

    Fig.4 FTIR spectra ofmicrosphere precursor before and after calcined at250℃for 30min in air

    Fig.5 Thermogravimetric spectrum ofmicrosphere precursor

    Fig.6 Schematic illustration of formation process of Ta3N5m icrosphere film

    In order to further investigate composition of asdeposited microsphere precursor before calcination, thermogravimetric(TG)ismeasured and the result is shown in Fig.5.The endothermic peak under 100℃comes from evaporation of adsorbed water.Weight loss with exothermic peak ended at around 500℃arises from the decomposition of organics in microsphere, which comes from the organic group-CH2CH3of Ta (OEt)5[16-17].However,organic compounds cannot be removed completely when calcined at 250℃and thus lead to the formation of Ta suboxides.

    According to the above discussion,formation process of Ta3N5microsphere can be concluded as followswith the simplified chemical reactions[20-21]:

    Hydrolysis:

    Polycondensation:

    Water content in methanol is a key factor to trigger the whole reaction.Actually,the two reactions proceed simultaneously once the hydrolysiscondensation reaction is triggered.As long as a critical radius is reached,nucleation will take place. And nanocrystalline will agglomerate into spherical particle due to its lowest surface energy.Finally,when the spherical particles are big enough,sedimentation happens and a film is deposited on the substrate. After oxidation and nitridation,Ta3N5microsphere film is obtained.A schematic diagram of formation process of Ta3N5microsphere is illustrated in Fig.6.

    Fig.7 indicates UV-Vis absorption spectrum of Ta3N5microsphere photoanode.The Ta3N5microsphere film shows a high absorption,which comes from light scattering ofmicrospheres.Contribution from substrate is excluded through the absorption spectrum of Ta3N5/ fresh.Ambiguous ERERC can be identified through the Ta3N5microsphere film on quartz substrate in the inset(II)of Fig.7,which suggests that in situ hydrolysis deposition method can be used to prepare a translucent Ta3N5microsphere electrode.

    Photoelectrochemical properties of Ta3N5micro-

    sphere photonodes weremeasured and the results are shown in Fig.8.In order to exclude contribution of Ta substrate on photocurrent,Ta3N5/fresh was also measured as a reference.Dark currents of both electrodes are negligible.The photocurrent of Ta3N5/ fresh and Ta3N5/fresh/Co-Pi ismuch lower than that of a Ta3N5microsphere photonode.Therefore, photocurrents of Ta3N5/aged and Ta3N5/aged/Co-Pi entirely come from Ta3N5microsphere,rather than from substrate.Generally,a bare Ta3N5photoanode suffers from severe photo-corrosion in aqueous solution and surface combination,which can be remarkably suspressed by depositing a co-catalyst. Among different co-catalysts,Co-Pi is low-cost and operable undermild conditions[14,22].Therefore,in this study,Co-Pi(2μmol·cm-2)was electrodeposited on the Ta3N5film to improve the performance of the Ta3N5microsphere electrode.After deposition of Co-Pi,the photocurrent of Ta3N5/aged/Co-Pi is about 3 times as high as that of Ta3N5/aged.Current density of Ta3N5microsphere electrode by in situ hydrolysis deposition method is~2.34 mA·cm-2at 1.23 V vs RHE,and~6.6 mA·cm-2at 1.6 V vs RHE.A Ta3N5photoanode prepared by EPD indicated 3.18 mA·cm-2photocurrent at 1.23 V vs RHE and about 6 mA·cm-2at 1.6 V vs RHE[23].High photocurrents of 5.5 mA· cm-2and 6.7 mA·cm-2at 1.23 V vs RHE have been achieved by direct oxidation and nitridation of Ta foil[4-5].The photocurrent in this study is comparable to samples by EPD and oxidation and nitridation of Ta foil,butmuch lower than 12.1 mA·cm-2obtained by Ta3N5with integration of hole-storage layer,coupled molecular catalysts and TiOxblocking layer[6]. However,in this study,preparation conditions and cocatalysts have not yet been optimized.And thus it is promising to further improve Ta3N5microsphere photoanode by in situ hydrolysis deposition method in future work.

    Fig.8(a)Current-potential curves of Ta3N5/fresh,Ta3N5/fresh/Co-Pi,Ta3N5/aged and Ta3N5/aged/Co-Pi in the dark(dash lines) and under AM 1.5G simulated sunlight irradiation(100mW·cm-2)(solid lines),respectively;(b)IPCE curves of Ta3N5/ fresh/Co-Piand Ta3N5/aged/Co-Piat 1.23 V vs RHE

    Fig.8(b)is the incident photon-to-current efficiency(IPCE)of Ta3N5/fresh/Co-Pi and Ta3N5/aged/ Co-Pi.The IPCE of Ta3N5/fresh/Co-Pi is nearly zero in the spectrum range from 350 to 610 nm,which further excludes contribution of substrate on photocurrent. The IPCE of Ta3N5/aged/Co-Pi is~26%at 400 nm, but decreases at longer wavelength[24].The integrated

    photocurrent(~2.35 mA·cm-2)shown in Fig.9 is very close to themeasured value(~2.34 mA·cm-2),which suggests that the measured photocurrent is reliable. The photocurrent response of Ta3N5/aged/Co-Pi in IPCE also agrees well with the absorption edge, suggesting that the photocurrent originates from the band gap transition of Ta3N5.The stability of Ta3N5/ aged and Ta3N5/aged/Co-Piwas alsomeasured and the result is shown in Fig.10.As we can see,the photocurrent of Ta3N5/aged declines over 50%after only 3~4 s under illumination,but the time was extended to about 2 000 s for Ta3N5/aged/Co-Pi. Though photocurrent of Ta3N5/aged/Co-Pi decreases obviously,nonzero photocurrent can still be observed. The stability of Ta3N5microsphere electrode should be further improved in future.

    Fig.9 Integrated solar photocurrent at 1.23 V vs RHE from the standard solar spectrum

    Fig.10 Current-time curves of Ta3N5/aged and Ta3N5/ aged/Co-Pimeasured at 1.23 V vs RHE

    3 Conclusions

    In summary,we synthesized an efficient Ta3N5microsphere photoanode by a new and facile in situ hydrolysis deposition method.A Ta3N5microsphere film was formed on Ta substrate in Ta(OEt)5solution of aged methanol.The microsphere is formed by hydrolysis of Ta(OEt)5and subsequentagglomeration of nanoparticles.Water content in solvent was indispensable to in situ deposition of Ta3N5film.High photocurrent density was obtained on the Ta3N5microsphere electrode,~2.34 mA·cm-2at 1.23 V vs RHE and~6.6 mA·cm-2at 1.6 V vs RHE under AM 1.5G simulated sunlight irradiation(100 mW·cm-2).In addition,in situ hydrolysis deposition method is a promising method to prepare efficient Ta3N5photoanodes on other transparent conducting substr ates.

    [1]Fujishima A,Honda K.Nature,1972,238:37-38

    [2]Wang L,Zhou X,Nguyen N T,et al.Adv.Mater.,2016,28 (12):2432-2438

    [3]Fu G,Yan S,Yu T,et al.Appl.Phys.Lett.,2015,107(17): 171902

    [4]LiM,LuoW,Cao D,etal.Angew.Chem.Int.Ed.,2013,52 (42):11016-11020

    [5]Li Y,Zhang L,Torres-Pardo A,et al.Nat.Commun.,2013, 4:2566

    [6]Liu G,Ye S,Yan P,et al.Energy Environ.Sci.,2016,9: 1327-1334

    [7]Khan S,Zapata M JM,Pereira M B,et al.Phys.Chem. Chem.Phys.,2015,17:23952-23962

    [8]Wang Z,Qi Y,Ding C,et al.Chem.Sci.,2016,7(7):4391-4399

    [9]Cong Y,Park H S,Dang H X,et al.Chem.Mater.,2012,24 (3):579-586

    [10]Pan JH,Wang Q,Bahnemann D W.Catal.Today,2014, 230:197-204

    [11]Deepak T G,Anjusree G S,Thomas S,et al.RSC Adv., 2014,4(34):17615-17638

    [12]Cao J,Ren L,Li N,et al.Chem.Eur.J.,2013,19(38): 12619-12623

    [13]Liu X,Zhao L,Domen K,et al.Mater.Res.Bull.,2014,49: 58-65

    [14]Kanan M W,Nocera D G.Science,2008,321(5892):1072-1075

    [15]Lutterman D A,Surendranath Y,Nocera D G.J.Am.Chem. Soc.,2009,131(11):3838-3839

    [16]Ndiege N,Subramanian TW V,Shannon M A,et al.Chem. Mater.,2007,19(13):3155-3161

    [17]Zhao D,Jiang H,Gong H,et al.Transition Met.Chem., 2010,36(1):119-123

    [18]Fang Q,Zhang J Y,Wang Z,et al.Thin Solid Films, 2003,428(1):248-252

    [19]Antonelli D M,Ying JY.Chem.Mater.,1996,8(4):874-881

    [20]Sun Y,Sermon P,Vong M.Thin Solid Films,1996,278(1): 135-139

    [21]Wolf C,Rüssel C.J.Mater.Sci.,1992,27(14):3749-3755

    [22]Pramanik M,LiC,Imura M,etal.Small,2016,12(13):1709-1715

    [23]Liao M,Feng J,Luo W,et al.Adv.Funct.Mater.,2012,22 (14):3066-3074

    [24]Hisatomi T,Kubota J,Domen K.Chem.Soc.Rev.,2014,43 (22):7520-7535

    In Situ Hydrolysis Deposition of an Efficient Ta3N5M icrosphere Photoanode for Solar W ater Sp litting

    YANG Li-Heng1LUOWen-Jun*,2,3LIMing-Xue4ZOU Zhi-Gang*,3

    (1College of Engineering and Applied Science,Nanjing University,Nanjing 210093,China)

    (2Key Laboratory of Flexible Electronics&Institute of Advanced Materials,Jiangsu National Synergetic Innovation

    Center for Advanced Materials,Nanjing Tech University,Nanjing 211816,China)

    A new in situ hydrolysis deposition method was used to prepare a Ta3N5microsphere photoanode, which indicates a high photocurrent of 6.6 mA·cm-2at1.6 V vs RHE.Microsphere precursor films are formed by hydrolysis of Ta(OEt)5and subsequent deposition on substrates,which is achieved by aging methanol solvent in air with high humidity.In contrast,no precursor films were obtained on substrates with fresh methanol.The results suggest thatwater in solvent is very essential to in situ depositing Ta3N5photoanode.In addition,the facile method can be used to deposit Ta3N5on other transparent conducting substrates.

    solarwater splitting;Ta3N5photoanodes;microsphere;in situ deposition;humidity

    O614.51+3

    A

    1001-4861(2016)10-1839-08

    10.11862/CJIC.2016.330

    2016-04-26。收修改稿日期:2016-08-18。

    國家重點(diǎn)基礎(chǔ)研究發(fā)展計劃(973計劃,No.2013CB632404,2014CB239303)、江蘇省自然科學(xué)基金(No.15KJB150010,BK20140197)、南京大學(xué)納米技術(shù)江蘇省重點(diǎn)實(shí)驗(yàn)室開放研究基金資助項(xiàng)目。

    *通信聯(lián)系人。E-mail:iamwjluo@njtech.edu.cn,zgzou@nju.edu.cn

    猜你喜歡
    南京大學(xué)原位微球
    物歸原位
    幼兒100(2024年19期)2024-05-29 07:43:34
    我校黨委書記柴林一行赴南京大學(xué)交流學(xué)習(xí)
    《南京大學(xué)學(xué)報數(shù)學(xué)半年刊》征稿簡則
    懸浮聚合法制備窄尺寸分布聚甲基丙烯酸甲酯高分子微球
    未培養(yǎng)微生物原位培養(yǎng)技術(shù)研究進(jìn)展
    TiO2/PPy復(fù)合導(dǎo)電微球的制備
    Comprendre et s'entendre
    échange humain sous le contexte de la mondialisation
    可吸收止血微球在肝臟部分切除術(shù)中的應(yīng)用
    復(fù)凝法制備明膠微球
    河南科技(2014年22期)2014-02-27 14:18:07
    免费观看人在逋| 久久99热6这里只有精品| 高清日韩中文字幕在线| 国产精品98久久久久久宅男小说| 热99re8久久精品国产| 在线免费观看的www视频| 一个人看视频在线观看www免费| 夜夜夜夜夜久久久久| 亚洲自偷自拍三级| 亚洲专区国产一区二区| 精品免费久久久久久久清纯| 成人美女网站在线观看视频| 最近最新免费中文字幕在线| 精品久久久久久久久亚洲 | 国产在视频线在精品| 久久99热这里只有精品18| 桃色一区二区三区在线观看| 岛国在线免费视频观看| 亚洲精品日韩av片在线观看| 欧美精品啪啪一区二区三区| 夜夜夜夜夜久久久久| 极品教师在线免费播放| 自拍偷自拍亚洲精品老妇| 午夜免费男女啪啪视频观看 | 级片在线观看| 女人十人毛片免费观看3o分钟| 国产午夜精品久久久久久一区二区三区 | 色综合婷婷激情| 噜噜噜噜噜久久久久久91| 久久久久亚洲av毛片大全| 窝窝影院91人妻| 国产成人影院久久av| 日韩中字成人| 成人国产综合亚洲| 国产亚洲欧美98| av在线天堂中文字幕| 1000部很黄的大片| 国产欧美日韩精品一区二区| 色视频www国产| 俄罗斯特黄特色一大片| 国产真实伦视频高清在线观看 | 午夜福利视频1000在线观看| 国产毛片a区久久久久| 老司机福利观看| 中国美女看黄片| 久久精品夜夜夜夜夜久久蜜豆| 国产精品99久久久久久久久| 成人亚洲精品av一区二区| 夜夜爽天天搞| 深夜精品福利| 亚洲电影在线观看av| 午夜久久久久精精品| 国模一区二区三区四区视频| 天堂动漫精品| 成人av一区二区三区在线看| 欧美成人免费av一区二区三区| 精品免费久久久久久久清纯| 丰满乱子伦码专区| 在线a可以看的网站| 99热精品在线国产| 99久久精品国产亚洲精品| 亚洲av.av天堂| 国产精品久久久久久久电影| 国产精品电影一区二区三区| 亚洲av免费高清在线观看| 国产三级黄色录像| av在线观看视频网站免费| 看片在线看免费视频| 老司机午夜十八禁免费视频| 嫩草影院精品99| 永久网站在线| 欧美高清成人免费视频www| 精品熟女少妇八av免费久了| 黄色视频,在线免费观看| 午夜影院日韩av| 国产伦精品一区二区三区四那| 一本久久中文字幕| 香蕉av资源在线| 怎么达到女性高潮| 色播亚洲综合网| 欧美bdsm另类| 看片在线看免费视频| 一级黄片播放器| 18禁在线播放成人免费| www.色视频.com| 国产男靠女视频免费网站| 免费看光身美女| 成人亚洲精品av一区二区| 男人的好看免费观看在线视频| 少妇的逼好多水| 又粗又爽又猛毛片免费看| 熟妇人妻久久中文字幕3abv| 成人亚洲精品av一区二区| 亚洲黑人精品在线| av欧美777| 在线观看免费视频日本深夜| 亚洲久久久久久中文字幕| 久久亚洲真实| 色综合亚洲欧美另类图片| 亚洲中文字幕日韩| 91九色精品人成在线观看| 男人狂女人下面高潮的视频| 淫秽高清视频在线观看| 日本免费一区二区三区高清不卡| 人人妻人人看人人澡| 国产视频内射| 一夜夜www| 国产主播在线观看一区二区| 99久久久亚洲精品蜜臀av| 午夜激情福利司机影院| 国产精品一及| 亚洲最大成人中文| 午夜激情福利司机影院| 国产免费av片在线观看野外av| 麻豆成人av在线观看| 欧美成人免费av一区二区三区| 美女cb高潮喷水在线观看| 精品久久久久久久久av| 97碰自拍视频| 黄色一级大片看看| 久久久久久久亚洲中文字幕 | 欧美丝袜亚洲另类 | 蜜桃久久精品国产亚洲av| 午夜亚洲福利在线播放| 精品国产三级普通话版| 动漫黄色视频在线观看| 啦啦啦韩国在线观看视频| 国产亚洲欧美98| 成年人黄色毛片网站| 露出奶头的视频| ponron亚洲| 真人做人爱边吃奶动态| 欧美极品一区二区三区四区| 真人一进一出gif抽搐免费| 麻豆成人午夜福利视频| 少妇裸体淫交视频免费看高清| 黄色女人牲交| 日本与韩国留学比较| 亚洲精品一卡2卡三卡4卡5卡| 国产aⅴ精品一区二区三区波| 国产淫片久久久久久久久 | 我要看日韩黄色一级片| 久久国产乱子免费精品| 啦啦啦韩国在线观看视频| 国内毛片毛片毛片毛片毛片| www日本黄色视频网| 又紧又爽又黄一区二区| 国产亚洲精品av在线| 免费在线观看日本一区| 欧美黄色淫秽网站| 欧美色欧美亚洲另类二区| 青草久久国产| 性色avwww在线观看| 性色av乱码一区二区三区2| 亚洲av免费在线观看| 国产精品,欧美在线| 成人av一区二区三区在线看| 日韩国内少妇激情av| a级一级毛片免费在线观看| 精品午夜福利视频在线观看一区| 精品人妻熟女av久视频| 毛片一级片免费看久久久久 | 国产精品电影一区二区三区| 亚洲美女搞黄在线观看 | 中文字幕高清在线视频| 久久草成人影院| 国产麻豆成人av免费视频| 性色avwww在线观看| 一边摸一边抽搐一进一小说| 一个人免费在线观看电影| 亚洲精品粉嫩美女一区| 久久中文看片网| 我的女老师完整版在线观看| 久久婷婷人人爽人人干人人爱| 2021天堂中文幕一二区在线观| 午夜福利高清视频| 国产成人啪精品午夜网站| 午夜老司机福利剧场| 日本黄色视频三级网站网址| 老司机午夜福利在线观看视频| 久久久成人免费电影| 国产精品久久久久久久电影| 变态另类成人亚洲欧美熟女| 好看av亚洲va欧美ⅴa在| 国产成人a区在线观看| 亚洲国产精品久久男人天堂| 婷婷丁香在线五月| bbb黄色大片| 欧美色视频一区免费| 岛国在线免费视频观看| 色哟哟·www| 亚洲av美国av| 搡女人真爽免费视频火全软件 | 12—13女人毛片做爰片一| 国产午夜精品论理片| 精品国内亚洲2022精品成人| 97超级碰碰碰精品色视频在线观看| 一本久久中文字幕| 久久亚洲真实| 天堂动漫精品| 深夜a级毛片| 神马国产精品三级电影在线观看| 又粗又爽又猛毛片免费看| av在线蜜桃| 成人特级黄色片久久久久久久| 亚洲专区国产一区二区| 亚洲成人免费电影在线观看| 在线天堂最新版资源| h日本视频在线播放| 少妇高潮的动态图| 中文字幕av成人在线电影| 村上凉子中文字幕在线| .国产精品久久| 亚洲欧美日韩东京热| 伊人久久精品亚洲午夜| 国产av麻豆久久久久久久| 国产又黄又爽又无遮挡在线| 观看免费一级毛片| 观看免费一级毛片| 99热这里只有是精品50| 乱码一卡2卡4卡精品| 亚洲不卡免费看| 蜜桃久久精品国产亚洲av| 国产在视频线在精品| 精品一区二区三区av网在线观看| 国产在线精品亚洲第一网站| 色av中文字幕| 直男gayav资源| 欧美高清性xxxxhd video| 亚洲男人的天堂狠狠| 精品99又大又爽又粗少妇毛片 | 一个人免费在线观看电影| av在线天堂中文字幕| 日韩欧美三级三区| 欧美黄色片欧美黄色片| 日韩欧美三级三区| 亚洲18禁久久av| 香蕉av资源在线| 欧美在线黄色| 五月伊人婷婷丁香| 天堂网av新在线| 蜜桃亚洲精品一区二区三区| 夜夜夜夜夜久久久久| 国产日本99.免费观看| 国产精品美女特级片免费视频播放器| 97热精品久久久久久| 日本一二三区视频观看| 欧美色视频一区免费| 久久九九热精品免费| 久久午夜福利片| 精品免费久久久久久久清纯| 性插视频无遮挡在线免费观看| 深爱激情五月婷婷| 日本a在线网址| 日日干狠狠操夜夜爽| 99热只有精品国产| 99在线人妻在线中文字幕| 床上黄色一级片| 国产黄a三级三级三级人| 欧美一区二区国产精品久久精品| 女生性感内裤真人,穿戴方法视频| 我要看日韩黄色一级片| 在线观看美女被高潮喷水网站 | 日韩高清综合在线| 男女视频在线观看网站免费| 久久午夜福利片| 午夜福利视频1000在线观看| 男人和女人高潮做爰伦理| 熟女人妻精品中文字幕| 免费看日本二区| 老司机午夜福利在线观看视频| 中文字幕免费在线视频6| 国产高清三级在线| 老女人水多毛片| 天堂网av新在线| 色5月婷婷丁香| 国产精品国产高清国产av| 国产精品久久久久久久电影| 两个人的视频大全免费| 12—13女人毛片做爰片一| 99国产极品粉嫩在线观看| 男人舔女人下体高潮全视频| 九九久久精品国产亚洲av麻豆| 亚洲美女视频黄频| 国产成人福利小说| or卡值多少钱| 国产高清有码在线观看视频| 午夜老司机福利剧场| 成人av在线播放网站| 欧美色欧美亚洲另类二区| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 又爽又黄无遮挡网站| 日韩欧美在线二视频| 国产色婷婷99| 色5月婷婷丁香| 午夜两性在线视频| 成人国产一区最新在线观看| 美女免费视频网站| 欧美黑人欧美精品刺激| 90打野战视频偷拍视频| 精品免费久久久久久久清纯| 性色avwww在线观看| 免费在线观看亚洲国产| 亚洲av不卡在线观看| 桃色一区二区三区在线观看| 精品无人区乱码1区二区| 久久久久九九精品影院| 美女cb高潮喷水在线观看| 精品一区二区三区视频在线| 欧美一级a爱片免费观看看| 成人高潮视频无遮挡免费网站| 国产午夜福利久久久久久| 精品久久久久久,| 国产高清视频在线观看网站| 久久久久久久午夜电影| 99久久无色码亚洲精品果冻| 能在线免费观看的黄片| 中出人妻视频一区二区| 国产色婷婷99| 欧美不卡视频在线免费观看| av天堂在线播放| 色噜噜av男人的天堂激情| 国产一区二区亚洲精品在线观看| 一个人观看的视频www高清免费观看| 精品人妻熟女av久视频| 亚洲avbb在线观看| 精品久久久久久久久久免费视频| 免费看光身美女| 国产精品久久久久久亚洲av鲁大| 中文字幕人成人乱码亚洲影| 国产黄a三级三级三级人| 欧美成人a在线观看| 国产精品美女特级片免费视频播放器| 精品99又大又爽又粗少妇毛片 | 久久草成人影院| 国产激情偷乱视频一区二区| 99久久九九国产精品国产免费| 好男人电影高清在线观看| 色综合亚洲欧美另类图片| 美女xxoo啪啪120秒动态图 | 老熟妇乱子伦视频在线观看| 亚洲av成人不卡在线观看播放网| 他把我摸到了高潮在线观看| 午夜亚洲福利在线播放| 日本一本二区三区精品| 99视频精品全部免费 在线| 色噜噜av男人的天堂激情| 国产一区二区三区在线臀色熟女| 一级作爱视频免费观看| 精品99又大又爽又粗少妇毛片 | 一本精品99久久精品77| 亚洲国产日韩欧美精品在线观看| 每晚都被弄得嗷嗷叫到高潮| 免费av毛片视频| 亚洲aⅴ乱码一区二区在线播放| 最新在线观看一区二区三区| 免费人成在线观看视频色| 亚洲av五月六月丁香网| 精品人妻1区二区| 女生性感内裤真人,穿戴方法视频| 亚洲五月婷婷丁香| 国产成人啪精品午夜网站| 日韩大尺度精品在线看网址| 午夜精品一区二区三区免费看| 伦理电影大哥的女人| 男人舔奶头视频| av天堂在线播放| 国产免费av片在线观看野外av| 国产精品一及| 成人特级av手机在线观看| 天天躁日日操中文字幕| 又爽又黄无遮挡网站| 中文字幕高清在线视频| 亚洲一区二区三区色噜噜| 九九久久精品国产亚洲av麻豆| 性色av乱码一区二区三区2| 能在线免费观看的黄片| 国产综合懂色| 看十八女毛片水多多多| 国产精品影院久久| 精品久久久久久久久av| 国产淫片久久久久久久久 | 国产在线精品亚洲第一网站| 欧美激情久久久久久爽电影| 成人国产一区最新在线观看| АⅤ资源中文在线天堂| 69av精品久久久久久| 国产成人aa在线观看| 十八禁国产超污无遮挡网站| 欧美日韩综合久久久久久 | 色av中文字幕| 色综合婷婷激情| 久久久久亚洲av毛片大全| 精品乱码久久久久久99久播| 久久6这里有精品| 成年免费大片在线观看| 可以在线观看毛片的网站| 全区人妻精品视频| 亚洲激情在线av| 久久午夜福利片| 国产精品久久电影中文字幕| 欧美激情国产日韩精品一区| 精品人妻视频免费看| 露出奶头的视频| 熟女人妻精品中文字幕| 免费在线观看日本一区| 亚洲电影在线观看av| 日本精品一区二区三区蜜桃| 午夜福利视频1000在线观看| 内地一区二区视频在线| 成年版毛片免费区| 欧美又色又爽又黄视频| 美女大奶头视频| 人人妻人人澡欧美一区二区| 日韩欧美国产一区二区入口| 国产大屁股一区二区在线视频| 在现免费观看毛片| 一夜夜www| 久久久久九九精品影院| 免费在线观看成人毛片| 日本一本二区三区精品| 两个人的视频大全免费| 美女xxoo啪啪120秒动态图 | 老司机深夜福利视频在线观看| 深夜精品福利| 一级作爱视频免费观看| 欧美最黄视频在线播放免费| 日本黄大片高清| 精品国产三级普通话版| 99久久无色码亚洲精品果冻| 精品午夜福利视频在线观看一区| 91在线观看av| 91字幕亚洲| 国产精品日韩av在线免费观看| 18禁裸乳无遮挡免费网站照片| 国产av一区在线观看免费| 国产老妇女一区| 国产蜜桃级精品一区二区三区| 亚洲国产精品成人综合色| 欧美日韩亚洲国产一区二区在线观看| 成人国产综合亚洲| 国内揄拍国产精品人妻在线| 99久久无色码亚洲精品果冻| 九色国产91popny在线| 精品一区二区三区人妻视频| 男女床上黄色一级片免费看| 最近在线观看免费完整版| 国产激情偷乱视频一区二区| 国产高清激情床上av| 亚洲综合色惰| 精品一区二区三区视频在线| 又黄又爽又刺激的免费视频.| 欧美区成人在线视频| 自拍偷自拍亚洲精品老妇| a级毛片a级免费在线| 亚洲欧美激情综合另类| 99热精品在线国产| 精品人妻1区二区| 毛片一级片免费看久久久久 | 香蕉av资源在线| 亚洲成av人片免费观看| a级一级毛片免费在线观看| 国语自产精品视频在线第100页| 亚洲精品一区av在线观看| 亚洲av成人av| 国产高清视频在线播放一区| 成年女人永久免费观看视频| 女人十人毛片免费观看3o分钟| 国产精华一区二区三区| 日韩 亚洲 欧美在线| 免费黄网站久久成人精品 | 久久人人爽人人爽人人片va | 一区二区三区高清视频在线| 搞女人的毛片| 亚洲中文字幕一区二区三区有码在线看| 国产老妇女一区| 日本黄色视频三级网站网址| 97碰自拍视频| 久久精品夜夜夜夜夜久久蜜豆| 久久精品91蜜桃| 欧美又色又爽又黄视频| 亚洲av免费在线观看| 欧美黑人巨大hd| 亚洲av免费高清在线观看| 蜜桃久久精品国产亚洲av| 久久久久免费精品人妻一区二区| 国产精品综合久久久久久久免费| 欧美午夜高清在线| 久久久精品欧美日韩精品| 久久精品国产亚洲av天美| 91在线观看av| 国产一级毛片七仙女欲春2| 色噜噜av男人的天堂激情| 日韩亚洲欧美综合| 性欧美人与动物交配| 亚洲av中文字字幕乱码综合| 国内揄拍国产精品人妻在线| 免费搜索国产男女视频| 久久精品国产99精品国产亚洲性色| 午夜两性在线视频| 亚洲内射少妇av| 一本久久中文字幕| 国内久久婷婷六月综合欲色啪| 老司机深夜福利视频在线观看| www.色视频.com| 一区二区三区免费毛片| 国产aⅴ精品一区二区三区波| 91午夜精品亚洲一区二区三区 | 国产精品亚洲美女久久久| 国产三级中文精品| 老鸭窝网址在线观看| 国产精品久久电影中文字幕| 免费人成在线观看视频色| 最新中文字幕久久久久| 老鸭窝网址在线观看| 欧美日韩亚洲国产一区二区在线观看| 特级一级黄色大片| 亚洲乱码一区二区免费版| 日韩高清综合在线| 国产在线精品亚洲第一网站| 午夜两性在线视频| 一个人免费在线观看电影| 首页视频小说图片口味搜索| 国产免费男女视频| 久久国产乱子伦精品免费另类| 不卡一级毛片| 久久亚洲精品不卡| 亚洲人成伊人成综合网2020| 欧美日韩国产亚洲二区| 老熟妇仑乱视频hdxx| 毛片一级片免费看久久久久 | 中文亚洲av片在线观看爽| 日韩中字成人| 老鸭窝网址在线观看| 亚洲国产日韩欧美精品在线观看| 无遮挡黄片免费观看| 性色av乱码一区二区三区2| 欧美最黄视频在线播放免费| 91久久精品电影网| 亚洲最大成人av| 特大巨黑吊av在线直播| 在线观看av片永久免费下载| 最新中文字幕久久久久| 网址你懂的国产日韩在线| 国产av麻豆久久久久久久| 成人av一区二区三区在线看| 亚洲av免费在线观看| 老司机午夜十八禁免费视频| 国产精品一区二区性色av| 俄罗斯特黄特色一大片| 看免费av毛片| 欧美又色又爽又黄视频| 90打野战视频偷拍视频| 亚洲人成网站高清观看| 91字幕亚洲| 国产欧美日韩一区二区精品| 免费人成在线观看视频色| 午夜福利在线在线| 久久久国产成人免费| 一本综合久久免费| 亚洲最大成人av| 成人亚洲精品av一区二区| h日本视频在线播放| 内射极品少妇av片p| 久久精品久久久久久噜噜老黄 | 久久精品影院6| 给我免费播放毛片高清在线观看| 欧美日本视频| 麻豆国产97在线/欧美| 亚洲欧美激情综合另类| 欧美最黄视频在线播放免费| 国产高清视频在线播放一区| 男女之事视频高清在线观看| 亚洲精品456在线播放app | 久久精品国产99精品国产亚洲性色| 亚洲无线观看免费| 国产精品日韩av在线免费观看| 99久久精品国产亚洲精品| 久久久久国产精品人妻aⅴ院| 一级毛片久久久久久久久女| 国内久久婷婷六月综合欲色啪| 村上凉子中文字幕在线| 欧美成人a在线观看| 啦啦啦观看免费观看视频高清| 我的女老师完整版在线观看| 亚洲人成伊人成综合网2020| 我的老师免费观看完整版| 一级毛片久久久久久久久女| 男女那种视频在线观看| 亚洲激情在线av| 国产麻豆成人av免费视频| 国产高清视频在线播放一区| 一级毛片久久久久久久久女| 99热这里只有是精品在线观看 | 黄色日韩在线| 亚洲熟妇熟女久久| 啦啦啦观看免费观看视频高清| 欧美日本亚洲视频在线播放| 一级黄片播放器| 中文亚洲av片在线观看爽| 亚洲精华国产精华精| 亚洲av中文字字幕乱码综合| 欧美在线黄色| 欧美极品一区二区三区四区| 永久网站在线| 好男人在线观看高清免费视频| 黄色配什么色好看| 成人午夜高清在线视频| 中文字幕久久专区| 午夜免费成人在线视频| 欧美色欧美亚洲另类二区| 亚洲av五月六月丁香网| 欧美日韩中文字幕国产精品一区二区三区| 99精品在免费线老司机午夜| 少妇丰满av|