• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    單分散g-C3N4量子點(diǎn)修飾一維棒狀BiPO4微晶的合成及其對(duì)光催化活性增強(qiáng)機(jī)理

    2016-12-05 05:42:30王丹軍申會(huì)東岳林林
    關(guān)鍵詞:延安大學(xué)棒狀微晶

    王丹軍 申會(huì)東 郭 莉,2 岳林林 付 峰

    (1延安大學(xué)化學(xué)與化工學(xué)院,陜西省化學(xué)反應(yīng)工程重點(diǎn)實(shí)驗(yàn)室,延安716000) (2陜西師范大學(xué)材料科學(xué)與工程技術(shù)學(xué)院,西安716000)

    單分散g-C3N4量子點(diǎn)修飾一維棒狀BiPO4微晶的合成及其對(duì)光催化活性增強(qiáng)機(jī)理

    王丹軍*,1申會(huì)東1郭莉1,2岳林林1付峰*,1

    (1延安大學(xué)化學(xué)與化工學(xué)院,陜西省化學(xué)反應(yīng)工程重點(diǎn)實(shí)驗(yàn)室,延安716000) (2陜西師范大學(xué)材料科學(xué)與工程技術(shù)學(xué)院,西安716000)

    利用水熱法合成了一維棒狀BiPO4微晶,在此基礎(chǔ)上采用浸漬-焙燒法進(jìn)行g(shù)-C3N4量子點(diǎn)表面修飾獲得新穎的g-C3N4/ BiPO4異質(zhì)結(jié)。借助X射線衍射(XRD)、場(chǎng)發(fā)射掃描電鏡(FE-SEM)、透射電鏡(HRTEM)、能譜(EDS)、紫外-可見漫反射(UV-Vis-DRS)等測(cè)試手段對(duì)所得樣品的相組成、形貌和譜學(xué)特征進(jìn)行了表征。選擇羅丹明B(RhB)和苯酚作為模型污染物研究了所得在可見光下的催化活性。結(jié)果表明,樣品16%(w/w)g-C3N4/BiPO4對(duì)RhB降解的速率常數(shù)分別是純g-C3N4和BiPO4的4.6倍和15倍。g-C3N4量子點(diǎn)與BiPO4之間形成異質(zhì)結(jié),抑制了光生電子-空穴對(duì)的復(fù)合,從而提高了催化劑的活性。自由基捕獲實(shí)驗(yàn)進(jìn)一步表明,超氧負(fù)離子自由基(·O2-)是催化降解RhB和苯酚的主要活性物種。

    一維棒狀BiPO4微晶;g-C3N4量子點(diǎn);表面修飾;活性增強(qiáng)機(jī)理

    0 Introduction

    During the past few decades,semiconductorbased photocatalysis has been widely investigated for its potential application in environmental remediation and solar energy transformation.Up to date,the most strategy to construct efficient visible-responsive photocatalyst is to extend the light absorption range,and prolong the life of photogenerated charge carriers by element doping and surfacemodification[1-3].Unfortunately,element doping is difficult to be controlled,and low thermal stability,which limits its application[4-5]. Therefore,the surface modification has become an important strategy is to develop more efficient photocatalyst with visible light responsiveness and low recombination rate of photogenerated electron and holes[6-8].

    As one of an important Bi-based photocatalyst materials,BiPO4has receivedmuch attention owing to itpotential applications as a oxy-acid saltphotocatalyst with wide band-gap and high separation efficiency of e-/h+pairs[9].Moreover,PO43-helps the e-/h+separation, which plays an important role in its excellent photocatlaytic activity.However,the potential application of BiPO4is limited by inherent constraints such as inefficient use of the visible portion and low lifetime of photogenerated carriers.So,the photocatalytic efficiency of BiPO4needs further enhancement prior to practical applications[10-13].Graphitic carbon nitride(g-C3N4)is a novelmetal free organic photocatalystwith a narrow band gap of 2.7 eV[14],which make it can utilize visible light directly.In addition, g-C3N4is extremely stable owing to its tristriazine-ring structure and high degree of condensation[15].So,ithas been widely used as a narrow band gap semiconductor to construct hetero-photocatalyst by coupling over wider band gap semiconductor photocatalyst.Recently, Zhu′s groups have prepared the core/hell structured g-C3N4/BiPO4photocatalyst via ultrasonic dispersion method[16].Although core/hell structured g-C3N4/BiPO4exhibits high photocatalytic activities,the preparation process is high energy consumption.So,it′s vital to explore the facile and practicable method for fabrication g-C3N4/BiPO4photocatalyst.Very recently,Lietal. reported a spherical g-C3N4/BiPO4composite via a associated sonochemical and heat-treating process and the experimental results revealed that g-C3N4/BiPO4exhibited high photocatalytic activity for methyl orange[17].The above work inspired us to construct g-C3N4/BiPO4composite photocatalyst and investigate it activity enhancementmechanism.

    Very recently,we have successfully fabricated AgBr/BiPO4heterojunction by loading AgBr QDs on the surface of BiPO4microcrystals[18].In thiswork, one-dimensional(1D)rod-like BiPO4was designed and fabricated by thehydrothermalmethod according to ourprevious report[18-19].Then,g-C3N4QDswasdecorated on the surface of rod-like BiPO4to construct the novel heterojunctions via the followed impregnation-calcinations process.Furthermore,the mechanism of enhanced catalytic activity for g-C3N4/BiPO4heterojunctionswas also discussed.

    1 Experimental section

    1.1Sample preparation

    The g-C3N4/BiPO4were obtained by a simple impregnation-calcinations processmethod.In a typical procedure,a certain amountofmelamine was dissolved in methanol.Then,1.0 g as-prepared BiPO4was dispersed in the above solution and vigorously stirred for 60 min to obtain a uniform suspension and then dried to get dry powder.Finally,the powder was heated to 550℃with speed of 2℃·min-1in muffle furnace,then kept for 4 h,and the resulted powders were ground for further use.According to above method,the contents of g-C3N4in g-C3N4/BiPO4heterojunction range from 2.0%to 20.0%(w/w,the same below)were prepared.

    1.2Characterizations

    X-ray diffraction(XRD)patterns were measured with a Shimadzu XRD-7000 X-ray diffractometer using Cu Kαradiation.Scanning electron microscopy(SEM) images and energy dispersive X-ray spectroscopy(EDS) maps were obtained with a Hitachi a JEOL JSM-6610LV field emission scanning electron microscope. Transmission electron microscopy(TEM)observations were performed on a JEOL JEM-2100 electron microscope with an accelerating voltage of 200 kV. Diffuse reflectance spectra(UV-Vis-DRS)of the samples were recorded on a Shimadzu UV-2550 UVVisible spectrometer using BaSO4as the reference.

    1.3Photocatalytic activity test

    The photocatalytic activities of samples were evaluated by degradation rhodamine B(RhB)and phenol under visible light irradiation of a 400 W metal halide lamp with a cutoff filter to cut off the lightbelow 420 nm.The experiment detailwas similar to our previous report[18].Chemical oxygen demand (COD)was determined at a COD rapid monitor(5B-3B,LanHua Co.,LTD,China).To investigate the active species generated in the photocatalytic system, different scavengers,including tertiary butanol(TBA, 10 mmol·L-1),benzoquinone(BQ),ethylenediamine tetraacetic acid disodium salt(EDTA-2Na,10mmol· L-1)[20-22],were introduced into the photocatalysis solution to examine·OH,O2-·and h+,respectively. Theexperimentalprocedureswere conducted as follows: 200 mg of photocatalyst and 200 mL fresh aqueous solution of RhB was continuously magnetically stirred in dark for 1.0 h to establish an adsorption/desorption equilibrium of solution.Then,scavenger was added into the solution to obtained a concentration of 10 mmol·L-1.At given irradiation time intervals,then,5 mL of the suspension were sampled,centrifuged to remove the catalyst particles,and measured the concentration of RhB.

    2 Result and discussion

    2.1XRD,SEM and EDS of g-C3N4/BiPO4

    Fig.1exhibited the XRD patterns of as-prepared samples.It is clearly seen that the diffraction peaks of samples could be assigned to orthorhombic g-C3N4(JCPDS No.08-0209)and monoclinic BiPO4(JCPDS No.89-0287)[13,16].Because some characteristic perks of g-C3N4were near those of BiPO4,the intensity changes in the BiPO4peaks were not obvious.In comparison, the intensitiesof the peaks at29.08 was clearly raised in the g-C3N4/BiPO4composites with an increasing amount of g-C3N4.Meanwhile,no impurities were detected,indicating the high purity of the obtained samples.

    <1),且各件產(chǎn)品是否為不合格品相互獨(dú)立.

    Fig.1 XRD patterns of g-C3N4/BiPO4samples

    Fig.2 SEM and TEM images of samples

    The morphology of the as-synthesized pure-BiPO4,g-C3N4,and g-C3N4/BiPO4composites were observed by SEM.As shown in Fig.2a~b,BiPO4exhibited an 1D rod-like shape with smooth surface. In order to form g-C3N4/BiPO4heterojunctions,g-C3N4QDs were loaded onto the surface of the rod-like BiPO4microcrystals(Fig.2b).The morphology of g-C3N4/BiPO4was not changed obviously because the g-C3N4contentwas very low,but g-C3N4/BiPO4microrod become wider than pure BiPO4.Further information g-C3N4/BiPO4heterojunctions was obtained for TEM images(Fig.2c~d).The locationsofg-C3N4nanoparticles on the surface of rod-like BiPO4are indicated byarrows in the TEM images(Fig.2c).It reveals that high dispersed spherical heteroparticles with size of about 20 nm loaded the surface of rod-like BiPO4. Fig.2d show the lattice fringeof0.336nm,corresponding to the(002)plane of g-C3N4,is clearly observed in the g-C3N4/BiPO4composite and that the interfaces between g-C3N4and BiPO4are smooth,which further verifies the formation of a g-C3N4/BiPO4heterojunction.In addition,it is observation from Fig.2e that pure g-C3N4displays plate-like shape morphology. SEM and TEM information clearly exhibited that g-C3N4QDs were highly dispersed on the surface of BiPO4and form the novel heterojunction structure. Fig.2f indicated that the content of g-C3N4in g-C3N4/ BiPO4in the sampleswere also close to the theoretical calculated value of g-C3N4/BiPO4(inset picture in Fig. 2f).

    2.2UV-Vis-DRS analysis

    UV-Vis DRS spectra of the as-obtained samples are shown in Fig.3.According to Fig.3a,the absorption edge of pure-BiPO4and g-C3N4are occurred at about 320 nm and 465 nm,respectively.Moreover,the g-C3N4/BiPO4composites presented similar absorption characteristics to pure BiPO4due to the low contentg-C3N4of in g-C3N4/BiPO4heterojunction.The efficient visible light absorption abilities ensured that g-C3N4/ BiPO4generated sufficient electron-hole pairs under visible light irradiation.In addition,the band gap energies(Eg)of g-C3N4and BiPO4were calculated according to the formula:(αhγ)2=A(hν-Eg),whereα, h,ν,A and Egstand for the absorption coefficient, Planck′s constant,the light frequency,a constant and band gap energy,respectively[17,19].Therefore,the corresponding Egvalues of g-C3N4,BiPO4and 16.0%g-C3N4/BiPO4were determined from a plot of(αhν)2versus energy(hν)(Fig.3b)and estimated to be 2.6, 3.85 and 3.82 eV,respectively.

    2.3Photocatalytic activity

    Fig.3 UV-Vis-DRS spectra of the as-obtained samples(a)and the band gap energies(Eg)of BiPO4,g-C3N4and 16.0%g-C3N4/BiPO4heterojunction(b)

    The photocatalytic activities of the samples were evaluated by the degradation of RhB and phenol under visible light irradiation.The photocatalytic reactions follow pseudo-first-order kinetics law according to the Langmuir-Hinshelwood model for low concentration pollutant.The kinetics equation can be expressed as follows[23]:ln(C0/Ct)=kt+ln(C0/C1),where k is the pseudo-first-order rate constant,C0is the original concentration of RhB or phenol(10 mg·L-1),C1is the concentration after adsorption,and Ctrepresents the concentration at reaction time t.It can be seen from Fig.4a that the photocatalytic activity is enhanced gradually with the content of g-C3N4increasing from 4%to16%.However,further increasing the contentof g-C3N4in the heterojunctions leads to a decrease in the degradation rate.This resultmay be attributed to the agglomera-tion of g-C3N4QDs in the surface of BiPO4,which can weaken the heterojunction structure and decrease the catalytic activity[24-25].Therefore,a suitable ratio and well dispersion of g-C3N4QDs in the composites are necessary.From Fig.4a,it also can be seen that pure-BiPO4can decompose 12.5%ofRhBafter 10 min illumination.Significantly,g-C3N4/BiPO4composites exhibited improved photocatalytic activities compared to pure BiPO4and pure g-C3N4.In particular, 16.0%g-C3N4/BiPO4showed the best photocatalytic activity than those of the others,corresponding to 97.85%of RhBwith 10min illumination.Fig.4b show the k value obtained from the fitted straight-line plots of ln(Ct/C0)versus time(t),which follow the order: pure-BiPO4<4.0%g-C3N4/BiPO4<8.0%g-C3N4/BiPO4<10.0%g-C3N4/BiPO4<20.0%g-C3N4/BiPO4<16.0%g-C3N4/BiPO4.The results shows that 16%g-C3N4/BiPO4photocatalysts possesses themaximal k value of 0.348 min-1,which is 15 and 4.6 times higher than that of pure BiPO4and g-C3N4,respectively.Moreover,phenol was chosen as another model environmental organic pollutant to further evaluate photocatalytic activity of g-C3N4QDs decorated rod-like BiPO4also investigated (Fig.5a~b).Similar to the RhB results,the g-C3N4QDs decoration on the surface results in an increase of phenol degradation.16%g-C3N4/BiPO4heterostructure also shows the best activity,with constants k=0.178 min-1.Fig.6shows that the COD removal ratio of 16% g-C3N4/BiPO4reaches a value of 87.8%after 60 min of irradiation,while that of pure-BiPO4and g-C3N4is 37.9%and 45.5%,respectively.The COD value reduction of 16%g-C3N4/BiPO4is slower than that of degradation of phenol.It is well-known that mineralization of organic compounds through two steps:ring cleavage and subsequently the oxidation of fragments. In our experiment,the COD removal rate of 16.0%g-C3N4/BiPO4exhibits different behavior before and after 20 min of irradiation.These results confirm that phenol is first ring cleaved and then converted to CO2and H2O.The loss of COD via mineralization can be lowered more than the removed amount of organic pollutants because these parent molecules are decomposed to smaller organic intermediates,and further degradation of these intermediates to CO2andH2Omay occur slowly[19-20].

    Fig.4 Photocatalytic activities of the prepared g-C3N4/BiPO4heterostructure for the RhB(a)and Corresponding k values of the different photocatalysts(b)under visible-light irradiation

    Fig.5 Photocatalytic activities of the g-C3N4/BiPO4composite photocatalysts for the phenol(a)and the corresponding k values of the different photocatalysts(b)under visible-light irradiation

    Table1 SBETvalue and photocatalytic activities of g-C3N4/BiPO4heterojunctions

    Fig.6 COD changes during the course of phenol photodegradation in the presence of pure-BiPO4,g-C3N4and 16%g-C3N4/BiPO4heterojunctions

    To demonstrate the potential applicability of g-C3N4/BiPO4photocatalyst,the stability of the 16%g-C3N4/BiPO4photocatalyst was investigated(Fig.7). After five cycles for photo-degradation of RhB,the catalyst did not exhibit obvious loss of activity,as shown in Fig.7a,confirming thatg-C3N4QDs decorated 1D rod-like BiPO4have high stability and are easy to be recycled.Fig.7b shows phases composition 16.0%g -C3N4/BiPO4did not after five cycles.Therefore,g-C3N4/BiPO4heterojunctions can be used as stable visible-light-responsive photocatalyst.

    2.4Possible photocatalyticm echanism of g-C3N4/ BiPO4heterojunctions

    Fig.7 Repeated experiments of photocatalytic degradation of RhB on 16.0%g-C3N4/BiPO4photocatalystunder visible light irradiation(a)and XRD patterns of 16.0%g-C3N4/BiPO4photocatalyst before and after used for five cycles(b)

    To further investigate the reactive species in the degradation of RhB,TBA,BQ,and EDTA-2Na were introduced as the scavenger of·OH,O2-·and h+, respectively.Fig.8shows the effects of different scavengers on the photocatalytic degradation of RhBover 16%g-C3N4/BiPO4.It can be seen that photocatalytic degradation of RhB was obviously suppressed by BQ and TBA,indicating that O2-·and·OH are the main reactive species.As shown in Fig.8,there is also a slight change for RhB photocatalytic degradation when h+scavenger EDTA-2Na was added.This indicates that h+is also one of the reactive species involved in the RhB photocatalytic oxidation process.

    Fig.8 Photocatalytic degradation of RhB over 16%g-C3N4/BiPO4with the addition of scavengers

    It is known that the generation of O2-·could be via two different processes.On the one hand,RhB can be excited by visible light to form the excited state (RhB*).RhB*then injects electrons into the CB of g-C3N4/BiPO4to form eCB-,which is scavenged by the O2on the surface of the catalyst to form O2-·.So,it is reasonable that RhB may display a weak photosensitization effect on g-C3N4/BiPO4under visible light. On the other hand,when g-C3N4/BiPO4was irradiated under visible light,only g-C3N4could be activated. The electrons and hole were photogenerated in CB and VB of g-C3N4,then move to the empty bottom of the CB of BiPO4.Finally,the electron in the CB of BiPO4could reactwith O2to form O2-·(Fig.9).At the same time,·OH may produced via followed reaction. Based on our experimental results and the discussions above,themechanism of photocatalytic degradation of RhB on the g-C3N4/BiPO4heterojunctions may be proposed,as described in the Eq.(1)~(12):

    Fig.9 Potential of valence and conduction band for g-C3N4and BiPO4to illustrate the photocatalytic enhancementmechanism of g-C3N4/BiPO4heterojunction

    3 Conclusions

    1D rod-like BiPO4micro crystals was synthesized via a hydrothermal.Then,g-C3N4QDs with the size of about20 nm were deposited on the surface of rod-like BiPO4by employing a followed impregnation-calcinations method to construct the novel g-C3N4/BiPO4heterojunctions.The g-C3N4QDs decorated BiPO4exhibits enhanced photocatalytic activity in decomposition of RhB and phenol,which is much higher than thatof pure-BiPO4and g-C3N4,and the content of g-C3N4impacts the catalytic activity of g-C3N4/BiPO4heterojunction.The enhanced activity of as-fabricated g-C3N4/BiPO4heterojunctions is attributed to the efficient separation of electron-hole pairs in g-C3N4/ BiPO4due to the formation of heterojunction between the surface of two semiconductors.Both O2-·and·OH are main reactive species which responsible for thedecomposition of RhB and phenol.Furthermore,g-C3N4/BiPO4has high stability,suggesting that QDs decoration could be a promising strategy for designing new efficient photocatalyst.

    References:

    [1]Tong H,Ouyang SX,Bi Y P,et al.Adv.Mater.,2012,24(1): 229-251

    [2]Kubacka A,Fernández-García M,Colón G.Chem.Rev., 2012,112(3):1555-1614

    [3]Chen X B,Shen S,Guo L,et al.Chem.Rev.,2010,110(11): 6503-6570

    [4]Liu J,Yang Q,Yang W T,et al.J.Mater.Chem.A,2013,1 (26):7760-7766

    [5]Wang W H,Himeda Y,Muckerman JT,et al.Chem.Rev., 2015,115(23):12936-12973

    [6]Paola A D,García-López E,MarcìG,et al.J.Hazard.Mater., 2012,211-212:3-29

    [7]Kudo A,Miseki Y.Chem.Soc.Rev.,2009,38(1):253-278

    [8]Cheng H.F,Huang B B,Wang P,et al.Chem.Commun., 2011,47(25):7054-7056

    [9]Wang Y J,Guan X F,Li L P,et al.CrystEngComm,2012,14 (23):7907-7914

    [10]Wang D J,Zhang J,Guo L.J.Inorg.Mater.,2015,30(7):683 -693

    [11]Lin X P,Xing J C,Wang W D,et al.J.Phys.Chem.C, 2007,111(49):18288-18293

    [12]Geng J,Hou W H,LüY N,et al.Inorg.Chem.,2005,44 (23):8503-8509

    [13]Xu H,Xu Y G,H.Li M,et al.Dalton Trans.,2012,41(12): 3387-3394

    [14]Wang X C,Meada K,Thomas A,et al.Nat.Mater.,2009,8 (1):76-80

    [15]Wang Y,X.Wang C,Antonietti M.Angew.Chem.Int.Ed., 2012,51(1):68-89

    [16]Pan C S,Xu J,Wang Y J,et al.Adv.Funct.Mater.,2012, 22(7):1518-1524

    [17]Li Z S,Li B L,Peng S H,et al.RSC Adv.,2014,4(66): 35144-35148

    [18]Wang D J,Guo L,Zhen Y Z,et al.J.Mater.Chem.A, 2014,2(10):11716-11727

    [19]WANG Dan-Jun(王丹軍),YUE Lin-Lin(岳林林),ZHANG Jie(張潔),et al.J.Synth.Cryst.(人工晶體學(xué)報(bào)),2014,43 (1):2977-2984

    [20]Zhang L S,Wong K H,Chen Z G,et al.App l.Catal.A: Gen.,2009,363(1/2):221-229

    [21]Wang Y J,Lin J,Zong R L,et al.J.Mol.Catal.A:Chem., 2011,349(1/2):13-19

    [22]Lin H L,Cao J,Luo B D,et al.Chin.Sci.Bull.,2012,57 (22):2901-2907

    [23]Li FT,Zhao Y,Hao Y J,etal.J.Hazard.Mater.,2012,239 -240:118-127

    Synthesis of Monodispersed g-C3N4Quantum Dots(QDs)Decorated on the Surface of 1D Rod-like BiPO4w ith Enhanced Photocatalytic Activities

    WANG Dan-Jun*,1SHEN Hui-Dong1GUO Li1,2YUE Lin-Lin1FU Feng*,1
    (1College of Chemistry&Chemical Engineering,Yan′an University,Shaanxi Key Laboratory of Chemical Reaction Engineering,Yan′an,Shaanxi716000,China)
    (2School of Materials Science and Engineering,ShaanxiNormal University,Xi′an 710119,China)

    1D rod-like BiPO4have been successfully synthesized via a hydrothermal process,and g-C3N4quantum dots(QDs)was decorated on the surface of BiPO4to form a novel g-C3N4/BiPO4heterojunction via a followed impregnation-calcinationsmethod.XRD,FE-SEM,HR-TEM,EDSand UV-Vis-DRS techniques were employed to characterize the phase composition,morphology and spectrum properties of as-synthesized samples.The photocatalytic activities of samples were evaluated by degradation of RhB and phenol under visible light irradiation.The results also shows that 16%(w/w)g-C3N4/BiPO4photocatalysts possesses the maximal k value of 0.348 min-1,which is 15 and 4.6 times higher than that of pure BiPO4and g-C3N4,respectively.The catalytic efficiency enhancement of g-C3N4/BiPO4heterojunctions relative to pure-BiPO4can be attributed to the formation of heterojunctions between g-C3N4QDs and BiPO4,which suppresses the recombination of photogenerated electron-holes.The radical scavengers test further confirmed that·O2-was the main reactive species during thephotocatalytic process.Therefore,thiswork provides a facile process for the design of novel and efficient BiPO4-based photocatalystwithmulti-components.

    rod-like BiPO4microcrystal;g-C3N4quantum dots(QDs);decoration;photocatlaytic activity enhancementmechanism

    All reagents were analytical purity and without further purification.Rod-like BiPO4microcrystalwas prepared according to our previous report[18-19]. In a typical process,5 mmol Bi(NO3)3·5H2O was dissolved in 5 mL HNO3(4.0 mol·L-1),then NH4H2PO4solution were slowly added to above Bi(NO3)3solution drop-wise under vigorously stirring.Afterward,the suspension was transported into 50 mL Teflon-lined autoclave and heated at 190℃for 24 h.After hydrothermal reaction,the autoclave was naturally cooled to room temperature.Then,the resultedprecipitates were collected,washed with deionized water and absolute ethanol for several times,and dried in a vacuum oven at80℃for 4 h.

    O647.32

    A

    1001-4861(2016)07-1246-09

    10.11862/CJIC.2016.170

    2016-01-02。收修改稿日期:2016-05-23。

    國(guó)家自然科學(xué)基金(No.21373159)、陜西省科技項(xiàng)目(No.2013K11-08,2013SZS20-P01,2015YG174)、陜西省教育廳科研基金項(xiàng)目(No.15JS119)、延安大學(xué)基金(No.2013YDZ-07,YDBK2013-11)和延安大學(xué)研究生科研創(chuàng)新項(xiàng)目(No.YCX201602)資助項(xiàng)目。

    *通信聯(lián)系人。E-mail:wangdj761118@163.com,F(xiàn)engFu@126.com

    猜你喜歡
    延安大學(xué)棒狀微晶
    雪花不只有六邊形片狀的
    大自然探索(2023年5期)2023-06-19 08:08:53
    延安大學(xué)王必成教授書寫
    《延安大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)》征稿啟事
    鋰鋁硅微晶玻璃不混溶及其析晶探討
    Research on the Application of English Reading Strategies for Junior High School Students
    無(wú) 題
    文苑(2016年17期)2016-11-26 12:40:05
    Li2O加入量對(duì)Li2O-Al2O3-SiO2微晶玻璃結(jié)合劑性能的影響
    水熱法制備NaSm(MoO4)2-x(WO4)x固溶體微晶及其發(fā)光性能
    巰基-端烯/炔點(diǎn)擊反應(yīng)合成棒狀液晶化合物
    微晶玻璃的制備、分類及應(yīng)用評(píng)述
    河南科技(2014年16期)2014-02-27 14:13:13
    亚洲成av片中文字幕在线观看| 一卡2卡三卡四卡精品乱码亚洲| 黄色丝袜av网址大全| 欧美日本视频| 亚洲精品国产区一区二| 啦啦啦免费观看视频1| 亚洲狠狠婷婷综合久久图片| 国产视频内射| 国产亚洲精品av在线| 欧美三级亚洲精品| 亚洲精品一区av在线观看| 一级a爱片免费观看的视频| 精品一区二区三区视频在线观看免费| 久久热在线av| 亚洲男人的天堂狠狠| www国产在线视频色| 中文字幕精品亚洲无线码一区 | e午夜精品久久久久久久| av片东京热男人的天堂| 久久这里只有精品19| 可以免费在线观看a视频的电影网站| 国产久久久一区二区三区| 50天的宝宝边吃奶边哭怎么回事| 亚洲一区二区三区不卡视频| 欧美精品啪啪一区二区三区| 女同久久另类99精品国产91| 亚洲国产毛片av蜜桃av| 欧美激情 高清一区二区三区| 国产视频一区二区在线看| 91老司机精品| 国产激情偷乱视频一区二区| 亚洲国产欧美网| 美国免费a级毛片| 成人永久免费在线观看视频| 国产伦一二天堂av在线观看| 在线国产一区二区在线| 久久精品国产综合久久久| 真人做人爱边吃奶动态| 真人做人爱边吃奶动态| 亚洲一区二区三区不卡视频| 又黄又爽又免费观看的视频| 欧美精品亚洲一区二区| 国产精品一区二区精品视频观看| 久久精品91蜜桃| 嫩草影视91久久| 亚洲片人在线观看| 亚洲男人天堂网一区| 在线观看免费日韩欧美大片| 精品一区二区三区av网在线观看| 又紧又爽又黄一区二区| 一进一出好大好爽视频| 国产真实乱freesex| 精品国产乱子伦一区二区三区| 亚洲成人免费电影在线观看| 国产午夜精品久久久久久| 操出白浆在线播放| 成人精品一区二区免费| 自线自在国产av| 国产精品九九99| 国产真实乱freesex| 窝窝影院91人妻| 久久久久久九九精品二区国产 | 久久人妻福利社区极品人妻图片| 99热这里只有精品一区 | 日韩欧美在线二视频| 久久久久国产精品人妻aⅴ院| 午夜福利欧美成人| 99riav亚洲国产免费| 日韩欧美在线二视频| 亚洲专区国产一区二区| 在线天堂中文资源库| 在线观看免费午夜福利视频| 麻豆一二三区av精品| 大型黄色视频在线免费观看| 日韩视频一区二区在线观看| 精品久久久久久成人av| 动漫黄色视频在线观看| 久久久国产精品麻豆| 无人区码免费观看不卡| www日本在线高清视频| 国产真人三级小视频在线观看| 国产成人精品久久二区二区91| 欧美中文综合在线视频| 亚洲电影在线观看av| 亚洲精品色激情综合| 男人操女人黄网站| 香蕉久久夜色| 久久精品aⅴ一区二区三区四区| 精品久久久久久久末码| 亚洲精品av麻豆狂野| 成人国产一区最新在线观看| 黑丝袜美女国产一区| 国产视频内射| 变态另类成人亚洲欧美熟女| 亚洲精品国产精品久久久不卡| 久99久视频精品免费| 亚洲av中文字字幕乱码综合 | 亚洲精品国产一区二区精华液| 国产精品免费视频内射| 久久久水蜜桃国产精品网| 在线观看日韩欧美| 老司机深夜福利视频在线观看| 亚洲精品一区av在线观看| 国产成年人精品一区二区| 亚洲精品美女久久av网站| 精品国内亚洲2022精品成人| av免费在线观看网站| 啦啦啦免费观看视频1| 日韩欧美一区二区三区在线观看| 黄色视频,在线免费观看| 欧美乱妇无乱码| 色尼玛亚洲综合影院| 在线十欧美十亚洲十日本专区| 久久精品人妻少妇| 国产伦在线观看视频一区| 国产成人欧美在线观看| 欧美绝顶高潮抽搐喷水| 人人妻,人人澡人人爽秒播| 啦啦啦 在线观看视频| 给我免费播放毛片高清在线观看| 国产成人欧美在线观看| 精品国内亚洲2022精品成人| 亚洲专区字幕在线| 日本黄色视频三级网站网址| 久久久久久九九精品二区国产 | 婷婷精品国产亚洲av在线| 人人妻人人澡欧美一区二区| 搡老岳熟女国产| 在线免费观看的www视频| 深夜精品福利| 成在线人永久免费视频| 日韩av在线大香蕉| 好男人在线观看高清免费视频 | 男人舔奶头视频| 丁香欧美五月| 亚洲熟妇熟女久久| 99热6这里只有精品| 在线观看舔阴道视频| 亚洲国产毛片av蜜桃av| 久9热在线精品视频| 在线国产一区二区在线| 亚洲国产看品久久| 黄片大片在线免费观看| 99国产精品99久久久久| 国产午夜福利久久久久久| 国内精品久久久久久久电影| 欧美中文综合在线视频| 日本一本二区三区精品| 国产精品亚洲一级av第二区| 国产91精品成人一区二区三区| 国产av不卡久久| 国产一区二区三区在线臀色熟女| 午夜亚洲福利在线播放| 中文字幕精品亚洲无线码一区 | 久久精品亚洲精品国产色婷小说| 两性午夜刺激爽爽歪歪视频在线观看 | 黄频高清免费视频| 中文字幕人妻熟女乱码| 亚洲国产精品久久男人天堂| 精品久久久久久久人妻蜜臀av| 黄色成人免费大全| 国产精品影院久久| 91麻豆精品激情在线观看国产| 亚洲九九香蕉| 色精品久久人妻99蜜桃| 免费看日本二区| 可以在线观看毛片的网站| 香蕉久久夜色| 久久欧美精品欧美久久欧美| 两个人视频免费观看高清| 久久热在线av| 午夜福利欧美成人| 国产麻豆成人av免费视频| 在线十欧美十亚洲十日本专区| 在线免费观看的www视频| 久久这里只有精品19| 成年版毛片免费区| 淫秽高清视频在线观看| 欧洲精品卡2卡3卡4卡5卡区| 999精品在线视频| 日韩欧美免费精品| 看免费av毛片| 国产蜜桃级精品一区二区三区| 在线观看日韩欧美| 麻豆成人av在线观看| 欧美性猛交黑人性爽| 国产精品久久电影中文字幕| 日本五十路高清| 色精品久久人妻99蜜桃| 无限看片的www在线观看| 免费av毛片视频| 18禁黄网站禁片午夜丰满| 国产精品国产高清国产av| 男女床上黄色一级片免费看| 午夜福利成人在线免费观看| 日韩免费av在线播放| 久久久久久久精品吃奶| 亚洲av中文字字幕乱码综合 | 脱女人内裤的视频| 国产免费av片在线观看野外av| 亚洲成人久久爱视频| 手机成人av网站| 日韩三级视频一区二区三区| 精品久久久久久久久久久久久 | 后天国语完整版免费观看| 中文字幕精品免费在线观看视频| 美女高潮喷水抽搐中文字幕| 亚洲国产中文字幕在线视频| 久久人人精品亚洲av| 久久精品成人免费网站| 久久精品亚洲精品国产色婷小说| 免费av毛片视频| 在线观看午夜福利视频| 久久精品国产清高在天天线| 99在线人妻在线中文字幕| 久久亚洲真实| 成人18禁在线播放| 亚洲色图av天堂| 免费看a级黄色片| 一夜夜www| 性欧美人与动物交配| 亚洲一区二区三区不卡视频| 日本成人三级电影网站| 黄片小视频在线播放| 久久久久国内视频| 91大片在线观看| 侵犯人妻中文字幕一二三四区| 国产精品影院久久| 亚洲九九香蕉| 高清毛片免费观看视频网站| 成年免费大片在线观看| 欧美最黄视频在线播放免费| 成人18禁高潮啪啪吃奶动态图| 亚洲三区欧美一区| 国产蜜桃级精品一区二区三区| 国产精品久久久久久人妻精品电影| 精品日产1卡2卡| 精品久久久久久久久久免费视频| 国产午夜福利久久久久久| 亚洲男人天堂网一区| 后天国语完整版免费观看| 精品久久久久久成人av| 午夜日韩欧美国产| 国产精品亚洲一级av第二区| avwww免费| 午夜福利视频1000在线观看| 一区二区三区高清视频在线| 悠悠久久av| 欧美av亚洲av综合av国产av| 在线天堂中文资源库| 亚洲黑人精品在线| 欧美一级毛片孕妇| 国语自产精品视频在线第100页| 97人妻精品一区二区三区麻豆 | 在线观看www视频免费| 国产精品久久久久久精品电影 | 国产精品免费视频内射| 成人国产一区最新在线观看| 99在线人妻在线中文字幕| 操出白浆在线播放| 91九色精品人成在线观看| 日韩成人在线观看一区二区三区| cao死你这个sao货| 午夜久久久在线观看| 激情在线观看视频在线高清| 久久久国产精品麻豆| 成人18禁高潮啪啪吃奶动态图| 丁香欧美五月| 久久久国产成人精品二区| 免费在线观看影片大全网站| 男人的好看免费观看在线视频 | 草草在线视频免费看| 美女 人体艺术 gogo| 亚洲精品在线美女| 在线观看午夜福利视频| 婷婷精品国产亚洲av| 欧美激情高清一区二区三区| 中文字幕av电影在线播放| 国产私拍福利视频在线观看| 亚洲国产中文字幕在线视频| 亚洲国产看品久久| 精品日产1卡2卡| av中文乱码字幕在线| 好男人在线观看高清免费视频 | 三级毛片av免费| 精品国产超薄肉色丝袜足j| 国产成人精品无人区| 亚洲国产欧美网| 亚洲精品美女久久av网站| 中文字幕最新亚洲高清| 在线永久观看黄色视频| 国产激情久久老熟女| 村上凉子中文字幕在线| 日韩有码中文字幕| 午夜福利高清视频| 亚洲精品中文字幕一二三四区| 日韩欧美国产在线观看| 欧美日韩黄片免| 在线永久观看黄色视频| aaaaa片日本免费| 欧美 亚洲 国产 日韩一| 麻豆久久精品国产亚洲av| 51午夜福利影视在线观看| 天堂影院成人在线观看| 精品国产亚洲在线| 91成年电影在线观看| 国产亚洲欧美精品永久| 一区二区三区激情视频| 一二三四社区在线视频社区8| 日韩大码丰满熟妇| 亚洲专区字幕在线| 国产免费av片在线观看野外av| 男人操女人黄网站| 亚洲国产欧美网| av欧美777| 午夜老司机福利片| 亚洲成人免费电影在线观看| 亚洲七黄色美女视频| 中文字幕av电影在线播放| 亚洲国产看品久久| 久9热在线精品视频| 亚洲欧美精品综合一区二区三区| 国产精品九九99| 成人国语在线视频| 久久香蕉精品热| 99国产综合亚洲精品| 国产成人欧美在线观看| 亚洲国产高清在线一区二区三 | 黄色丝袜av网址大全| 村上凉子中文字幕在线| 麻豆国产av国片精品| 女性被躁到高潮视频| 久久久水蜜桃国产精品网| 欧美另类亚洲清纯唯美| 人人妻人人澡欧美一区二区| 久久九九热精品免费| 超碰成人久久| 亚洲国产欧洲综合997久久, | 亚洲国产精品sss在线观看| 一边摸一边抽搐一进一小说| 男女那种视频在线观看| 欧美日本亚洲视频在线播放| 亚洲国产欧美一区二区综合| 欧美日本视频| 亚洲国产欧洲综合997久久, | 欧美日本亚洲视频在线播放| 国产黄a三级三级三级人| 亚洲免费av在线视频| 老司机深夜福利视频在线观看| 久久亚洲精品不卡| 国内精品久久久久久久电影| 国产成人欧美| 在线观看午夜福利视频| 亚洲国产精品合色在线| 丝袜美腿诱惑在线| 黄色丝袜av网址大全| 午夜视频精品福利| 国产一区二区三区在线臀色熟女| 国产97色在线日韩免费| 久久久久国产精品人妻aⅴ院| 色综合亚洲欧美另类图片| tocl精华| 黄色a级毛片大全视频| 美女大奶头视频| 午夜精品在线福利| 亚洲午夜理论影院| 亚洲片人在线观看| 一本久久中文字幕| 亚洲av片天天在线观看| 两个人免费观看高清视频| 操出白浆在线播放| 亚洲欧美精品综合一区二区三区| 老汉色av国产亚洲站长工具| 首页视频小说图片口味搜索| 欧美日韩瑟瑟在线播放| 久久久水蜜桃国产精品网| 国产精品永久免费网站| 婷婷精品国产亚洲av在线| 亚洲五月婷婷丁香| 麻豆久久精品国产亚洲av| 久9热在线精品视频| 日韩欧美 国产精品| 午夜免费激情av| 夜夜看夜夜爽夜夜摸| 桃红色精品国产亚洲av| 欧美亚洲日本最大视频资源| 可以在线观看的亚洲视频| 嫩草影视91久久| 免费在线观看成人毛片| 村上凉子中文字幕在线| 亚洲avbb在线观看| 免费av毛片视频| 九色国产91popny在线| 国产精品二区激情视频| 人妻丰满熟妇av一区二区三区| 亚洲久久久国产精品| 精品国内亚洲2022精品成人| 国产精品爽爽va在线观看网站 | 亚洲成av片中文字幕在线观看| 日韩大尺度精品在线看网址| 久久久久久大精品| 搞女人的毛片| 中亚洲国语对白在线视频| 亚洲人成网站在线播放欧美日韩| 久9热在线精品视频| 精品电影一区二区在线| 日本撒尿小便嘘嘘汇集6| 最好的美女福利视频网| 欧美日韩亚洲国产一区二区在线观看| 一进一出好大好爽视频| 啦啦啦韩国在线观看视频| aaaaa片日本免费| 99国产极品粉嫩在线观看| 欧美丝袜亚洲另类 | 午夜福利高清视频| 久久久久久亚洲精品国产蜜桃av| av在线播放免费不卡| √禁漫天堂资源中文www| 国产一卡二卡三卡精品| 日日爽夜夜爽网站| 久久人妻福利社区极品人妻图片| 成年版毛片免费区| 青草久久国产| 此物有八面人人有两片| 亚洲成国产人片在线观看| 男女下面进入的视频免费午夜 | 午夜福利欧美成人| 久久午夜综合久久蜜桃| 国产午夜精品久久久久久| 黑人操中国人逼视频| 日本a在线网址| 国产精品98久久久久久宅男小说| 国产av又大| 此物有八面人人有两片| 成人三级做爰电影| 黄片小视频在线播放| 可以在线观看毛片的网站| 黑丝袜美女国产一区| 国产精品乱码一区二三区的特点| 又大又爽又粗| 成人av一区二区三区在线看| 国产区一区二久久| 别揉我奶头~嗯~啊~动态视频| 亚洲精品中文字幕在线视频| 精品无人区乱码1区二区| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品 欧美亚洲| 国产精品,欧美在线| 一级毛片女人18水好多| 天天添夜夜摸| 国产精品一区二区精品视频观看| 最近在线观看免费完整版| 午夜福利在线在线| 成熟少妇高潮喷水视频| 欧美黑人欧美精品刺激| 亚洲中文日韩欧美视频| 亚洲av第一区精品v没综合| 亚洲色图av天堂| 青草久久国产| 人人妻人人澡欧美一区二区| 欧美国产日韩亚洲一区| 长腿黑丝高跟| 亚洲一区二区三区不卡视频| 视频在线观看一区二区三区| 成人av一区二区三区在线看| 少妇的丰满在线观看| 日韩欧美一区二区三区在线观看| 日日夜夜操网爽| 免费看美女性在线毛片视频| 一级a爱视频在线免费观看| 午夜精品在线福利| 久久人人精品亚洲av| svipshipincom国产片| 一二三四社区在线视频社区8| 亚洲国产日韩欧美精品在线观看 | ponron亚洲| 少妇的丰满在线观看| 香蕉av资源在线| 丁香六月欧美| 69av精品久久久久久| 亚洲 欧美 日韩 在线 免费| 久久这里只有精品19| 一a级毛片在线观看| 亚洲人成网站高清观看| 成在线人永久免费视频| 久久国产精品影院| 国产麻豆成人av免费视频| 久久国产精品男人的天堂亚洲| 级片在线观看| 免费高清在线观看日韩| 黄色成人免费大全| 黄色片一级片一级黄色片| 国产不卡一卡二| 高潮久久久久久久久久久不卡| 淫秽高清视频在线观看| 亚洲精品一卡2卡三卡4卡5卡| 久久香蕉激情| 国产精品久久久av美女十八| 久久久久久久久免费视频了| 欧美日韩亚洲综合一区二区三区_| 精品福利观看| 99精品久久久久人妻精品| 97人妻精品一区二区三区麻豆 | 婷婷六月久久综合丁香| 久久 成人 亚洲| 两个人视频免费观看高清| 国产一级毛片七仙女欲春2 | 在线免费观看的www视频| 亚洲午夜理论影院| 18美女黄网站色大片免费观看| 12—13女人毛片做爰片一| 可以免费在线观看a视频的电影网站| 久久中文看片网| 精品国产国语对白av| 午夜福利在线观看吧| 伊人久久大香线蕉亚洲五| 精品日产1卡2卡| 一二三四社区在线视频社区8| 一本大道久久a久久精品| 男人的好看免费观看在线视频 | 黄频高清免费视频| 国产午夜福利久久久久久| 十分钟在线观看高清视频www| 亚洲国产看品久久| 中文字幕av电影在线播放| 亚洲aⅴ乱码一区二区在线播放 | 色综合站精品国产| 亚洲精品一卡2卡三卡4卡5卡| 日本一区二区免费在线视频| 欧美黑人精品巨大| 久久久久久久久中文| 午夜福利在线观看吧| 国产精品影院久久| 中文在线观看免费www的网站 | 夜夜夜夜夜久久久久| 免费电影在线观看免费观看| 欧美日本视频| 在线观看免费日韩欧美大片| 欧美av亚洲av综合av国产av| 高潮久久久久久久久久久不卡| 日本a在线网址| 老司机靠b影院| 精品午夜福利视频在线观看一区| 变态另类丝袜制服| 国语自产精品视频在线第100页| 18禁黄网站禁片午夜丰满| 日韩欧美一区视频在线观看| 成人精品一区二区免费| 视频在线观看一区二区三区| 国产三级在线视频| 国产成人av激情在线播放| 欧美日韩亚洲综合一区二区三区_| 亚洲国产高清在线一区二区三 | 波多野结衣高清无吗| 国产高清videossex| 亚洲人成77777在线视频| 一边摸一边做爽爽视频免费| 女人被狂操c到高潮| 亚洲熟妇中文字幕五十中出| 老司机深夜福利视频在线观看| 好男人在线观看高清免费视频 | 精品国内亚洲2022精品成人| 国产精品久久久久久人妻精品电影| 天天躁夜夜躁狠狠躁躁| 黄色丝袜av网址大全| 国产精品av久久久久免费| 久久香蕉精品热| 国产成人欧美在线观看| 变态另类丝袜制服| 国产精品免费视频内射| 久久久久久亚洲精品国产蜜桃av| www.999成人在线观看| 婷婷亚洲欧美| 18禁黄网站禁片午夜丰满| 欧美午夜高清在线| 中文字幕精品免费在线观看视频| 麻豆成人午夜福利视频| 一区福利在线观看| 色播在线永久视频| 青草久久国产| 男女下面进入的视频免费午夜 | АⅤ资源中文在线天堂| 亚洲色图av天堂| 免费在线观看成人毛片| 99精品欧美一区二区三区四区| 欧美性长视频在线观看| bbb黄色大片| 国产精品,欧美在线| 亚洲va日本ⅴa欧美va伊人久久| 欧美日韩福利视频一区二区| 男女做爰动态图高潮gif福利片| 中文字幕av电影在线播放| 久久久久国内视频| 精华霜和精华液先用哪个| 麻豆一二三区av精品| 黄片大片在线免费观看| 国产又色又爽无遮挡免费看| 亚洲午夜理论影院| 精品欧美国产一区二区三| 男女下面进入的视频免费午夜 | 99在线人妻在线中文字幕| 国产精品98久久久久久宅男小说| 成年免费大片在线观看| 波多野结衣高清作品| 国产精品一区二区精品视频观看| 久久久久久亚洲精品国产蜜桃av| 在线天堂中文资源库| 在线观看免费视频日本深夜| 老司机午夜福利在线观看视频| 国产精品日韩av在线免费观看| 亚洲三区欧美一区| 美女扒开内裤让男人捅视频| 久久中文字幕人妻熟女| 国产精品综合久久久久久久免费| 伦理电影免费视频|