• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ischemic preconditioning protects against ischemic brain injury

    2016-12-02 07:05:34XiaomengMaMeiLiuYingyingLiuLiliMaYingJiangXiaohongChen
    關(guān)鍵詞:門(mén)路拮據(jù)無(wú)子

    Xiao-meng Ma, Mei Liu, Ying-ying Liu, Li-li Ma, Ying Jiang, Xiao-hong Chen

    Department of Neurology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China

    RESEARCH ARTICLE

    Ischemic preconditioning protects against ischemic brain injury

    Xiao-meng Ma#, Mei Liu#, Ying-ying Liu, Li-li Ma, Ying Jiang, Xiao-hong Chen*

    Department of Neurology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China

    How to cite this article: Ma XM, Liu M, Liu YY, Ma LL, Jiang Y, Chen XH (2016) Ischemic preconditioning protects against ischemic brain injury. Neural Regen Res 11(5)∶765-770.

    Funding: This work was supported by grants from the National Natural Science Foundation of China, No. 81071068, the Israel Science Foundation-the National Natural Science Foundation of China (Joint Program), No. 813111290; and the Natural Science Foundation of Guangdong Province in China, No. 2014A030313172.

    Graphical Abstract

    # These authors contributed equally to this work.

    orcid: 0000-0001-9864-1647 (Xiao-meng Ma)

    In this study, we hypothesized that an increase in integrin αvβ3and its co-activator vascular endothelial growth factor play important neuroprotective roles in ischemic injury. We performed ischemic preconditioning with bilateral common carotid artery occlusion for 5 minutes in C57BL/6J mice. This was followed by ischemic injury with bilateral common carotid artery occlusion for 30 minutes. The time interval between ischemic preconditioning and lethal ischemia was 48 hours. Histopathological analysis showed that ischemic preconditioning substantially diminished damage to neurons in the hippocampus 7 days after ischemia. Evans Blue dye assay showed that ischemic preconditioning reduced damage to the blood-brain barrier 24 hours after ischemia. This demonstrates the neuroprotective effect of ischemic preconditioning. Western blot assay revealed a significant reduction in protein levels of integrin αvβ3, vascular endothelial growth factor and its receptor in mice given ischemic preconditioning compared with mice not given ischemic preconditioning 24 hours after ischemia. These findings suggest that the neuroprotective effect of ischemic preconditioning is associated with lower integrin αvβ3and vascular endothelial growth factor levels in the brain following ischemia.

    nerve regeneration; brain injury; integrin αVβ3; vascular endothelial growth factor; vascular endothelial growth factor receptor; vascular endothelial growth factor receptor-2; fetal liver kinase 1; ischemic preconditioning; ischemic tolerance; global cerebral ischemia; cerebral ischemia; cerebral infarction; NSFC grant; neural regeneration

    Introduction

    Cerebral ischemia is a leading cause of death and disability globally. Developing new therapeutic strategies for cerebral ischemic injury is a major aim of scientists. Ischemic preconditioning (IP), which induces ischemic tolerance, is a brief, non-lethal, ischemic event one or several days prior to subsequent severe ischemia. Previous studies have found that the neuroprotective effects of IP are mediated by an attenuation of the mechanisms of injury, the activation of innate defense mechanisms, and the enhancement of endogenous repair processes (Gidday et al., 2006). However, the detailed mechanisms remain unclear.

    Integrin αVβ3, a member of the integrin family, is involved in angiogenesis and tumor growth, and has been shown to play an important role in animal models of focal brain ischemia (Haring et al., 1996; Okada et al., 1996; Abumiya et al., 1999; Del Zoppo and Mabuchi, 2003). In primates, integrin αVβ3is not expressed in the non-ischemic basal ganglia, but is expressed exclusively in the microvessels of the ischemic basal ganglia after middle cerebral artery occlusionor middle cerebral artery occlusion/reperfusion (Okada et al., 1996). Furthermore, inhibition of integrin αVβ3preserves microvascular patency, reduces blood-brain barrier (BBB) breakdown, and ameliorates ischemic damage in animal models of focal brain ischemia (Abumiya et al., 2000; Shimamura et al., 2006a, b; Kiessling et al., 2009).

    Figure 1 IP improved the histopathology of the hippocampus following global cerebral ischemia in mice (hematoxylin-eosin staining).

    Figure 2 IP reduced blood-brain barrier dysfunction in mice with global cerebral ischemia.

    Vascular endothelial growth factor (VEGF) is one of the most important growth factors involved in vasculogenesis and angiogenesis. Park et al. (2014) found that IP dramatically augments VEGF and phosphorylated fetal liver kinase 1 (pFlk-1) immunoreactivity in the pyramidal cells of the hippocampal CA1 region after transient cerebral ischemia in gerbils. Previous studies demonstrated that the expression levels of VEGF and integrin αVβ3are closely related (Abumiya et al., 1999), and that integrin αVβ3plays a role in the activation of the VEGF receptor (Soldi et al., 1999). In animal models of focal brain ischemia, integrin αVβ3antagonists appear to ameliorate damage by modulating VEGF and its receptor (Shimamura et al., 2006a). This suggests that increased expression of integrin αVβ3may play a harmful role during early cerebral ischemic injury, and that the neuroprotective effects of integrin αVβ3inhibition may be mediated through the modulation of VEGF and its receptor.

    Previous studies of integrin αVβ3focused on ischemic brain damage, but the role of integrin αVβ3in IP-mediated neuroprotection has rarely been reported. Liu et al. (2010) demonstrated that IP effectively attenuates the upregulation of integrin αVβ3mRNA expression after ischemia. Therefore, in this study, we investigated the effect of IP on integrin αVβ3, VEGF and its receptor to clarify the relationship betweenthese proteins and neuroprotection.

    Figure 3 IP prevented the increase in integrin αVand β3expression in the cerebral cortex and hippocampus of mice with global cerebral ischemia 24 hours after the ischemic event.

    Figure 4 IP prevented the increase in VEGF and pFlk-1 expression in the cerebral cortex and hippocampus in mice with global cerebral ischemia 24 hours after ischemia.

    Materials and Methods

    Animals

    A total of 78 clean male C57BL/6J mice weighing 22—25 g (certificate No. 0052588) were supplied by the Experimental Animal Center of Sun Yat-sen University in China and housed in separate cages under standard conditions. The animals were fed a standard diet and maintained under a 12-hour light-dark cycle. All surgery was performed under chloral hydrate (350 mg/kg, intraperitoneally) anesthesia, and all efforts were made to minimize pain and stress to the animals. The procedures conformed to the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health (NIH Publication No. 85-23, revised 1996). The animal experiments were performed in accordance with international ethical standards and were approved by the research ethics committee of Sun Yat-sen University in China.

    Surgical operation

    A total of 78 mice were randomly divided into the following groups: sham operation (Sham; n = 18), IP (n = 20), ischemia (Isch; n = 20), and IP followed by ischemia (IP + Isch; n = 20). The two-vessel occlusion model of global cerebral ischemia was used (Liu et al., 2010). To induce lethal ischemia, mice were anesthetized with chloral hydrate (350 mg/kg, intraperitoneally) (Weijia Technology, Guangzhou, China) and allowed spontaneous respiration throughout the surgical procedure. Through a midline cervical incision, the bilateral common carotid arteries were exposed and clipped with two vascular clamps simultaneously for 30 minutes. The ischemic preconditioning was produced in a similar manner for a period of 5 minutes (Wu et al., 2001; Cho et al., 2005). In the IP + Isch group, the second ischemic insult (30 minutes) was performed 48 hours following the preconditioning ischemic event. Sham-operated animals received the same surgical procedures except that the carotid arteries were not clipped. The mice were placed on a heating pad after surgery until they recovered from anesthesia.

    Evaluation of BBB disruption

    The integrity of the BBB was assessed by quantitative measurement of Evans Blue (Sigma-Aldrich, St. Louis, MO, USA) content 24 hours after ischemia or sham surgery in eight animals per group (Kozler et al., 2003). Briefly, sterilized 2% Evans Blue solution was administered intravenously at a dosage of 4 mL/kg. Thirty minutes after injection, mice were perfused with saline to remove intravascular Evans Blue dye. Brains were rapidly removed, and each sample was weighed, homogenized with 2.5 mL phosphate-buffered saline (PBS), and mixed with 2.5 mL 60% trichloroacetic acid to precipitate protein. The samples were centrifuged for 30 minutes at 1,000 × g, and the absorbances of the supernatants were measured at 610 nm using a spectrophotometer (Genesys 10S; Thermo Electron Corporation, Madison, WI, USA). Evans Blue is expressed as μg/g of brain tissue against a standard curve.

    Histological evaluation

    Mice chosen randomly from the four groups (n = 4 in the Sham group; n = 6 each in the other three groups) were anesthetized with chloral hydrate (350 mg/kg, intraperitoneally) 7 days after cerebral ischemia or sham operation, and then perfused transcardially with normal saline followed by 4% formaldehyde solution. All brains were then postfixed in the same fixative at 4°C, dehydrated, and then embedded in paraffin blocks. Coronal sections of 5 μm thickness were stained with hematoxylin and eosin. The morphology of neurons was observed, and damaged and normal neurons were counted at 200× magnification with a ruled counting plate (Olympus, Tokyo, Japan).

    Preparation of tissue extracts

    Twenty-four hours after the last surgical operation, six mice per group were killed with an overdose of chloral hydrate and then transcardially perfused with ice-cold PBS (pH 7.4). The brains were removed quickly, and the cerebral cortex and hippocampus were rapidly dissected on a cold plate and frozen immediately in liquid nitrogen. All tissues were stored at -80°C until assay. Brain tissue was homogenized in 1 mL of ice-cold Tris buffer (pH 7.2, 4°C) containing 50 mM Tris, 1 mM ethylenediamine tetraacetic acid, 6 mM MgCl2and 5% (w/v) protease inhibitor cocktail. After homogenization, samples were sonicated for 10 seconds and then centrifuged at 20,800 × g for 20 minutes at 4°C. Afterwards, supernatants were collected for western blot assay. The protein concentrations were determined in each sample using a commercially available bicinchoninic acid protein assay kit (Key GEN Biotech, Nanjing, China).

    Western blot assay

    To examine the expression of integrin αVβ3, VEGF and its receptor pFlk-1 in the cortex and hippocampus, western blot assay was performed as described in a previous study (Jiang et al., 2013). Samples from treated mice were resolved using sodium dodecyl sulfate polyacrylamide gradient gels (20 mg protein per lane). Proteins were transferred onto nitrocellulose membranes (Bio-Rad, Hercules, CA, USA). The membranes were blocked in 5% non-fat milk and then incubated with polyclonal mouse anti-integrin αv(1 μg/mL), mouse anti-integrin β3(1 μg/mL), rabbit anti-VEGF (1 μg/mL) or rabbit anti-pFlk-1 (1 μg/mL) (all from Santa Cruz Biotechnology, Santa Cruz, CA, USA) overnight at 4°C. After three washes with Tris-buffered saline containing Tween-20, the membranes were incubated with anti-mouse-horseradish peroxidase (Santa Cruz Biotechnology) or goat anti-rabbit-horseradish peroxidase (Santa Cruz Biotechnology) for 30 minutes at room temperature. The experiment was performed in triplicate, and β-actin was used as an internal control. The optical density values were calculated with Quantity One image analysis software (Bio-Rad).

    Statistical analysis

    The data followed a normal distribution. Data were expressed as the mean ± SEM and analyzed with SPSS 13.0 software (SPSS, Chicago, IL, USA). Comparisons were performed using one-way analysis of variance followed by Bonferroni post hoc analysis. P values less than 0.05 were considered statistically significant.

    Results

    IP protected against ischemic brain injury

    Hematoxylin-eosin staining revealed no obvious pathological abnormalities in the hippocampus in the Sham and IP groups. In comparison, neuronal cell loss, dark staining of neurons and nuclear shrinkage were observed in the Isch group. Damaged neurons were fewer in the IP + Isch group (Figure 1).

    IP reduced BBB dysfunction in cerebral ischemic mice

    Evans Blue assay showed that the levels of Evans Blue in the brain were higher in the Isch group than in the Sham group (P < 0.001). IP decreased Evans Blue content in the brain (P< 0.01; Figure 2).

    IP suppressed the increase in integrin αVand β3expression in the cerebral cortex and hippocampus following cerebral ischemia

    Twenty-four hours after the ischemic insult, integrin αvprotein levels in the cortex and hippocampus of mice were determined. As shown in Figure 3A, B, integrin αvprotein levels in the cortex were not significantly different among Sham, IP and IP + Isch groups (~1.14-fold increase over Sham in both the IP and IP + Isch groups, with no significant difference among them). However, integrin αvlevels were significantly increased in the Isch group compared with the Sham group (~2.01-fold increase; P < 0.05). Integrin αvlevels were lower in the IP + Isch group compared with the Isch group. In the hippocampus, integrin αvlevels in the IP group were increased slightly compared with the Sham group (~1.50-fold increase over Sham; no significant difference). Integrin αvlevels were significantly elevated in the Isch group (~4.13-fold increase over Sham; P < 0.01). Levels in the IP + Isch group (~1.80-fold increase over Sham) were lower than those in the Isch group (P < 0.05). Changes in integrin β3expression among the four groups were similar to those observed for integrin αv(Figure 3C, D). The integrin β3levels in the IP group were 1.31-fold (cortex) and 0.96-fold (hippocampus) those in the Sham group (no significant differences). In the Isch group, the levels were elevated 3.92-fold in the cortex and 2.38-fold in the hippocampus (both P < 0.05, compared with the Sham group). In the IP + Isch group, integrin β3levels were 1.32-fold (cortex) and 1.11-fold (hippocampus) the levels in the Sham group (both P < 0.05). Therefore, IP seems to attenuate the increase in integrin αVβ3induced by ischemic insult.

    IP prevented the increase in VEGF and pFlk-1 expression in the cerebral cortex and hippocampus 24 hours after ischemia

    As shown in Figure 4A, B, VEGF expression levels in the cortex and hippocampus in the IP group were slightly increased in comparison with the Sham group (1.45-fold and 1.44-fold increases over Sham, respectively [both P > 0.05]). Expression levels in the cortex and hippocampus were increased significantly in the Isch group (~9.08-fold and ~4.20-fold increases over Sham, respectively [both P < 0.05]). The expression levels were lower in the IP + Isch group than in the Isch group (~2.37-fold and ~2.86-fold lower in the cortex and hippocampus, respectively). The difference between the Isch and IP + Isch groups was significant in the cortex (P< 0.05), but no significant difference was observed for the hippocampus. Similar trends were observed in pFlk-1 expression (Figure 4C, D). The levels of pFlk-1 in the IP group were 0.90-fold (cortex) and 1.31-fold (hippocampus) those in the Sham group (P > 0.05). In the Isch group, pFlk-1 levels were elevated 3.80-fold and 2.02-fold in the cortex and hippocampus, respectively (both P < 0.05, compared with Sham group). Expression levels in the IP + Isch group were significantly lower than those in the Isch group (1.38-fold in the cortex and 1.39-fold in the hippocampus [P < 0.05, only for the cortex]).

    Discussion

    Clinical studies suggest that IP is beneficial to the human brain. In a retrospective study, patients with a previous ipsilateral transient ischemic attack (TIA) had a more favorable outcome after cerebral infarction than patients without a prior TIA (Moncayo et al., 2000). This suggests that ischemic tolerance induced by the TIA results in a better neurological outcome after a more severe subsequent ischemic event. Numerous animal studies on the neuroprotective mechanisms of IP suggest that ischemic tolerance is produced by multiple mechanisms, including vascular changes (Gidday et al., 2006).

    In this study, the expression levels of integrin αVβ3were substantially elevated after global cerebral ischemia, consistent with other studies (Okada et al., 1996; Shimamura et al., 2006a; Kang et al., 2008). We found that IP inhibited this increase in expression of integrin αVβ3after global cerebral ischemia. Furthermore, this effect of IP was associated with reduced ischemic injury to the brain.

    To examine how IP affects integrin αVβ3expression, two proteins, VEGF and its receptor pFlk-1, which are linked to integrin αVβ3expression following ischemic injury, were assessed. We observed that VEGF and pFlk-1 expression levels were reduced by IP, suggesting that this reduction in VEGF levels after ischemic injury may be beneficial.

    Integrin αVβ3, a member of the integrin family, plays a major role in angiogenesis and tumor growth, and has been shown to play a critical role in animal models of focal brain ischemia (Haring et al., 1996; Okada et al., 1996; Abumiya et al., 1999; Del Zoppo and Mabuchi, 2003). Previous studies have shown that inhibition of integrin αVβ3helps preserve microvascular patency (Okada et al., 1996), reduces BBB breakdown, and ameliorates damage resulting from focal brain ischemia (Abumiya et al., 2000; Shimamura et al., 2006a, b; Kiessling et al., 2009). It has been conjectured that increased expression of integrin αVβ3may play a harmful role during early cerebral ischemic injury, and that inhibition of integrin αVβ3expression may reduce ischemic damage.

    VEGF is an endothelial cell mitogen that enhances vascular permeability during angiogenesis. Flk-1, also known as vascular endothelial growth factor receptor-2, is a receptor for VEGF (Rosenstein et al., 1998). Flk-1 is active in its phosphorylated form. Previous studies reported that VEGF was elaborated during ischemic stroke (Hayashi et al., 1997). Although VEGF has been shown to induce angiogenesis in the penumbra and to contribute to the recovery of neuronal function after an ischemic event (Zhang et al., 2000; Manoonkitiwongsa et al., 2004; Yano et al., 2005; Udo et al., 2008), it also has myriad deleterious effects in early ischemic stroke, including increasing BBB leakage, elevating the risk of hemorrhagic transformation, widening the infarction zone (Zhang et al., 2000; Kaya et al., 2005), and increasing platelet adhesion (Verheul et al., 2004). In this study, we found that VEGF levels were lowered by IP, and that the brain was protected by IP, consistent with a deleterious role of VEGF in stroke. Therefore, the beneficial effects of IP may involve integrin αVβ3, VEGF and its receptor. Although these results are preliminary, our findings provide potential new therapeutic targets for ischemic injury.

    It is known that integrin αVβ3can activate VEGF receptors, and that the inhibition of integrin αVβ3expression reduces phosphorylation of VEGF receptors, thereby limiting thebiological effects of VEGF (Soldi et al., 1999). Furthermore, VEGF was reported to induce integrin αVβ3expression in vitro, and expression was highly correlated with integrin αVβ3in vivo (Abumiya et al., 1999). Hence, integrin αVβ3expression may also be suppressed in a VEGF-dependent manner by IP. The relationship between integrin αVβ3and VEGF is very complex, and their roles in ischemic injury remain unclear.

    One of the limitations of the present study is that all animals were killed at 24 hours, whereas ischemic stroke and ischemic tolerance may occur over several days. This study focused on early brain injury, and the long-term effects of IP on integrin αVβ3were not studied. Future studies will need to evaluate the long-term impact of IP on integrin αVβ3and more time points should be analyzed. In addition, inhibitors of integrin αVβ3and VEGF should be used before and after ischemia to determine the role of these proteins in the neuroprotective effects of IP.

    In summary, IP improved outcome in the global cerebral ischemia model, and its effects were associated with inhibition of integrin αVβ3through decreased expression of VEGF and its receptor. Although the mechanisms of ischemic tolerance remain unclear, this study provides insight into the mechanisms of endogenous neuroprotection, and may help in the development of novel therapeutic strategies for stroke.

    Author contributions: XMM carried out animal experiments, western blot assay, collected the data and drafted the paper. ML instructed the animal experiments, carried out data analysis and revised the paper. YYL, LLM, and YJ participated in western blot assay, detected BBB permeability and revised the paper. XHC obtained funding, designed the study and supervised conduct of the study. All authors read and approved the final version of the paper.

    Conflicts of interest: None declared.

    Plagiarism check: This paper was screened twice using Cross-Check to verify originality before publication.

    Peer review: This paper was double-blinded and stringently reviewed by international expert reviewers.

    Abumiya T, Lucero J, Heo JH, Tagaya M, Koziol JA, Copeland BR, del Zoppo GJ (1999) Activated microvessels express vascular endothelial growth factor and integrin alpha(v)beta3 during focal cerebral ischemia. J Cereb Blood Flow Metab 19:1038-1050.

    Abumiya T, Fitridge R, Mazur C, Copeland BR, Koziol JA, Tschopp JF, Pierschbacher MD, del Zoppo GJ (2000) Integrin alpha(IIb)beta(3) inhibitor preserves microvascular patency in experimental acute focal cerebral ischemia. Stroke 31:1402-1409.

    Cho S, Park EM, Zhou P, Frys K, Ross ME, Iadecola C (2005) Obligatory role of inducible nitric oxide synthase in ischemic preconditioning. J Cereb Blood Flow Metab 25:493-501.

    del Zoppo GJ, Mabuchi T (2003) Cerebral microvessel responses to focal ischemia. J Cereb Blood Flow Metab 23:879-894.

    Gidday JM (2006) Cerebral preconditioning and ischaemic tolerance. Nat Rev Neurosci 7:437-448.

    Haring HP, Akamine BS, Habermann R, Koziol JA, Del Zoppo GJ (1996) Distribution of integrin-like immunoreactivity on primate brain microvasculature. J Neuropathol Exp Neurol 55:236-245.

    Hayashi T, Abe K, Suzuki H, Itoyama Y (1997) Rapid induction of vascular endothelial growth factor gene expression after transient middle cerebral artery occlusion in rats. Stroke 28:2039-2044.

    Jiang Y, Zou Y, Chen S, Zhu C, Wu A, Liu Y, Ma L, Zhu D, Ma X, Liu M, Kang Z, Pi R, Peng F, Wang Q, Chen X (2013) The anti-inflammatory effect of donepezil on experimental autoimmune encephalomyelitis in C57BL/6 mice. Neuropharmacology 73:415-424.

    Kang WS, Choi JS, Shin YJ, Kim HY, Cha JH, Lee JY, Chun MH, Lee MY (2008) Differential regulation of osteopontin receptors, CD44 and the alpha(v) and beta(3) integrin subunits, in the rat hippocampus following transient forebrain ischemia. Brain Res 1228:208-216.

    徐天水膝下無(wú)子,沒(méi)有更好的發(fā)家致富門(mén)路。好在他能吃苦,日子過(guò)得馬馬虎虎。這幾年歲數(shù)大了,做活也沒(méi)人要,每月老伴兒固定的幾百塊錢(qián)醫(yī)藥費(fèi),讓本來(lái)就不寬裕的生活越發(fā)顯得拮據(jù)。閨女婚后帶著丈夫孩子一家人跪地認(rèn)錯(cuò),怎奈她家并不富裕,照顧老人是遠(yuǎn)水解不了近渴。

    Kaya D, Gursoy-Ozdemir Y, Yemisci M, Tuncer N, Aktan S, Dalkara T (2005) VEGF protects brain against focal ischemia without increasing blood--brain permeability when administered intracerebroventricularly. J Cereb Blood Flow Metab 25:1111-1118.

    Kiessling JW, Cines DB, Higazi AA, Armstead WM (2009) Inhibition of integrin alphavbeta3 prevents urokinase plasminogen activator-mediated impairment of cerebrovasodilation after cerebral hypoxia/ ischemia. Am J Physiol Heart Circ Physiol 296:H862-867.

    Kozler P, Pokorny J (2003) Altered blood-brain barrier permeability and its effect on the distribution of Evans blue and sodium fluorescein in the rat brain applied by intracarotid injection. Physiol Res 52:607-614.

    Liu M, Ma X, Chen X, Jiang Y, Wu A, Peng F, Liu Y, Pi R (2010) Ischemic preconditioning partially suppresses and postpones integrin αVβ3mRNA expression following transient global cerebral ischemia in C57BL/6 mice. Neural Regen Res 5:1782-1786.

    Manoonkitiwongsa PS, Schultz RL, McCreery DB, Whitter EF, Lyden PD (2004) Neuroprotection of ischemic brain by vascular endothelial growth factor is critically dependent on proper dosage and may be compromised by angiogenesis. J Cereb Blood Flow Metab 24:693-702.

    Moncayo J, de Freitas GR, Bogousslavsky J, Altieri M, van Melle G (2000) Do transient ischemic attacks have a neuroprotective effect? Neurology 54:2089-2094.

    Okada Y, Copeland BR, Hamann GF, Koziol JA, Cheresh DA, del Zoppo GJ (1996) Integrin alphavbeta3 is expressed in selected microvessels after focal cerebral ischemia. Am J Pathol 149:37-44.

    Rosenstein JM, Mani N, Silverman WF, Krum JM (1998) Patterns of brain angiogenesis after vascular endothelial growth factor administration in vitro and in vivo. Proc Natl Acad Sci U S A 95:7086-7091.

    Shimamura N, Matchett G, Solaroglu I, Tsubokawa T, Ohkuma H, Zhang J (2006a) Inhibition of integrin alphavbeta3 reduces bloodbrain barrier breakdown in focal ischemia in rats. J Neurosci Res 84:1837-1847.

    Shimamura N, Matchett G, Yatsushige H, Calvert JW, Ohkuma H, Zhang J (2006b) Inhibition of integrin alphavbeta3 ameliorates focal cerebral ischemic damage in the rat middle cerebral artery occlusion model. Stroke 37:1902-1909.

    Soldi R, Mitola S, Strasly M, Defilippi P, Tarone G, Bussolino F (1999) Role of alphavbeta3 integrin in the activation of vascular endothelial growth factor receptor-2. EMBO J 18:882-892.

    Udo H, Yoshida Y, Kino T, Ohnuki K, Mizunoya W, Mukuda T, Sugiyama H (2008) Enhanced adult neurogenesis and angiogenesis and altered affective behaviors in mice overexpressing vascular endothelial growth factor 120. J Neurosci 28:14522-14536.

    Verheul HM, Jorna AS, Hoekman K, Broxterman HJ, Gebbink MF, Pinedo HM (2000) Vascular endothelial growth factor-stimulated endothelial cells promote adhesion and activation of platelets. Blood 96:4216-4221.

    Wu C, Zhan RZ, Qi S, Fujihara H, Taga K, Shimoji K (2001) A forebrain ischemic preconditioning model established in C57Black/Crj6 mice. J Neurosci Methods 107:101-106.

    Yano A, Shingo T, Takeuchi A, Yasuhara T, Kobayashi K, Takahashi K, Muraoka K, Matsui T, Miyoshi Y, Hamada H, Date I (2005) Encapsulated vascular endothelial growth factor-secreting cell grafts have neuroprotective and angiogenic effects on focal cerebral ischemia. J Neurosurg 103:104-114.

    Zhang ZG, Zhang L, Jiang Q, Zhang R, Davies K, Powers C, Bruggen N, Chopp M (2000) VEGF enhances angiogenesis and promotes bloodbrain barrier leakage in the ischemic brain. J Clin Invest 106:829-838.

    Copyedited by Patel B, Wysong S, Wang J, Qiu Y, Li CH, Song LP, Zhao M

    10.4103/1673-5374.182703 http://www.nrronline.org/

    Accepted: 2015-09-12

    *Correspondence to: Xiao-hong Chen, M.D., Ph.D., xiaohongchenzssy@aliyun.com.

    猜你喜歡
    門(mén)路拮據(jù)無(wú)子
    “無(wú)子”問(wèn)題與社會(huì)、家庭應(yīng)對(duì)策略*
    ——以民國(guó)之前文獻(xiàn)為中心
    人文雜志(2022年4期)2022-10-14 17:46:18
    “無(wú)子”問(wèn)題與社會(huì)、家庭應(yīng)對(duì)策略
    人文雜志(2022年4期)2022-05-19 01:20:07
    三明:姐妹發(fā)展有愿望,增收有門(mén)路
    海峽姐妹(2020年6期)2020-07-25 01:26:04
    徐母育彎棗樹(shù)
    蘭芝無(wú)責(zé) 仲卿之過(guò)
    “拮據(jù)”的“皇帝”婚禮
    “拮據(jù)”釋義
    “拮據(jù)”釋義
    健康之門(mén)路
    成功之門(mén)路
    亚洲七黄色美女视频| 国产亚洲欧美在线一区二区| 曰老女人黄片| 两个人看的免费小视频| www.熟女人妻精品国产| 欧美精品一区二区免费开放| 国产精品二区激情视频| 日韩一区二区三区影片| 在线播放国产精品三级| 欧美人与性动交α欧美精品济南到| 欧美黄色片欧美黄色片| 天堂俺去俺来也www色官网| 国产aⅴ精品一区二区三区波| 啪啪无遮挡十八禁网站| 欧美老熟妇乱子伦牲交| 亚洲欧美日韩另类电影网站| 久久国产精品人妻蜜桃| 美女主播在线视频| 国产有黄有色有爽视频| 一区福利在线观看| 女同久久另类99精品国产91| 在线观看舔阴道视频| 精品久久蜜臀av无| 制服诱惑二区| 国产精品一区二区在线观看99| 在线观看人妻少妇| 精品少妇一区二区三区视频日本电影| 国产在线精品亚洲第一网站| 无人区码免费观看不卡 | 男女免费视频国产| 亚洲精品在线观看二区| 久久国产精品影院| 国产成人免费无遮挡视频| av又黄又爽大尺度在线免费看| 亚洲七黄色美女视频| 日本黄色日本黄色录像| 自线自在国产av| 一本久久精品| 欧美成人免费av一区二区三区 | 亚洲欧美激情在线| 国产成人免费无遮挡视频| 国产亚洲欧美精品永久| 欧美乱妇无乱码| 性高湖久久久久久久久免费观看| 欧美av亚洲av综合av国产av| 久热爱精品视频在线9| 久久久久久久久免费视频了| 中文欧美无线码| 久久久国产精品麻豆| 自线自在国产av| 欧美日韩精品网址| 精品国内亚洲2022精品成人 | 嫩草影视91久久| 9191精品国产免费久久| 欧美日韩国产mv在线观看视频| 啦啦啦中文免费视频观看日本| 一二三四在线观看免费中文在| 日本欧美视频一区| 18在线观看网站| 国产高清国产精品国产三级| 不卡一级毛片| 免费高清在线观看日韩| 亚洲人成伊人成综合网2020| netflix在线观看网站| 老熟女久久久| 国产免费现黄频在线看| tocl精华| 午夜日韩欧美国产| 国产男靠女视频免费网站| 亚洲av电影在线进入| 午夜老司机福利片| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲精品自拍成人| 亚洲欧美日韩高清在线视频 | 18禁裸乳无遮挡动漫免费视频| 一本久久精品| 日韩欧美一区二区三区在线观看 | 波多野结衣一区麻豆| 最新美女视频免费是黄的| 欧美成人午夜精品| 亚洲av美国av| 男人操女人黄网站| 啦啦啦在线免费观看视频4| 欧美日韩亚洲高清精品| 女性生殖器流出的白浆| 欧美成人免费av一区二区三区 | 免费在线观看影片大全网站| 国产精品.久久久| 一区二区av电影网| 国产在视频线精品| 日韩欧美一区二区三区在线观看 | 99久久精品国产亚洲精品| 久久精品国产综合久久久| 丁香六月天网| 纵有疾风起免费观看全集完整版| 久久人人爽av亚洲精品天堂| 777久久人妻少妇嫩草av网站| avwww免费| 中国美女看黄片| 成人18禁高潮啪啪吃奶动态图| 成人特级黄色片久久久久久久 | 久久久久精品国产欧美久久久| 亚洲熟女毛片儿| 国产精品二区激情视频| 午夜老司机福利片| 成年人午夜在线观看视频| 久久精品国产亚洲av香蕉五月 | 两个人看的免费小视频| 男人舔女人的私密视频| 性色av乱码一区二区三区2| 欧美另类亚洲清纯唯美| 悠悠久久av| 亚洲av电影在线进入| 狂野欧美激情性xxxx| 手机成人av网站| 国产不卡av网站在线观看| 制服诱惑二区| 王馨瑶露胸无遮挡在线观看| 久久久精品免费免费高清| 两性夫妻黄色片| 精品国内亚洲2022精品成人 | 午夜福利一区二区在线看| 91国产中文字幕| 真人做人爱边吃奶动态| 久久国产精品男人的天堂亚洲| 亚洲国产欧美一区二区综合| 天堂8中文在线网| 久久久久久人人人人人| 亚洲av第一区精品v没综合| 国产亚洲午夜精品一区二区久久| 老熟妇仑乱视频hdxx| 国产精品av久久久久免费| 高清av免费在线| 久久国产精品影院| 国产精品九九99| 桃花免费在线播放| 少妇 在线观看| 日本精品一区二区三区蜜桃| 日韩中文字幕视频在线看片| 亚洲精品在线美女| 国产伦人伦偷精品视频| 男女高潮啪啪啪动态图| 国产在线一区二区三区精| 大型av网站在线播放| 亚洲精品国产色婷婷电影| 久久婷婷成人综合色麻豆| 成人亚洲精品一区在线观看| 老司机午夜福利在线观看视频 | 天堂中文最新版在线下载| 黑人猛操日本美女一级片| 欧美日韩黄片免| 露出奶头的视频| 国产亚洲欧美精品永久| 18禁观看日本| 久久久久久久久久久久大奶| 丝袜美足系列| 亚洲成人国产一区在线观看| 18禁裸乳无遮挡动漫免费视频| 一级a爱视频在线免费观看| 中文字幕人妻丝袜一区二区| 色综合欧美亚洲国产小说| 在线观看免费视频日本深夜| 俄罗斯特黄特色一大片| 在线播放国产精品三级| 91字幕亚洲| 亚洲七黄色美女视频| 精品第一国产精品| 搡老岳熟女国产| a在线观看视频网站| 国产免费视频播放在线视频| 久久精品国产亚洲av香蕉五月 | 国产免费视频播放在线视频| 他把我摸到了高潮在线观看 | 久久国产精品男人的天堂亚洲| 99riav亚洲国产免费| 中文字幕高清在线视频| a级片在线免费高清观看视频| 午夜精品久久久久久毛片777| 午夜福利影视在线免费观看| 99国产精品免费福利视频| 十分钟在线观看高清视频www| 亚洲五月色婷婷综合| 19禁男女啪啪无遮挡网站| 最新在线观看一区二区三区| 婷婷成人精品国产| 欧美精品人与动牲交sv欧美| 亚洲 欧美一区二区三区| 热99re8久久精品国产| 久久青草综合色| tube8黄色片| 91国产中文字幕| 午夜福利影视在线免费观看| 日韩三级视频一区二区三区| 精品欧美一区二区三区在线| 嫩草影视91久久| 免费女性裸体啪啪无遮挡网站| 成人国语在线视频| 亚洲专区国产一区二区| 亚洲九九香蕉| 久久青草综合色| 久久国产精品男人的天堂亚洲| 日本av免费视频播放| 国产精品久久久久成人av| 亚洲成人国产一区在线观看| 久久久国产一区二区| 建设人人有责人人尽责人人享有的| 国产精品一区二区在线观看99| 免费久久久久久久精品成人欧美视频| av线在线观看网站| 波多野结衣一区麻豆| 老司机亚洲免费影院| 老汉色av国产亚洲站长工具| 精品午夜福利视频在线观看一区 | 最新的欧美精品一区二区| 中文字幕高清在线视频| 免费在线观看完整版高清| 操美女的视频在线观看| 丝袜在线中文字幕| 交换朋友夫妻互换小说| 国产精品电影一区二区三区 | 久久99一区二区三区| 午夜免费鲁丝| 久久精品国产亚洲av香蕉五月 | 国产亚洲精品一区二区www | 精品国产一区二区久久| 亚洲专区国产一区二区| 男女免费视频国产| 精品久久久精品久久久| 国产午夜精品久久久久久| 高清av免费在线| 91字幕亚洲| 又大又爽又粗| 又黄又粗又硬又大视频| 老汉色av国产亚洲站长工具| av天堂久久9| 国产亚洲精品第一综合不卡| 精品国产乱码久久久久久小说| a级毛片黄视频| 久久久国产精品麻豆| 制服人妻中文乱码| av在线播放免费不卡| 午夜老司机福利片| 悠悠久久av| 一级片免费观看大全| 午夜91福利影院| 人妻一区二区av| 欧美一级毛片孕妇| 99国产极品粉嫩在线观看| 久久性视频一级片| 黄色成人免费大全| 满18在线观看网站| 久久精品亚洲精品国产色婷小说| 国产三级黄色录像| 欧美精品av麻豆av| avwww免费| xxxhd国产人妻xxx| 欧美午夜高清在线| 亚洲avbb在线观看| 一个人免费看片子| 操美女的视频在线观看| 伊人久久大香线蕉亚洲五| 最新的欧美精品一区二区| 亚洲自偷自拍图片 自拍| 十八禁网站网址无遮挡| 久久热在线av| 日韩欧美一区二区三区在线观看 | 成人18禁高潮啪啪吃奶动态图| 亚洲第一av免费看| 日韩大片免费观看网站| 乱人伦中国视频| 国产精品成人在线| 亚洲三区欧美一区| 久久免费观看电影| 老司机在亚洲福利影院| 久久精品国产亚洲av高清一级| 国产免费视频播放在线视频| 久久久水蜜桃国产精品网| 色尼玛亚洲综合影院| 无遮挡黄片免费观看| 操出白浆在线播放| 国产高清视频在线播放一区| 久久性视频一级片| 亚洲三区欧美一区| 十八禁人妻一区二区| 在线 av 中文字幕| 亚洲精品中文字幕一二三四区 | a级毛片在线看网站| 成人永久免费在线观看视频 | 亚洲一区中文字幕在线| 51午夜福利影视在线观看| 成人精品一区二区免费| 日本精品一区二区三区蜜桃| 久久热在线av| 久久av网站| 国产精品 欧美亚洲| 国产精品麻豆人妻色哟哟久久| 国产精品美女特级片免费视频播放器 | 久久人妻福利社区极品人妻图片| netflix在线观看网站| 在线天堂中文资源库| 亚洲精品国产色婷婷电影| 国产真人三级小视频在线观看| 精品一区二区三区四区五区乱码| 好男人电影高清在线观看| 两性夫妻黄色片| 侵犯人妻中文字幕一二三四区| 国产伦人伦偷精品视频| 国产精品久久久久成人av| 老司机影院毛片| 精品一区二区三区av网在线观看 | 日韩大片免费观看网站| 在线观看人妻少妇| 免费不卡黄色视频| 丁香六月天网| 在线av久久热| 国产成人系列免费观看| 亚洲第一欧美日韩一区二区三区 | 一区在线观看完整版| 女同久久另类99精品国产91| 这个男人来自地球电影免费观看| av免费在线观看网站| 亚洲七黄色美女视频| 美国免费a级毛片| 人人妻人人澡人人爽人人夜夜| 脱女人内裤的视频| 啦啦啦 在线观看视频| 国产精品一区二区在线不卡| kizo精华| 青青草视频在线视频观看| 少妇被粗大的猛进出69影院| 亚洲精品国产色婷婷电影| 午夜福利乱码中文字幕| 一级毛片电影观看| 久久毛片免费看一区二区三区| 午夜激情久久久久久久| 午夜福利乱码中文字幕| 黄色丝袜av网址大全| avwww免费| 亚洲综合色网址| 91成人精品电影| 性少妇av在线| 日韩成人在线观看一区二区三区| 亚洲免费av在线视频| 亚洲少妇的诱惑av| 国产精品亚洲av一区麻豆| 十八禁高潮呻吟视频| 热99re8久久精品国产| 18禁观看日本| 极品人妻少妇av视频| 国产精品麻豆人妻色哟哟久久| 国产麻豆69| 丝瓜视频免费看黄片| 国产国语露脸激情在线看| 成人av一区二区三区在线看| 欧美日韩一级在线毛片| 欧美+亚洲+日韩+国产| av福利片在线| 99久久人妻综合| 精品国产一区二区久久| videos熟女内射| 日本vs欧美在线观看视频| 日韩制服丝袜自拍偷拍| 久久久久久亚洲精品国产蜜桃av| 精品亚洲成a人片在线观看| 99久久国产精品久久久| 午夜免费成人在线视频| 国产单亲对白刺激| 久久狼人影院| 高清在线国产一区| 亚洲男人天堂网一区| 黄片播放在线免费| 91精品三级在线观看| 怎么达到女性高潮| 视频区欧美日本亚洲| 午夜福利视频精品| 叶爱在线成人免费视频播放| 757午夜福利合集在线观看| 国产伦人伦偷精品视频| 手机成人av网站| 一级片免费观看大全| 国产精品免费视频内射| 欧美亚洲 丝袜 人妻 在线| 亚洲熟女毛片儿| 青草久久国产| 国产成人欧美| 国产国语露脸激情在线看| 亚洲av成人不卡在线观看播放网| 最新在线观看一区二区三区| 日韩 欧美 亚洲 中文字幕| 人妻久久中文字幕网| 亚洲国产看品久久| 伦理电影免费视频| 十八禁网站免费在线| 日日夜夜操网爽| 视频区欧美日本亚洲| 亚洲av成人一区二区三| 免费女性裸体啪啪无遮挡网站| 欧美国产精品va在线观看不卡| 亚洲精品中文字幕一二三四区 | 久9热在线精品视频| 少妇粗大呻吟视频| 免费不卡黄色视频| 午夜福利欧美成人| 亚洲精品国产色婷婷电影| 免费在线观看完整版高清| 精品少妇久久久久久888优播| 久久久水蜜桃国产精品网| 在线观看免费高清a一片| 午夜福利在线免费观看网站| 一本大道久久a久久精品| 天堂中文最新版在线下载| 手机成人av网站| 久久久久国内视频| 老司机靠b影院| 在线观看免费午夜福利视频| 丝瓜视频免费看黄片| 最新在线观看一区二区三区| 午夜福利乱码中文字幕| 国产精品一区二区免费欧美| 亚洲av日韩精品久久久久久密| 亚洲av成人一区二区三| 国产成人精品久久二区二区91| 成年版毛片免费区| 欧美成狂野欧美在线观看| 12—13女人毛片做爰片一| 99热国产这里只有精品6| 好男人电影高清在线观看| 国产区一区二久久| 国产淫语在线视频| 人人澡人人妻人| 欧美日本中文国产一区发布| 女人爽到高潮嗷嗷叫在线视频| 一夜夜www| 欧美日韩精品网址| 国产av又大| 黑人巨大精品欧美一区二区蜜桃| 狂野欧美激情性xxxx| 国产主播在线观看一区二区| 50天的宝宝边吃奶边哭怎么回事| 精品久久久久久久毛片微露脸| 超碰成人久久| 汤姆久久久久久久影院中文字幕| 纯流量卡能插随身wifi吗| 亚洲伊人久久精品综合| 成年动漫av网址| 国产aⅴ精品一区二区三区波| 捣出白浆h1v1| 国产亚洲精品一区二区www | 久久午夜综合久久蜜桃| 五月开心婷婷网| 99久久99久久久精品蜜桃| 精品免费久久久久久久清纯 | 亚洲成人国产一区在线观看| 国产1区2区3区精品| 成在线人永久免费视频| 美女国产高潮福利片在线看| 欧美成狂野欧美在线观看| 日韩欧美国产一区二区入口| 欧美成人免费av一区二区三区 | 亚洲人成77777在线视频| 久久精品亚洲精品国产色婷小说| 久久天躁狠狠躁夜夜2o2o| 美女视频免费永久观看网站| 99久久精品国产亚洲精品| avwww免费| 国产精品一区二区免费欧美| 女性生殖器流出的白浆| 每晚都被弄得嗷嗷叫到高潮| 午夜精品久久久久久毛片777| 女人高潮潮喷娇喘18禁视频| 免费av中文字幕在线| 国产一区二区三区综合在线观看| 高清欧美精品videossex| 久久久久久久久久久久大奶| 每晚都被弄得嗷嗷叫到高潮| 日韩中文字幕视频在线看片| 亚洲第一青青草原| 9191精品国产免费久久| 亚洲精华国产精华精| 超碰97精品在线观看| 日韩一卡2卡3卡4卡2021年| 精品一区二区三卡| 精品国产乱子伦一区二区三区| 极品教师在线免费播放| 在线观看66精品国产| 精品熟女少妇八av免费久了| 国产日韩欧美在线精品| 国产精品一区二区免费欧美| 国产精品av久久久久免费| 国产精品99久久99久久久不卡| 免费观看a级毛片全部| 无遮挡黄片免费观看| 搡老乐熟女国产| 国产成人精品在线电影| av免费在线观看网站| 99精品久久久久人妻精品| 丝袜喷水一区| 国产精品一区二区免费欧美| 香蕉丝袜av| 国产精品亚洲一级av第二区| 一区二区av电影网| 久久精品国产亚洲av香蕉五月 | 黑人巨大精品欧美一区二区蜜桃| 免费久久久久久久精品成人欧美视频| 亚洲精品美女久久av网站| 香蕉久久夜色| 黄片大片在线免费观看| 男女午夜视频在线观看| 黄色丝袜av网址大全| videosex国产| 国产精品99久久99久久久不卡| 中文字幕人妻熟女乱码| 欧美在线黄色| 高潮久久久久久久久久久不卡| 中文字幕另类日韩欧美亚洲嫩草| 建设人人有责人人尽责人人享有的| 极品人妻少妇av视频| 欧美变态另类bdsm刘玥| 精品高清国产在线一区| 欧美精品人与动牲交sv欧美| 男人舔女人的私密视频| 欧美国产精品一级二级三级| 90打野战视频偷拍视频| 侵犯人妻中文字幕一二三四区| 国产成人av教育| avwww免费| 久久 成人 亚洲| 国产成人精品久久二区二区91| 国产成人欧美| 亚洲综合色网址| 成年人免费黄色播放视频| 女性被躁到高潮视频| 波多野结衣一区麻豆| 巨乳人妻的诱惑在线观看| 我的亚洲天堂| 亚洲精品中文字幕一二三四区 | 亚洲精品乱久久久久久| 人人妻人人爽人人添夜夜欢视频| 无限看片的www在线观看| 欧美乱妇无乱码| 国产又爽黄色视频| 国产精品电影一区二区三区 | 成人18禁在线播放| 成人亚洲精品一区在线观看| 侵犯人妻中文字幕一二三四区| 菩萨蛮人人尽说江南好唐韦庄| 他把我摸到了高潮在线观看 | 1024视频免费在线观看| av线在线观看网站| 久久影院123| 免费观看人在逋| 欧美日韩黄片免| 欧美成人免费av一区二区三区 | 高清黄色对白视频在线免费看| 每晚都被弄得嗷嗷叫到高潮| 欧美另类亚洲清纯唯美| videosex国产| 一级黄色大片毛片| 色婷婷av一区二区三区视频| 亚洲av美国av| 女性被躁到高潮视频| 日韩有码中文字幕| 国产精品久久久人人做人人爽| 色综合婷婷激情| 国产成人影院久久av| 无遮挡黄片免费观看| 一级毛片女人18水好多| 母亲3免费完整高清在线观看| 18禁观看日本| 久久ye,这里只有精品| 成在线人永久免费视频| 另类精品久久| 久久久国产一区二区| 欧美日韩中文字幕国产精品一区二区三区 | 一区福利在线观看| 亚洲国产欧美网| 国产成人影院久久av| 亚洲国产毛片av蜜桃av| 精品少妇久久久久久888优播| 交换朋友夫妻互换小说| 人人妻,人人澡人人爽秒播| 成人18禁高潮啪啪吃奶动态图| 性色av乱码一区二区三区2| 午夜视频精品福利| 伦理电影免费视频| 肉色欧美久久久久久久蜜桃| 精品国产亚洲在线| 老司机福利观看| 国产亚洲欧美在线一区二区| 精品少妇一区二区三区视频日本电影| 在线av久久热| 亚洲精品国产精品久久久不卡| 一级黄色大片毛片| 亚洲精品乱久久久久久| 欧美激情极品国产一区二区三区| 国产精品1区2区在线观看. | 高清在线国产一区| 免费观看av网站的网址| 纯流量卡能插随身wifi吗| 中文字幕最新亚洲高清| 亚洲精品中文字幕一二三四区 | 国产成人欧美在线观看 | 三级毛片av免费| 亚洲第一青青草原| 亚洲一区中文字幕在线| 亚洲伊人久久精品综合| 精品少妇黑人巨大在线播放| 美女国产高潮福利片在线看| 色婷婷av一区二区三区视频| 国产在线视频一区二区| 亚洲欧美日韩另类电影网站| 亚洲第一欧美日韩一区二区三区 | 亚洲欧美日韩高清在线视频 | 伊人久久大香线蕉亚洲五| 两个人看的免费小视频|