• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Complementary research in mammals and fish indicates MMP-2 as a pleiotropic contributor to optic nerve regeneration

    2016-12-02 07:05:32KimLemmens,IngeVanHove,LieveMoons

    PERSPECTIVE

    Complementary research in mammals and fish indicates MMP-2 as a pleiotropic contributor to optic nerve regeneration

    Matrix metalloproteinases (MMPs) are members of the metzincin superfamily named after the zinc ion and the conserved methionine residue at the active site. In addition to their role in extracellular matrix (ECM) remodeling, these proteinases (in)activate many signaling molecules such as growth factors, adhesion molecules and cytokines; and even exert some intracellular functions. Hence, they are long-proven regulators of neurogenesis, axonal outgrowth, guidance and myelinogenesis during vertebrate central nervous system (CNS) development and considered crucial for maintaining normal functioning of the adult CNS (Verslegers et al., 2013). However, next to their involvement in a wide range of physiological processes, uncontrolled MMP activities have been associated with the onset of various neurological disorders and CNS injuries. Nonetheless, recent research indicates MMPs as benefactors in the repair and regeneration of the adult mammalian CNS. This paper then also reviews the attributed roles of MMPs, with a focus on MMP-2, in vertebrate axonal outgrowth and mammalian axonal regrowth, and renders in vivo proof for a regulatory function of MMP-2 in zebrafish optic nerve regeneration. Moreover, this paper provides novel evidence that the use of zebrafish (successful) and mouse (unsuccessful) regeneration models can be applied as a two-pronged approach to examine how manipulation of MMPs, or other potential targets, can be used to promote/inhibit axonal regeneration in the injured adult mammalian CNS. During development of retinofugal projections within the visual system — which is a widely used model in axonal outgrowth studies because of its accessibility and well-known morphology — MMPs, and gelatinases (MMP-2 and -9) in particular, have been implicated as promoters of retinal ganglion cell (RGC) axonal outgrowth and modulators of guidance, both in mammals and anamniotes. Indeed, the first in vivo evidence was provided by a study on retinotectal development in Xenopus embryos, which showed that administration of broad-spectrum MMP inhibitors or more specific gelatinase inhibitors to the bathing medium of developing embryos, disrupted axonal guidance cues at low concentrations, whereas higher concentrations reduced axonal outgrowth (Hehr et al., 2005). Due to high sequence conservation among gelatinases, and MMPs in general, the production of inhibitors which act specifically and solely on one MMP remains a challenge. However, over time, inhibitors more specific to MMP-2, that show minimal activity to MMP-9, have been generated. Through use of those more potent MMP-2 inhibitors and by application of genetic loss-of-function techniques, our research group provided primary proof for MMP-2 as a main player in RGC axonal outgrowth in developing vertebrates and for regulatory interactions between MT1-MMP and MMP-2 herein (Janssens et al., 2013; Gaublomme et al., 2014). In zebrafish embryos - a powerful model system to study retinotectal development due to its transparency and conservation of retinal anatomy - single knockdown of Mt1-mmp, a membrane-bound proteinase, significantly decreased the RGC axon innervation area in the optic tectum (OT). Intriguingly, additional Mmp-2 knockdown further reduced OT innervation as compared to single Mt1-mmp knockdown, indicating a potential co-involvement for both proteinases in RGC axonal outgrowth (Janssens et al., 2013). Indeed, mammalian MT1-MMP has been repeatedly reported as an efficient MMP-2-activator (Visse and Nagase, 2003). Likewise, Mt1-mmp knockdown also resulted in reduced Mmp-2 activity levels in zebrafish embryos, suggestive of Mt1-mmp being a major in vivo activator of Mmp-2 in zebrafish retinotectal development (Janssens et al., 2013). A reduced RGC axonal outgrowth was also observed after application of broad-spectrum and more specific MMP-2 inhibitors to ex vivo postnatal mouse retinal explants. Moreover, utilization of an antibody that specifically blocks the MMP-2 activating ability of MT1-MMP reduced axonal outgrowth to the same extent as a general MT1-MMP neutralizing antibody, indicating that MT1-MMP mainly contributes to mouse RGC axonal development through activation of MMP-2, similar as in developing zebrafish. Furthermore, explants of MMP-2 deficient, but not of MMP-9 deficient mice, showed a reduced neurite outgrowth as compared to wild-type explants, thereby confirming a specific role for this gelatinase in RGC axonal growth (Gaublomme et al., 2014). Despite this established role for MMP-2 in axonal outgrowth in the developing CNS, its underlying targets remain largely undefined. In general, MMPs have been implicated in the release of ECM-bound growth factors, like NGF, and modification of adhesion molecules, like NCAM and ICAM5, which are known to stimulate neurite outgrowth (Verslegers et al., 2013). Within the optic system, activated MMP-2 has been suggested to interact with β1-integrin, a transmembrane cell adhesion receptor that affects neurite outgrowth of RGCs (Gaublomme et al., 2014). These data are supported by developmental expression studies, which, besides a macroglial localization, localized MMP-2 in/on outgrowing RGC axons and their growth cones in vertebrates (Figure 1A, left panel) (Janssens et al., 2013; Verslegers et al., 2013; Gaublomme et al., 2014). Altogether, these data ascribe an intrinsic function to MMP-2, serving as an activator of axonal growth stimulating factors, which are in close contact with, or directly located inside or on RGC axons or growth cones (Figure 1A, left panel).

    As the adult mammalian CNS, including its retino-thalamic projections, is characterized by poor axonal regeneration, optic neuropathies like glaucoma frequently result in permanent vision loss. To date, no clinical therapy is available to cure these neuropathies, yet considerable progress in understanding the mechanisms underlying regenerative CNS failure has been made. So far, one of the main causes of limited axonal regeneration is presumed to be injury-induced glial scarring, which forms an impenetrable barrier of inhibitory components, and myelin debris derived from degenerating nerve fibers. In addition, mature CNS neurons are characterized by an insufficient intrinsic growth capacity and a loss of neurotrophic support (Figure 1B, left panel) (Verslegers et al., 2013). To date, limited long-distance axonal regeneration in mammals can be obtained through suppressive ECM remodeling, increase of trophic support and by induction of controlled ocular inflammation and glial reactivity (Fischer and Leibinger, 2012). Similar to axonal outgrowth during development, MMPs have also been suggested as promoters of axonal regeneration in the adult mammalian CNS (Verslegers et al., 2013). In adult rodents, in which regeneration was triggered after injury of the spinal cord or optic nerve, gelatinase activity was strongly induced in astrocytes in the scar tissue. There, MMPs seemed necessary to degrade its inhibitory constituents, such as chondroitin sulfate proteoglycans (CSPGs) (Verslegers et al., 2013). Indeed, several independent studies identified MMP-2 as a major potential proteinase able to reduce the glial scar through proteolytic cleavage of CSPGs (Figure 1B, right panel) (Verslegers et al., 2013). For example, MMP-2 deficient mice showed an impaired structural and functional recovery after spinal cord injury dueto increased glial scarring. Furthermore, immature astrocytes, which produce MMP-2, were significantly less able to cross an artificial inhibitory proteoglycan rim when MMP-2 was inhibited (Verslegers et al., 2013). Also olfactory ensheating cell (OECs) grafts, which are known to express very high levels of MMP-2, have been reported to promote adult CNS regeneration in mammals, most likely via induction of CSPG degradation. Indeed, CSPG levels present in scar tissue strongly decreased after OEC transplantation in damaged rat spinal cords, suggestive for a role for MMP-2 in CSPG cleavage (Pastrana et al., 2006). Lastly, administration of MMP-2 to dissociated adult rat RGCs promoted axonal regeneration and reduced the amount of CSPGs present in their perineuronal nets. These data then also suggest that degradation of inhibitory CSPGs in a local inhibitory ECM environment is one of the mechanisms through which MMP-2 stimulates axonal outgrowth in adult neurons (Pastrana et al., 2006). Overall, during mammalian CNS repair, gelatinases, and MMP-2 in particular, are predominantly recognized as key players in suppressive environment neutralization, thereby clearing the path for axons to regrow.

    Figure 1 Schematic representation of functional implications for matrix metalloproteinase-2 (MMP-2) in vertebrate optic nerve (ON) development and regeneration.

    Figure 2 Retinal MMP-2 inhibition after optic nerve crush (ONC) reduces optic tectum (OT) reinnervation, without influencing retinal ganglion cell (RGC) survival.

    Compared to mammals, adult zebrafish can functionally regenerate axons in the injured CNS, due to an increased expression of growth- and pathfinding-associated genes and an environment containing less inhibitory, but more axonal regrowth-promoting molecules. Strikingly, the signaling pathways underlying CNS regeneration in zebrafish and mammals seem conserved (Becker and Becker, 2014). Therefore, zebrafish are frequently used as a model organism to identify pro-regenerative molecules for the injured mammalian CNS. In these fish, RGCs typically survive after optic nerve crush (ONC), regrow long-distance axons and re-establish synaptic contacts with their target neurons in the OT, all within three weeks post-injury (Becker and Becker, 2014). To provide initial insights in molecules involved in zebrafish optic nerve regeneration, RT-PCR and microarray studies were performed on the regenerating zebrafish eye at different time points after ONC. Interestingly, a temporal correlation was shown between the expression of four specific MMPs (mmp-2, -9, 13a and -14) and different phases of retinotectal regeneration (McCurley and Callard, 2010). Recently, our lab confirmed the dynamic expression pattern of those four specific MMPs in the injured zebrafish retina at protein level, implicating them in axonal regrowth and inner retina remodeling after ONC. Moreover, and identical to their known role in optic system development, MMPs were proven to be in vivo regulators of RGC axonal regrowth in adult zebrafish, sinceretinal broad-spectrum MMP inhibition after ONC significantly reduced OT reinnervation, without influencing RGC survival (Lemmens et al., 2015). Notably, expression studies revealed significantly upregulated Mmp-2 protein levels in growth-active RGCs and regrowing axons at the level of the retina, but not in retinal or ON macroglia, during zebrafish retinotectal regeneration (Figure 1A, right panel) (Lemmens et al., 2015). Since these data suggested Mmp-2 as an important regulator of RGC axonal regrowth, we repeatedly administered ABT-770 - a gelatinase inhibitor reported to be 30-fold more specific for MMP-2 than for MMP-9 (Curtin et al., 2001) - to the zebrafish retina after ONC. Thereto, we either intravitreally injected the potent MMP-2 inhibitor (5 mM ABT-770 (Abbott Laboratories) or its vehicle (5% DMSO) into the zebrafish eye at 1, 3, 4 and 6 days post-injury (dpi). At 7 dpi, axons were anterogradely traced with biocytin and axonal regeneration was quantified at the level of the contralateral OT as previously described (Lemmens et al., 2015). Of note, uncrushed control (UCC) fish, in which OT innervation was analyzed and set as a 100% reference value, were included. Similar to previous observations in our lab, about 70% of the OT of vehicle-injected fish was reinnervated at 7dpi as compared to UCCs, indicating that axonal regeneration was well advanced at one week after ONC (Figure 2A, B & D) (Lemmens et al., 2015). A 50% decrease in tectal reinnervation was observed in fish treated with ABT-770 as compared to vehicle-injected fish (Figure 2B—D). Notably, activated Caspase-3 stainings on retinal sections at 7 dpi, did not unveil any difference in the percentage of apoptotic RGCs between vehicle and ABT-770 injected zebrafish. Furthermore, an equal number of cells, visualized by the nuclear marker 4',6-diamidino-2-phenylindole (DAPI), was observed in the RGC layer. This excludes that the diminished OT reinnervation after MMP-2 inhibition is due to apoptotic effects on retinal neurons (Figure 2E, F). Altogether, these data suggest that lowering Mmp-2 activity in the retina after ONC specifically inhibits RGC axonal regrowth. Importantly, since zebrafish barely have an inhibitory environment after injury, our data suggest a novel, neuron-intrinsic role for MMP-2 in axonal regrowth that is distinct from breaking down environmental barriers, as deducted from various mammalian studies (Figure 1A, right panel) (Verslegers et al., 2013; Becker and Becker, 2014). Notably, our observation, which implies a similar role for MMP-2 in zebrafish retinotectal regeneration as during development of retinofugal projections, should not come as a surprise since it is assumed that successful regeneration partly recapitulates molecular mechanisms that are at play during neural development. However, the exact working mechanism of MMP-2 and its underlying targets in zebrafish RGC axonal growth and regeneration remain largely elusive.

    Overall, manipulation of MMP signaling pathways holds possible therapeutic potential for mammalian CNS repair. However, as MMPs are widely reported as Yin/Yang players in CNS (patho)physiology, their activity needs to be well controlled. Therefore, a targeted delivery of MMP inhibitors/activators and full understanding of the biological processes in each disease condition seems essential to successfully influence MMP functioning in optic neuropathies (Vandenbroucke and Libert, 2014). Consequently, proteomics approaches to identify MMP underlying pro-regenerative targets crucial for mouse and zebrafish optic nerve regeneration are highly needed and will likely pinpoint important underlying molecules and pathways, which can, after appropriate manipulation, result in successful optic nerve regeneration. We do want to emphasize that, despite an overall conservation of signaling pathways underlying regeneration, glial scar production seems negligible in injured adult zebrafish (Becker and Becker, 2014). As the ultimate goal is to induce optic nerve regeneration and visual repair in mammals, we then also believe in complementary research, combining pro-regenerative targets identified from omics studies in both fish and mammals. In case of MMP-2, and based on the research described above, zebrafish would be useful to identify underlying intrinsic growth-promoting targets, while mammals would primarily serve to characterize its key players in inhibitory environment clearance (Figure 1A, B, both right panel).

    The authors are financially supported by the Hercules Foundation (AKUL/09/038 & AKUL/13/09) and national grants from the Research Council of KU Leuven (BOF-OT/14/064), the Research Foundation Flanders (FWO G0B2315N) and the Flemish Institute for the promotion of scientific research (IWT).

    Kim Lemmens, Inge Van Hove, Lieve Moons*

    Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven, Belgium

    *Correspondence to: Lieve Moons, Ph.D., Lieve.moons@bio.kuleuven.be.

    Accepted: 2016-03-31

    orcid: 0000-0003-0186-1411 (Lieve Moons)

    Becker T, Becker CG (2014) Axonal regeneration in zebrafish. Curr Opin Neurobiol 27:186-191.

    Curtin ML, Florjancic AS, Heyman HR, Michaelides MR, Garland RB, Holms JH, Steinman DH, Dellaria JF, Gong J, Wada CK, Guo Y, Elmore IB, Tapang P, Albert DH, Magoc TJ, Marcotte PA, Bouska JJ, Goodfellow CL, Bauch JL, Marsh KC, et al. (2001) Discovery and characterization of the potent, selective and orally bioavailable MMP inhibitor ABT-770. Bioorg Med Chem Lett 11:1557-1560.

    Fischer D, Leibinger M (2012) Promoting optic nerve regeneration. Prog Retin Eye Res 31:688-701.

    Gaublomme D, Buyens T, De Groef L, Stakenborg M, Janssens E, Ingvarsen S, Porse A, Behrendt N, Moons L (2014) Matrix metalloproteinase 2 and membrane type 1 matrix metalloproteinase co-regulate axonal outgrowth of mouse retinal ganglion cells. J Neurochem 129:966-979.

    Hehr CL, Hocking JC, McFarlane S (2005) Matrix metalloproteinases are required for retinal ganglion cell axon guidance at select decision points. Development 132:3371-3379.

    Janssens E, Gaublomme D, De Groef L, Darras VM, Arckens L, Delorme N, Claes F, Van Hove I, Moons L (2013) Matrix metalloproteinase 14 in the zebrafish: an eye on retinal and retinotectal development. PLoS One 8:e52915.

    Lemmens K, Bollaerts I, Bhumika S, De Groef L, Van Houcke J, Darras VM, Van Hove I, Moons L (2015) Matrix metalloproteinases as promising regulators of axonal regrowth in the injured adult zebrafish retinotectal system. J Comp Neurol 524:1472-1493.

    McCurley AT, Callard GV (2010) Time course analysis of gene expression patterns in zebrafish eye during optic nerve regeneration. J Exp Neurosci 2010:17-33.

    Pastrana E, Moreno-Flores MT, Gurzov EN, Avila J, Wandosell F, Diaz-Nido J (2006) Genes associated with adult axon regeneration promoted by olfactory ensheathing cells: a new role for matrix metalloproteinase 2. J Neurosci 26:5347-5359.

    Vandenbroucke RE, Libert C (2014) Is there new hope for therapeutic matrix metalloproteinase inhibition? Nat Rev Drug Discov 13:904-927.

    Verslegers M, Lemmens K, Van Hove I, Moons L (2013) Matrix metalloproteinase-2 and -9 as promising benefactors in development, plasticity and repair of the nervous system. Prog Neurobiol 105:60-78.

    Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 92:827-839.

    10.4103/1673-5374.182697 http∶//www.nrronline.org/

    How to cite this article: Lemmens K, Van Hove I, Moons L (2016) Complementary research in mammals and fish indicates MMP-2 as a pleiotropic contributor to optic nerve regeneration. Neural Regen Res 11(5):740-742.

    国产成人系列免费观看| 在线永久观看黄色视频| www日本在线高清视频| 色婷婷久久久亚洲欧美| www日本在线高清视频| 亚洲一区中文字幕在线| 黑人操中国人逼视频| 91大片在线观看| 国产av一区在线观看免费| aaaaa片日本免费| 中文字幕色久视频| 91麻豆av在线| 中出人妻视频一区二区| 国产亚洲欧美98| 久久久久久亚洲精品国产蜜桃av| 欧美黄色淫秽网站| 国产成人一区二区三区免费视频网站| 欧美成狂野欧美在线观看| 成人手机av| 国产极品粉嫩免费观看在线| 夜夜夜夜夜久久久久| www国产在线视频色| 啦啦啦韩国在线观看视频| 男男h啪啪无遮挡| 亚洲一区二区三区不卡视频| 国产精品99久久99久久久不卡| 国产精品乱码一区二三区的特点 | 嫩草影视91久久| 乱人伦中国视频| 天天躁狠狠躁夜夜躁狠狠躁| 国产又爽黄色视频| 精品国产美女av久久久久小说| 亚洲成av片中文字幕在线观看| 亚洲无线在线观看| 免费高清在线观看日韩| 国产成人精品久久二区二区91| 亚洲人成电影观看| 两人在一起打扑克的视频| 日本三级黄在线观看| 啦啦啦韩国在线观看视频| 欧美乱色亚洲激情| 一二三四在线观看免费中文在| 亚洲中文字幕一区二区三区有码在线看 | 国产一卡二卡三卡精品| 日本精品一区二区三区蜜桃| 久久精品影院6| 午夜福利免费观看在线| 免费高清在线观看日韩| 亚洲av第一区精品v没综合| 一本久久中文字幕| 一进一出抽搐动态| 十分钟在线观看高清视频www| 日韩欧美国产在线观看| 好看av亚洲va欧美ⅴa在| 又黄又爽又免费观看的视频| 69精品国产乱码久久久| www.精华液| 久久精品亚洲精品国产色婷小说| 亚洲国产欧美日韩在线播放| 国产精品香港三级国产av潘金莲| 俄罗斯特黄特色一大片| 国产av又大| 色av中文字幕| 两性午夜刺激爽爽歪歪视频在线观看 | 国产熟女xx| 淫妇啪啪啪对白视频| 99国产精品一区二区三区| 国语自产精品视频在线第100页| 一边摸一边做爽爽视频免费| 国产亚洲av高清不卡| 亚洲成人免费电影在线观看| 婷婷精品国产亚洲av在线| 19禁男女啪啪无遮挡网站| 亚洲一码二码三码区别大吗| av在线天堂中文字幕| 久久久久久免费高清国产稀缺| 精品一区二区三区视频在线观看免费| 午夜免费成人在线视频| 亚洲国产看品久久| 欧美日本中文国产一区发布| 日本 欧美在线| av福利片在线| 国产单亲对白刺激| 91老司机精品| 欧美性长视频在线观看| 神马国产精品三级电影在线观看 | 成年版毛片免费区| 亚洲欧美日韩另类电影网站| 精品一区二区三区视频在线观看免费| 亚洲国产精品sss在线观看| av在线播放免费不卡| 国产欧美日韩精品亚洲av| 久久精品影院6| 日本免费a在线| 高清毛片免费观看视频网站| 精品无人区乱码1区二区| 亚洲第一电影网av| 91九色精品人成在线观看| 国语自产精品视频在线第100页| 精品电影一区二区在线| 黑人巨大精品欧美一区二区蜜桃| av在线播放免费不卡| 久久久久久国产a免费观看| 久久精品国产亚洲av高清一级| 波多野结衣一区麻豆| 精品久久蜜臀av无| 久久国产精品人妻蜜桃| 黑人操中国人逼视频| 亚洲熟女毛片儿| av天堂在线播放| 1024香蕉在线观看| 免费观看人在逋| 久99久视频精品免费| 成年女人毛片免费观看观看9| 正在播放国产对白刺激| 国产激情欧美一区二区| 激情在线观看视频在线高清| 丝袜在线中文字幕| 日韩精品免费视频一区二区三区| 天堂√8在线中文| 人成视频在线观看免费观看| 午夜福利视频1000在线观看 | 亚洲欧美日韩无卡精品| 美女高潮喷水抽搐中文字幕| 久久中文字幕人妻熟女| 久久性视频一级片| 久久草成人影院| 国产精品野战在线观看| 一级黄色大片毛片| 精品人妻1区二区| 亚洲久久久国产精品| 老鸭窝网址在线观看| 可以在线观看的亚洲视频| 精品久久久久久久久久免费视频| 又黄又爽又免费观看的视频| 欧美+亚洲+日韩+国产| 亚洲,欧美精品.| 狠狠狠狠99中文字幕| 精品欧美国产一区二区三| 亚洲第一电影网av| 欧美日韩瑟瑟在线播放| 好男人电影高清在线观看| 亚洲国产看品久久| 天天添夜夜摸| 波多野结衣一区麻豆| 亚洲国产精品久久男人天堂| 波多野结衣巨乳人妻| 97人妻天天添夜夜摸| 日本免费一区二区三区高清不卡 | 首页视频小说图片口味搜索| 国产在线精品亚洲第一网站| 又黄又粗又硬又大视频| 亚洲成人免费电影在线观看| 亚洲精品一区av在线观看| 1024香蕉在线观看| 少妇裸体淫交视频免费看高清 | 两性午夜刺激爽爽歪歪视频在线观看 | www.999成人在线观看| 欧美成人性av电影在线观看| 国产欧美日韩一区二区精品| 老司机福利观看| 色综合婷婷激情| 九色亚洲精品在线播放| 国产三级在线视频| 国产精品日韩av在线免费观看 | 一边摸一边做爽爽视频免费| 在线观看一区二区三区| 久久中文字幕人妻熟女| 久久久国产成人免费| 丰满人妻熟妇乱又伦精品不卡| 亚洲av成人一区二区三| 亚洲欧美精品综合一区二区三区| 亚洲国产精品sss在线观看| 亚洲中文av在线| 制服诱惑二区| 91大片在线观看| 国产精品一区二区精品视频观看| 成人av一区二区三区在线看| 悠悠久久av| 国产精品久久久久久精品电影 | 91国产中文字幕| 成人亚洲精品av一区二区| 91在线观看av| 少妇粗大呻吟视频| 欧美老熟妇乱子伦牲交| a级毛片在线看网站| 成人18禁在线播放| 亚洲欧美精品综合一区二区三区| 久久人人精品亚洲av| 男女床上黄色一级片免费看| 国产亚洲av嫩草精品影院| 国产精品永久免费网站| 久久国产亚洲av麻豆专区| 岛国在线观看网站| 97人妻精品一区二区三区麻豆 | 国产免费男女视频| 此物有八面人人有两片| 欧美黄色片欧美黄色片| 中文字幕人妻熟女乱码| 精品国产一区二区久久| 啦啦啦韩国在线观看视频| 亚洲三区欧美一区| 久久天堂一区二区三区四区| 亚洲熟妇熟女久久| 日韩有码中文字幕| av天堂久久9| 一二三四在线观看免费中文在| avwww免费| 精品免费久久久久久久清纯| 国产亚洲欧美98| 看免费av毛片| 国产亚洲av高清不卡| 免费av毛片视频| 亚洲av日韩精品久久久久久密| 91国产中文字幕| 国产高清videossex| 国产精品免费视频内射| 久热这里只有精品99| av网站免费在线观看视频| 国产片内射在线| 少妇 在线观看| 久久国产乱子伦精品免费另类| 亚洲七黄色美女视频| 国产精品秋霞免费鲁丝片| 色av中文字幕| 国语自产精品视频在线第100页| 男女做爰动态图高潮gif福利片 | 婷婷丁香在线五月| 欧美绝顶高潮抽搐喷水| 美女免费视频网站| 久久中文字幕人妻熟女| 97超级碰碰碰精品色视频在线观看| 成人精品一区二区免费| 黄色 视频免费看| 亚洲精品粉嫩美女一区| 免费看十八禁软件| 国产精品永久免费网站| 777久久人妻少妇嫩草av网站| 中文字幕人成人乱码亚洲影| 精品国产乱码久久久久久男人| 午夜福利成人在线免费观看| 亚洲国产精品合色在线| 99re在线观看精品视频| 免费观看人在逋| 日韩一卡2卡3卡4卡2021年| 美国免费a级毛片| 欧美av亚洲av综合av国产av| 天堂动漫精品| 午夜免费激情av| 人人澡人人妻人| 纯流量卡能插随身wifi吗| 啦啦啦 在线观看视频| 很黄的视频免费| 成人永久免费在线观看视频| 久久狼人影院| www.www免费av| 久久青草综合色| 国产av在哪里看| 狠狠狠狠99中文字幕| 制服人妻中文乱码| 好男人电影高清在线观看| 丝袜美腿诱惑在线| 亚洲avbb在线观看| 成人特级黄色片久久久久久久| 黄片小视频在线播放| 午夜精品久久久久久毛片777| 精品高清国产在线一区| av中文乱码字幕在线| 啪啪无遮挡十八禁网站| 精品第一国产精品| 亚洲中文字幕一区二区三区有码在线看 | 国产av一区二区精品久久| 后天国语完整版免费观看| 色综合婷婷激情| 色在线成人网| 国产成人精品久久二区二区91| 国产人伦9x9x在线观看| 久久精品91蜜桃| 国产欧美日韩精品亚洲av| x7x7x7水蜜桃| 少妇熟女aⅴ在线视频| 国产私拍福利视频在线观看| av福利片在线| 在线观看舔阴道视频| 日本欧美视频一区| 欧美乱妇无乱码| 看片在线看免费视频| 此物有八面人人有两片| 国产成人精品无人区| av天堂久久9| 亚洲 国产 在线| 免费观看人在逋| 级片在线观看| 日本免费一区二区三区高清不卡 | 两性午夜刺激爽爽歪歪视频在线观看 | 桃红色精品国产亚洲av| 免费一级毛片在线播放高清视频 | 女人被狂操c到高潮| 97人妻天天添夜夜摸| 亚洲第一青青草原| cao死你这个sao货| 校园春色视频在线观看| www日本在线高清视频| 国产高清视频在线播放一区| 精品国产乱码久久久久久男人| 精品第一国产精品| 18禁观看日本| 一级片免费观看大全| 我的亚洲天堂| 人人妻,人人澡人人爽秒播| 18禁美女被吸乳视频| 国产精品永久免费网站| 12—13女人毛片做爰片一| 日日干狠狠操夜夜爽| 精品久久久久久久久久免费视频| 此物有八面人人有两片| av网站免费在线观看视频| 欧美日韩亚洲国产一区二区在线观看| 亚洲色图综合在线观看| 999久久久国产精品视频| 免费观看人在逋| 午夜久久久久精精品| 老司机靠b影院| 亚洲成av片中文字幕在线观看| 国产精品美女特级片免费视频播放器 | 国产午夜福利久久久久久| 亚洲av成人av| 两人在一起打扑克的视频| 一二三四在线观看免费中文在| 变态另类丝袜制服| 精品日产1卡2卡| 午夜两性在线视频| 成人亚洲精品一区在线观看| 色av中文字幕| 国产99白浆流出| 制服丝袜大香蕉在线| 国产aⅴ精品一区二区三区波| 乱人伦中国视频| 人成视频在线观看免费观看| 国产精品野战在线观看| 99re在线观看精品视频| 真人一进一出gif抽搐免费| 熟妇人妻久久中文字幕3abv| 丰满的人妻完整版| 极品人妻少妇av视频| 久久香蕉精品热| 亚洲狠狠婷婷综合久久图片| 精品欧美一区二区三区在线| 国产一区二区三区视频了| 日本免费a在线| 精品一区二区三区av网在线观看| 午夜免费成人在线视频| 免费人成视频x8x8入口观看| 99精品在免费线老司机午夜| 搡老岳熟女国产| 制服诱惑二区| 超碰成人久久| 日韩欧美一区视频在线观看| 国产麻豆69| 在线观看舔阴道视频| 99re在线观看精品视频| 久久久精品国产亚洲av高清涩受| 成人欧美大片| 午夜a级毛片| e午夜精品久久久久久久| 亚洲中文字幕一区二区三区有码在线看 | 国产伦人伦偷精品视频| 欧美一级a爱片免费观看看 | 中文字幕av电影在线播放| 国产高清激情床上av| 日本撒尿小便嘘嘘汇集6| 在线观看免费视频日本深夜| 91av网站免费观看| 精品第一国产精品| 在线视频色国产色| 国产精华一区二区三区| 国产成+人综合+亚洲专区| 国产亚洲欧美在线一区二区| 在线观看免费午夜福利视频| 欧美日韩精品网址| 91成年电影在线观看| 亚洲情色 制服丝袜| 免费少妇av软件| 国产国语露脸激情在线看| 亚洲欧美激情在线| 亚洲av熟女| 国产亚洲精品av在线| 岛国视频午夜一区免费看| 国内精品久久久久久久电影| 在线观看免费视频日本深夜| 天天添夜夜摸| 窝窝影院91人妻| 午夜a级毛片| 亚洲国产精品成人综合色| 波多野结衣巨乳人妻| 丰满的人妻完整版| 欧美中文日本在线观看视频| 午夜视频精品福利| 少妇被粗大的猛进出69影院| 国产极品粉嫩免费观看在线| 91精品国产国语对白视频| 欧美av亚洲av综合av国产av| 免费女性裸体啪啪无遮挡网站| 一级毛片女人18水好多| 欧美午夜高清在线| 亚洲成国产人片在线观看| 999久久久精品免费观看国产| 亚洲黑人精品在线| 久久国产精品人妻蜜桃| 99re在线观看精品视频| 日韩有码中文字幕| 黄色 视频免费看| 国产亚洲欧美在线一区二区| 精品第一国产精品| 波多野结衣av一区二区av| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲专区国产一区二区| 叶爱在线成人免费视频播放| 亚洲 欧美一区二区三区| 午夜福利欧美成人| 夜夜夜夜夜久久久久| 999精品在线视频| 18禁美女被吸乳视频| 久久久久久久久中文| 国产欧美日韩精品亚洲av| 欧美国产日韩亚洲一区| 无遮挡黄片免费观看| 一进一出抽搐动态| 妹子高潮喷水视频| 丝袜美腿诱惑在线| 99精品在免费线老司机午夜| 宅男免费午夜| 成人亚洲精品av一区二区| 亚洲精品一区av在线观看| 如日韩欧美国产精品一区二区三区| 侵犯人妻中文字幕一二三四区| 亚洲av成人av| 制服人妻中文乱码| 婷婷六月久久综合丁香| 久久草成人影院| 日韩欧美国产一区二区入口| 久久九九热精品免费| 久久国产精品影院| 亚洲av熟女| 国产亚洲精品一区二区www| 90打野战视频偷拍视频| 日日摸夜夜添夜夜添小说| 亚洲成av片中文字幕在线观看| 免费在线观看亚洲国产| 999精品在线视频| 免费看十八禁软件| 国产精品国产高清国产av| av在线天堂中文字幕| 午夜日韩欧美国产| 成人亚洲精品av一区二区| 在线av久久热| 亚洲国产中文字幕在线视频| 国产精品久久久av美女十八| 国产一区二区三区在线臀色熟女| 91精品国产国语对白视频| 十八禁网站免费在线| www.精华液| 久久精品国产亚洲av香蕉五月| 欧美黄色淫秽网站| 免费看a级黄色片| 免费不卡黄色视频| 丝袜在线中文字幕| 国产男靠女视频免费网站| 欧美日韩一级在线毛片| 999久久久精品免费观看国产| 日韩大码丰满熟妇| 一二三四在线观看免费中文在| av视频在线观看入口| 91九色精品人成在线观看| 免费高清在线观看日韩| 丝袜美足系列| videosex国产| 看免费av毛片| www.999成人在线观看| 中文字幕久久专区| 中文字幕人妻丝袜一区二区| 久久热在线av| 人人妻人人爽人人添夜夜欢视频| 亚洲第一欧美日韩一区二区三区| 国产野战对白在线观看| 一进一出抽搐动态| 老熟妇仑乱视频hdxx| av福利片在线| 一进一出抽搐gif免费好疼| 国产成人精品久久二区二区91| 岛国在线观看网站| а√天堂www在线а√下载| 亚洲专区字幕在线| 一夜夜www| 无限看片的www在线观看| 国产精品久久久久久精品电影 | 日韩欧美三级三区| 国产人伦9x9x在线观看| 国产精品久久久久久精品电影 | 怎么达到女性高潮| www.999成人在线观看| 欧美一级a爱片免费观看看 | 午夜激情av网站| 一级片免费观看大全| 午夜激情av网站| 午夜福利在线观看吧| 黑人巨大精品欧美一区二区mp4| 亚洲五月天丁香| 国产亚洲精品久久久久久毛片| 久久久久九九精品影院| 一区二区三区激情视频| 给我免费播放毛片高清在线观看| 亚洲精品中文字幕在线视频| tocl精华| 香蕉久久夜色| 亚洲精品中文字幕一二三四区| 国产乱人伦免费视频| 视频区欧美日本亚洲| 美国免费a级毛片| 午夜亚洲福利在线播放| 日韩精品中文字幕看吧| 一个人免费在线观看的高清视频| 亚洲国产日韩欧美精品在线观看 | 精品久久久久久久人妻蜜臀av | 午夜福利成人在线免费观看| 男人舔女人下体高潮全视频| 国产区一区二久久| 亚洲成人精品中文字幕电影| 亚洲av电影不卡..在线观看| 国产精品香港三级国产av潘金莲| 欧洲精品卡2卡3卡4卡5卡区| 1024香蕉在线观看| 淫妇啪啪啪对白视频| 国产一区二区三区综合在线观看| 国产99久久九九免费精品| 成人免费观看视频高清| 亚洲中文日韩欧美视频| 91成年电影在线观看| 无限看片的www在线观看| 亚洲精品中文字幕一二三四区| 亚洲av五月六月丁香网| 国产精品久久久久久人妻精品电影| 可以在线观看毛片的网站| 亚洲av电影在线进入| 亚洲专区字幕在线| av视频在线观看入口| 午夜激情av网站| 这个男人来自地球电影免费观看| 精品国产超薄肉色丝袜足j| 国产色视频综合| 成人国产一区最新在线观看| 两人在一起打扑克的视频| 国产一区在线观看成人免费| 亚洲男人的天堂狠狠| 亚洲激情在线av| 可以在线观看毛片的网站| 久久久久久大精品| 亚洲专区字幕在线| av网站免费在线观看视频| 国产亚洲精品久久久久久毛片| 18禁裸乳无遮挡免费网站照片 | 搡老熟女国产l中国老女人| 18禁美女被吸乳视频| 欧美日韩精品网址| 1024视频免费在线观看| 成人特级黄色片久久久久久久| 午夜精品久久久久久毛片777| 午夜免费成人在线视频| 狂野欧美激情性xxxx| 久久国产精品男人的天堂亚洲| 日本三级黄在线观看| 99国产精品免费福利视频| 国产1区2区3区精品| 亚洲精品粉嫩美女一区| 色综合婷婷激情| 国产成人精品久久二区二区91| 在线观看免费视频日本深夜| 麻豆国产av国片精品| 纯流量卡能插随身wifi吗| 女人精品久久久久毛片| 男人舔女人下体高潮全视频| 久久午夜综合久久蜜桃| 亚洲av成人av| 精品久久久精品久久久| 啪啪无遮挡十八禁网站| 精品国产亚洲在线| 在线观看免费午夜福利视频| 国产三级在线视频| 国产精品久久电影中文字幕| 亚洲,欧美精品.| 中文字幕av电影在线播放| 一个人免费在线观看的高清视频| 在线十欧美十亚洲十日本专区| 一本久久中文字幕| 久久人人97超碰香蕉20202| 少妇的丰满在线观看| 国产主播在线观看一区二区| 黄片播放在线免费| 国产精品自产拍在线观看55亚洲| 看黄色毛片网站| а√天堂www在线а√下载| 变态另类成人亚洲欧美熟女 | 成人特级黄色片久久久久久久| 99香蕉大伊视频| 久久人人精品亚洲av| 精品午夜福利视频在线观看一区| 欧美午夜高清在线| 怎么达到女性高潮| 欧美日韩乱码在线| 亚洲熟女毛片儿| 午夜老司机福利片| 搡老岳熟女国产| 人人澡人人妻人| 极品教师在线免费播放| 九色亚洲精品在线播放|