• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design and Experimental Evaluation of PID Controller for Digital Electro-Pneumatic Cabin Pressure Control System

    2016-12-01 03:18:48NieJinfangPanQuanShenHaoSongZhitaoZhangDalin

    Nie Jinfang,Pan Quan,Shen Hao,Song Zhitao,Zhang Dalin

    1.College of Automation,Northwestern Polytechnical University,Xi′an 710072,P.R.China;

    2.Shanghai Aircraft Airworthiness Certification Center of CAAC,Shanghai 200335,P.R.China;

    3.Aviation Key Laboratory of Science and Technology on Aero Electromechanical System Integration, Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China

    Design and Experimental Evaluation of PID Controller for Digital Electro-Pneumatic Cabin Pressure Control System

    Nie Jinfang1,3,Pan Quan1,Shen Hao2,Song Zhitao2,Zhang Dalin3*

    1.College of Automation,Northwestern Polytechnical University,Xi′an 710072,P.R.China;

    2.Shanghai Aircraft Airworthiness Certification Center of CAAC,Shanghai 200335,P.R.China;

    3.Aviation Key Laboratory of Science and Technology on Aero Electromechanical System Integration, Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China

    The performance of the designed digital electro-pneumatic cabin pressure control system for the cabin pressure schedule of transport aircraft is investigated.Eor the purpose of this study,an experimental setup consisting of a simulated hermetic cabin and altitude simulation chamber is configured for cabin pressure control system operation.A series of experimental tests are executed to evaluate the performance of the cabin pressure control system.The parameters of the PID controller are optimized.In the optimization process,the variation regularity of the rate of cabin pressure change under various conditions is considered.An approach to prioritize the control of the rate of change of cabin pressure based on the flight status model is proposed and verified experimentally.The experimental results indicate that the proposed approach can be adopted for the designed digital electro-pneumatic cabin pressure control system to obtain a better cabin pressure schedule and rate of cabin pressure change.

    cabin;pressure control;digital electro-pneumatic;PID controller

    0 Introduction

    The cabin pressure control system(CPCS) controls the cabin pressure and pressurization rate to protect the passengers and the airplane.Since pneumatically driven systems have many distinct characteristics,such as energy-saving,cleanliness,a simple structure and operation,and high efficiency,and are suitable for working in a harsh environment,they have been extensively used for many years in cabin pressure control systems[1,2]. Recently,the appearance and development of electro-pneumatic proportional components have advanced pneumatic control techniques beyond the restrictions of point-to-point control.Electropneumatic proportional control components can convert an analog electrical input signal into outlet flow or pressure.Therefore,they can dramatically simplify pneumatic and electric circuits.

    In the past few years,several researchers have devoted their investigations to modeling the electro-pneumatic cabin pressure control system[3,4].Other studies have mainly focused on the digital proportional,integral,and derivative (PID)control strategy for the electro-pneumatic cabin pressure control system[5-9].The current trend to develop an improved electro-pneumatic cabin pressure control system with good performances in terms of safety,stability,and accuracy requires investigation to find the optimum parameters of a PID controller.This paper investigates the stability and dynamic performance of a digital electro-pneumatic cabin pressure control system with the PID control method.Eor the purpose of this study,an experimental setup is configuredfor cabin pressure control system operation.The PID controller,which is connected in a microcomputer together with a data acquisition card,is implemented.A series of tests are conducted to verify the controller′s performance for particular situations that are relevant to the aircraft′s cabin pressure control system behavior.

    *Corresponding author,E-mail address:zhangdalin@nuaa.edu.cn.

    How to cite this article:Nie Jinfang,Pan Quan,Shen Hao,et al.Design and experimental evaluation of PID controller for digital electro-pneumatic cabin pressure control system[J].Trans.Nanjing Univ.Aero.Astro.,2016,33(5):576-583. http://dx.doi.org/10.16356/j.1005-1120.2016.05.576

    1 Cabin Pressure Control System Model

    Fig.1 shows the arrangement of the digital electro-pneumatic cabin pressure control system, which is composed of a digital controller,outflow valve,and cabin.As illustrated in Fig.1,two absolute pressure sensors are used to monitor the atmospheric pressure and cabin pressure,respectively.The cabin pressure and its rate of change are set by the cabin pressure selector.The required target for the actuator is calculated with PID according to the atmospheric pressure from the air data computer and a given cabin pressure schedule.D/A drives torque motor deflection to transform the opening of the outflow valve, which in turn controls the pressure,excess pressure,and rate of cabin pressure change in real time.

    Fig.2 shows a schematic diagram of the outflow valve.The valve action is driven by the gravity of the moving part,preload of the spring, and differential pressure between the cabin pressure and cavity pressure.Compared with a purely pneumatic system,the digital pneumatic actuator has a digital signal regulator.This regulator consists of four elements:two nozzles with an air inlet from the cabin and an exhaust outlet to the atmosphere,a torque motor,and a triangle block. The torque motor dives the triangle block to change the nozzles′cross-sectional area,which controls the flux of air.Consequently,the valve opening is controlled by differential pressure on the diaphragm for controlling the pressure and rate of pressure change in the cabin.

    Fig.2 Structure of outflow valve

    2 Experiment

    Fig.3 shows the setup of the experiments. The core of the system is a simulated hermetic cabin.The simulated hermetic cabin and the digital controller are connected with a communications cable.This digital controller receives the simulated hermetic cabin pressure,the atmospheric pressure,and differential pressure signals. Before the activation of the controller,the rule set and associated membership functions in a precompiled format are sent to it.The atmospheric environment is simulated by a high-altitude simulation cabin[4,5],which simulates the atmospheric pressure while climbing and descending during flight.The atmospheric pressure is controlled by the openings of the gulp valve and the outflow valve.Two pressure transducers are used to check the pressure in the hermetic cabin and the pressure in the high-altitude simulation cabin,re-spectively.An air mass flow sensor is used to measure the flow rate at the inlet of the hermetic cabin.A vacuum pump expels the air of the highaltitude simulation cabin through the outflow valve.The installation of the outflow valve is shown in Fig.4.

    Fig.3 Experimental setup of cabin pressure control

    Fig.4 Installation of outflow valve

    The measurement and control system is built for data gathering and controlling the pressures of the hermetic cabin and the high-altitude simulation cabin based on the virtual instruments.A data acquisition and control board named SCXI-1600 is used in the system.SCXI-1600 has an accuracy of 16 bit and a rate of up to 200 kb/s.The current signal of the pressure sensors is sent to a PC via the SCXI-1102 conditioning module and SCXI-1303 terminal board.The output of the control signals computed and filtered from an analog device is transmitted by SCXI-1124 and the SCXI-1325 terminal board.The measurement and control system hardware structure is shown in Fig.5.The test rig is automated with Lab VIEW software to ensure the timing and sequence of events are precise and repeatable.Through Lab-VIEW,the acquisition and control codes are developed.Using the Lab VIEW software provided by the MATLAB script node,the acquisition and control codes can directly call Euzzy Logic Toolbox of MATLAB via Lab VIEW to design the fuzzy control rule and correction.

    Fig.5 Measurement and control system hardware structure

    Controlling the pressure of the high-altitude simulation cabin is very difficult during testing. This is associated with the performance of the cabin pressure control system being tested.It is difficult for the automatic control of pressure to meet the functioning requirements when the per-formance of the cabin pressure control system being tested is unstable.This is because the variation of the outflow valve opening causes air to flow into the high-altitude simulation cabin, which results in rapid change in a short period of time,showing that the change of cabin pressure is larger,and even leads to the coupling resonance of the two control systems and breakdown of the test unit.Therefore,manual intervention is necessary during the early stage of experiment,and the automatic control is activated when the tested pressure control system is relatively stable.

    Fig.6 Application interface

    3 Experimental Results

    A series of tests are executed to evaluate the performance of the cabin pressure control system for transport aircraft.A cabin pressure schedule of transport aircraft is shown in Fig.7.The cabin pressure is divided into three zones:free ventilation,absolute pressure,and overpressure within the flight altitude range.Based on these pressure data,the PID control parameters can be found by systematically adjusting their values to obtain the best permitting ones.

    In this section,a series of tests are performed in order to validate the performance of the digital electro-pneumatic cabin pressure control system for a given flight status.Two main requirements should be satisfied:

    (1)The pressure of the simulated hermetic cabin is controlled to follow the cabin pressure schedule of transport aircraft during climbing and diving.

    Fig.7 Cabin pressure schedule of transport aircraft

    (2)The rate of the simulated hermetic cabin pressure change under climbing and diving conditions is controlled.

    According to the PID algorithm,the controller output signal consists of three terms

    where e represents the deviation signal of the control parameter,Kpthe proportional gain,Tithe integral time constant,and Tdthe differentiating time constant.In the paper,u is the output current signal of the torque motor and e the pressure difference signal.The pressure signal is gathered 10 times per second by using anti-pulse-interfere median filtering.The nonlinear partial differential equations are converted to the incremental type in the calculation of PID[10]

    where Kp,Ki,and Kdare the constants.The values for u(n)andΔu(n)are the set upper and lower limits according to the practical system.

    The test considers a setting pressure value of the absolute pressure region for three cabin altitudes:90 kPa for 1 km,80 kPa for 2 km,and 70 k Pa for 3 km,and the supply airflow rate is 3 000 kg/h.The PID control parameters are set to Kp=3,Ki=0.5,and Kd=2 along with a sampling period of 1 s.The valve reaches the maximum opening to ensure free ventilation when the value of ambient pressure is larger than that of the setting pressure.The experimental data for the 1 km working condition are listed here to il-lustrate the problems during the control process. Fig.8 shows the experimental response of the cabin pressure for climbing within the free ventilation zone and absolute pressure zone for the 1 km working condition.Similar to the purely pneumatic cabin pressure control system,the cabin pressure curve overshoots down from the free ventilation zone to the absolute pressure zone.This is because the valve is not closed promptly at the appropriate location.The drive current shows that the torque motor opens the valve faster than it closes the valve for the same Δu(n);Thus,the pressurized process forms faster than the decompression process.Clearly,the pressure control system cannot work within the absolute pressure zone.

    In order to solve the problems,the judgment of setting pressure is added into the program(See Fig.8).The input current of the torque motor is decreased before the ambient pressure reaches the setting pressure,so that the valve is gradually closed to reduce the overshoot of the setting pressure point.

    Fig.8 Experimental response of cabin pressure with Kp=3,Ki=0.5,and Kd=2

    In order to suppress the amplitude of cabin pressure oscillation,the integral term of the PID algorithm is separated as follows:

    The experimental results for the responses for 1 km with the optimized PID algorithm are shown in Fig.9.

    It can be seen from Fig.9 that the overshootis suppressed after the point starts to adjust the pressure.By using integral separation and increasing the control cycle,the pressure in the absolute pressure zone becomes(90±2)k Pa,which basically meets the pressure control target even though decompression is still faster than pressurization in the curve.

    Fig.9 Experimental response of cabin pressure with optimized PID algorithm

    Figs.10,11 show the complete curves of the cabin pressure and its rate of change with altitude during the aircraft climbing process.In Fig.10, the cabin pressure basically conforms to the cabin pressure schedule of the transport aircraft,but significant fluctuations still exist in the whole process.As shown in Fig.11,the speed of pressurization is greater than+40 Pa/s,and the speed of decompression is greater than-100 Pa/ s.Actually,similar problems appear under 2 km and 3 km working conditions.Therefore,further tuning of the parameters of the PID controller according to the operating characteristics of the system is necessary.

    It turns out to be very difficult to achieve accurate and stable control merely by tuning the PID parameters.The operating characteristics of the cabin pressure control system need to be further analyzed.

    According to the operating principle of the system,overpressure is the power source of outflow valve actuation.The change of overpressure is the main interference of the system when the supply airflow is constant.Eor a given cabin pressure schedule,the cabin overpressure increases as the altitude increases within the absolutepressure zone when the aircraft climbs and the opposite occurs when the aircraft dives.

    Fig.10 Cabin pressure response curves with flight altitude during climbing(1 km)

    Fig.11 Rate of cabin pressure change with flight altitude during climbing

    In order to keep the exhaust flow constant,it is necessary to decrease the opening of the outflow valve when the overpressure increases for climbing.The speed of pressurization probably exceeds the design standard during the process. The judgment of the rate of cabin pressure change needs to be considered preferentially to maintain the rate of cabin pressure change within a specified range.Specifically,when the rate of change is greater than some typical values,the operating of the valve should be retarded or even stopped. The operating of the outflow valve depends on the displacement of the block driven by a motor.The electric current used to drive the corresponding valve opening should be decreased as the overpressure increases.Eor the diving and cruising process,a similar analysis should be conducted.

    According to the above analysis,some modifications are made to the digital PID control program:

    (1)Determining the flight status of the aircraft(climbing/diving/cruising).

    (2)Adjusting the PID parameters based on the flight status to follow the change of overpressure.

    (3)Judging the rate of cabin pressure change in the decompression and pressurization processes to keep the rate of cabin pressure change within a specified range preferentially.

    The results of the experimental verification based on the above proposed control method are shown in Figs.12—19.Specially,Figs.18,19 show the results of the backup status when the backup overpressure is 19.6 k Pa.

    As can be seen from the experimental results,the developed digital electro-pneumatic cabin pressure control system can match the given cabin pressure schedule.Meanwhile,the experimental results indicate that the rate of cabin pressure change can be controlled effectively with the proposed approach.

    Fig.12 Cabin pressure responses during climbing for the proposed model(1 km)

    Fig.14 Cabin pressure responses during climbing for the proposed model(2 km)

    Fig.15 Rate of cabin pressure change during climbing for the proposed model(2 km)

    Fig.16 Cabin pressure responses during diving for the proposed model(2 km)

    Fig.17 Rate of cabin pressure change during diving for the proposed model(2 km)

    Fig.18 Cabin pressure responses during climbing for the proposed model(3 km,backup overpressure)

    Fig.19 Rate of cabin pressure change during diving for the proposed model(3 km,backup overpressure)

    4 Conclusions

    An approach to prioritize the control of the rate of change of cabin pressure based on the flight status model for a digital electro-pneumatic cabin pressure control system is presented in order to improve control performance during aircraft climbing and diving.Experimental evaluation of the pressure controller is carried out for a digital electro-pneumatic cabin pressure control system,and the results show the controller can work effectively and stably to control the cabin pressure rate of change to fulfill the requirement of human physical comfort.

    [1] WANG Jun,XU Yanghe.Control of air parameters in aircraft cabin[M].Beijing:National Defense Industry Press,1980.(in Chinese)

    [2] TANG Jian,ZHANG Xingjuan,YUAN Xiugan. Research on dynamic performance of new cabin′spressure regulator[J].Aircraft Engineering,2005 (4):45-49.(in Chinese)

    [3] LEE E B.Electronic pressure regulator:AIAA 90-1940[R].1990.

    [4] ETTL H U.Modern digital pressure control system: AIAA 88-3948-CP[R].1988.

    [5] MA Hui.Research on control system of simulated atmospheric pressure cabin[D].Nanjing:Nanjing University of Aeronautics&Astronautics,2006.(in Chinese)

    [6] NIE Jinfang,PAN Quan,ZHANG Dalin.Performance investigation of high-altitude simulation cabin based on Labview[J].Journal of Nanjing University of Aeronautics&Astronautics,2014,46(4):594-598.(in Chinese)

    [7] WU Yan,ZHANG Dalin.Modeling and performance analysis of digital electronic-pneumatic cabin pressure control system[J].Journal of Nanjing University of Aeronautics&Astronautics,2008,40(3):324-328. (in Chinese)

    [8] ZHU Lei,EU Yongling,ZHAO Jingquan.Euzzy sliding mode variable structure control of digital cabin pressure regulating system[J].Journal of Applied Science,2009,27(5):545-549.(in Chinese)

    [9] HAN Yefei,EANG Gang,HU Yongxiang,et al. Modeling and PID controller designing for pressure control system of cabin function test[J].Journal of Shanghai Jiao Tong University,2011,45(7):1074-1079.(in Chinese)

    [10]CHEN Zhijiu,WU Jingyi.Automation of refrigeration equipment[M].2nd Ed.Beijing:China Machine Press,2010.(in Chinese)

    Prof.Nie Jinfang received B.S.degree in electronics engineering from Beijing University of Aeronautics and Astronautics(BUAA)in 1989 and M.S.degree in mechanical engineering from BUAA in 2004.He joined in China Research Institute of Aero-Accessories(CRIAA,former NEIAS)in 1989.Currently,he works as a professor in Nanjing Engineering Institute of Aircraft System,AVIC(NEIAS)and Aviation Key Laboratory of Science and Technology on Aero Electromechanical System Integration,Nan-

    jing,China.His research is focused on aircraft environment control systems.

    Prof.Pan Quan received B.S.degree in automation engineering from Huazhong University of Science and Technology,Wuhan,China,in 1982,and M.S.and Ph.D.degrees in control theory and application from Northwest Polytechnical University(NWPU),Xi′an,China,in 1991 and 1997,respectively.He is currently a full professor and president of College of Automation.His research is focused on the theory and application of information fusion,target tracking and recognition technology,spectral imaging and image processing,intelligence surveillance reconnaissance sensing system of large-scale data analysis and synthesis, UAV and aerospace satellite navigation and control platform,network information security and confidentiality of modern technology.

    Mr.Shen Hao received B.S.degree from Nanjing University of Aeronautics and Astronautics in 2000.He works for Hongdu Aviation Industry Group from 2000 to 2008.In 2008,he joined in Shanghai aircraft airworthiness certification center of CAAC,and he is the senior engineer of the mechanical system department.

    Mr.Song Zhitao received B.S.degree from Northwestern Polytechnical University in 1988.He worked for Chengdu Aircraft Industrial Group from 1988 to 2007.In 2008,he joined in Shanghai aircraft airworthiness certification center of CAAC,and he is the director of the mechanical system department.

    Prof.Zhang Dalin received B.S.degree in Aircraft Environmental Control from Nanjing University of Aeronautics and Astronautics(NUAA),Nanjing,China,in 1993,and M.S.degree in Power Engineering and Engineering Thermophysics and Ph.D.degree in Aircraft Design Engineering from NUAA,in 1996 and 2003,respectively.He is currently a full professor of College of Aerospace Engineering of NUAA,and also a member of Academic Committee of Aviation Key Laboratory of Science and Technology on Aero Electromechanical System Integration,Nanjing,China.His research is focused on the aircraft environmental control,aircraft icing and anti/deicing,numerical simulation and experiment of heat and mass transfer.

    (Executive Editor:Xu Chengting)

    V223.2 Document code:A Article ID:1005-1120(2016)05-0576-08

    (Received 27 April 2015;revised 7 July 2015;accepted 18 August 2015)

    亚洲国产成人一精品久久久| 国产日韩欧美在线精品| 久久99精品国语久久久| 黄色配什么色好看| 亚洲欧美成人精品一区二区| 久久狼人影院| 男女午夜视频在线观看| 人妻系列 视频| 精品人妻偷拍中文字幕| 亚洲精品,欧美精品| 波多野结衣一区麻豆| 亚洲av成人精品一二三区| 欧美av亚洲av综合av国产av | 波野结衣二区三区在线| 永久网站在线| 黄片小视频在线播放| www.av在线官网国产| 夫妻性生交免费视频一级片| 日韩中文字幕欧美一区二区 | 亚洲精品成人av观看孕妇| 9热在线视频观看99| 在现免费观看毛片| 777久久人妻少妇嫩草av网站| 国产 精品1| 国产无遮挡羞羞视频在线观看| 丁香六月天网| 80岁老熟妇乱子伦牲交| 免费大片黄手机在线观看| 免费女性裸体啪啪无遮挡网站| 这个男人来自地球电影免费观看 | 女人精品久久久久毛片| 欧美国产精品一级二级三级| 丝袜脚勾引网站| 日韩视频在线欧美| 亚洲一区二区三区欧美精品| 日韩成人av中文字幕在线观看| 精品国产超薄肉色丝袜足j| 1024香蕉在线观看| 18在线观看网站| 欧美国产精品一级二级三级| 另类精品久久| 90打野战视频偷拍视频| 大话2 男鬼变身卡| 午夜激情久久久久久久| 在线免费观看不下载黄p国产| 国产一级毛片在线| 免费在线观看完整版高清| 只有这里有精品99| 久久综合国产亚洲精品| 老汉色∧v一级毛片| 日韩在线高清观看一区二区三区| 中文欧美无线码| 亚洲av电影在线观看一区二区三区| 国产成人aa在线观看| 两个人免费观看高清视频| 人成视频在线观看免费观看| 搡老乐熟女国产| 黄色视频在线播放观看不卡| a级片在线免费高清观看视频| 日韩一本色道免费dvd| 国产极品天堂在线| 久久久久久久久免费视频了| 国产精品熟女久久久久浪| 晚上一个人看的免费电影| 捣出白浆h1v1| 日韩精品有码人妻一区| 夜夜骑夜夜射夜夜干| av线在线观看网站| 高清黄色对白视频在线免费看| 国产精品人妻久久久影院| 欧美 亚洲 国产 日韩一| 老女人水多毛片| 亚洲欧美精品自产自拍| 午夜久久久在线观看| 狂野欧美激情性bbbbbb| 十八禁网站网址无遮挡| 精品一区二区三区四区五区乱码 | 亚洲综合色惰| 国产在视频线精品| 午夜免费观看性视频| 国产免费福利视频在线观看| 97在线视频观看| 秋霞在线观看毛片| 18禁国产床啪视频网站| 26uuu在线亚洲综合色| 亚洲 欧美一区二区三区| 纯流量卡能插随身wifi吗| 伦理电影大哥的女人| 久久这里只有精品19| 亚洲综合精品二区| 男女无遮挡免费网站观看| 日韩av在线免费看完整版不卡| 欧美精品av麻豆av| 国产一级毛片在线| 肉色欧美久久久久久久蜜桃| 一级毛片电影观看| 热re99久久精品国产66热6| 亚洲三级黄色毛片| 国产野战对白在线观看| 精品福利永久在线观看| 肉色欧美久久久久久久蜜桃| 午夜久久久在线观看| 麻豆乱淫一区二区| 成人亚洲精品一区在线观看| 欧美精品国产亚洲| 天堂俺去俺来也www色官网| h视频一区二区三区| 欧美av亚洲av综合av国产av | 久久久久久久久久久久大奶| 欧美中文综合在线视频| 亚洲精品在线美女| av有码第一页| av又黄又爽大尺度在线免费看| 国产片特级美女逼逼视频| 80岁老熟妇乱子伦牲交| 制服诱惑二区| 我要看黄色一级片免费的| 青春草视频在线免费观看| 男女边摸边吃奶| 黑人欧美特级aaaaaa片| tube8黄色片| 成人毛片a级毛片在线播放| 制服诱惑二区| 久久97久久精品| 天天躁夜夜躁狠狠躁躁| 亚洲第一区二区三区不卡| 欧美中文综合在线视频| 天天躁夜夜躁狠狠躁躁| 电影成人av| 天堂8中文在线网| av线在线观看网站| freevideosex欧美| av国产久精品久网站免费入址| av在线app专区| 亚洲av日韩在线播放| 一边亲一边摸免费视频| 纯流量卡能插随身wifi吗| 叶爱在线成人免费视频播放| 97在线视频观看| 美女视频免费永久观看网站| 欧美激情高清一区二区三区 | 国产片特级美女逼逼视频| 亚洲精品一二三| 精品国产乱码久久久久久小说| 午夜福利影视在线免费观看| 亚洲第一青青草原| 日韩大片免费观看网站| 免费看av在线观看网站| 亚洲一码二码三码区别大吗| 日本爱情动作片www.在线观看| 伊人久久国产一区二区| 亚洲欧美一区二区三区黑人 | videosex国产| 欧美少妇被猛烈插入视频| 国产精品久久久久久久久免| 捣出白浆h1v1| 免费高清在线观看日韩| 丁香六月天网| 国产一区有黄有色的免费视频| 国产淫语在线视频| 国产av精品麻豆| 波多野结衣一区麻豆| 天美传媒精品一区二区| 亚洲欧美精品综合一区二区三区 | 亚洲久久久国产精品| 亚洲精品自拍成人| 国产精品免费大片| 在线 av 中文字幕| 十八禁高潮呻吟视频| 久久久久久久久久久免费av| 波多野结衣一区麻豆| 中文字幕最新亚洲高清| 欧美精品亚洲一区二区| 国产成人精品一,二区| 99国产综合亚洲精品| 日韩伦理黄色片| 校园人妻丝袜中文字幕| 超碰97精品在线观看| 国产不卡av网站在线观看| a级毛片在线看网站| 久久久久国产一级毛片高清牌| 99九九在线精品视频| 亚洲精品国产av蜜桃| 捣出白浆h1v1| 日韩伦理黄色片| 国产精品久久久久久av不卡| 午夜免费男女啪啪视频观看| av免费在线看不卡| 飞空精品影院首页| 老鸭窝网址在线观看| 亚洲精品av麻豆狂野| 精品亚洲成国产av| 欧美精品一区二区免费开放| 一区二区三区乱码不卡18| 考比视频在线观看| 成人国产麻豆网| 欧美日韩精品网址| 久久国产精品大桥未久av| 国产精品三级大全| 国产野战对白在线观看| 国产熟女午夜一区二区三区| 一二三四在线观看免费中文在| 黄色配什么色好看| 亚洲av电影在线观看一区二区三区| 精品亚洲乱码少妇综合久久| 一区在线观看完整版| 不卡av一区二区三区| 尾随美女入室| 欧美精品国产亚洲| 欧美亚洲日本最大视频资源| 国产成人精品无人区| xxxhd国产人妻xxx| 亚洲精华国产精华液的使用体验| 精品午夜福利在线看| 超碰97精品在线观看| 亚洲国产精品999| 国产精品秋霞免费鲁丝片| 中文字幕精品免费在线观看视频| 五月开心婷婷网| 色哟哟·www| 久久人人97超碰香蕉20202| 成人毛片60女人毛片免费| 欧美国产精品一级二级三级| 老熟女久久久| 精品福利永久在线观看| 日本vs欧美在线观看视频| 午夜老司机福利剧场| 深夜精品福利| 2018国产大陆天天弄谢| 午夜精品国产一区二区电影| 国产极品天堂在线| 春色校园在线视频观看| 国产精品.久久久| av又黄又爽大尺度在线免费看| 国产无遮挡羞羞视频在线观看| 亚洲欧美一区二区三区黑人 | 老汉色av国产亚洲站长工具| 午夜av观看不卡| 免费人妻精品一区二区三区视频| 日韩欧美一区视频在线观看| 国产精品一区二区在线观看99| 亚洲av成人精品一二三区| 热re99久久国产66热| 国产亚洲精品第一综合不卡| 黄频高清免费视频| 国产男女内射视频| 国产乱来视频区| 91精品三级在线观看| 久久精品久久久久久噜噜老黄| 国产成人a∨麻豆精品| 天天躁夜夜躁狠狠躁躁| 国产精品av久久久久免费| 成人国产av品久久久| 一区在线观看完整版| 高清不卡的av网站| 伊人久久国产一区二区| 寂寞人妻少妇视频99o| 日韩av免费高清视频| 久久精品夜色国产| 亚洲久久久国产精品| 久久午夜综合久久蜜桃| 一本大道久久a久久精品| 午夜福利视频在线观看免费| 免费大片黄手机在线观看| 免费观看a级毛片全部| 看免费av毛片| 国产欧美日韩一区二区三区在线| 欧美黄色片欧美黄色片| 亚洲天堂av无毛| 卡戴珊不雅视频在线播放| 中文字幕制服av| 精品酒店卫生间| 亚洲综合色惰| 中文字幕精品免费在线观看视频| tube8黄色片| 午夜福利网站1000一区二区三区| 日本猛色少妇xxxxx猛交久久| 国产 精品1| 尾随美女入室| 久久久久视频综合| 自线自在国产av| 亚洲精品自拍成人| 成年人午夜在线观看视频| 久久精品人人爽人人爽视色| 日韩成人av中文字幕在线观看| 日韩视频在线欧美| 亚洲av.av天堂| 激情视频va一区二区三区| 亚洲一码二码三码区别大吗| 中文字幕精品免费在线观看视频| 看十八女毛片水多多多| 精品少妇久久久久久888优播| 久久狼人影院| 大码成人一级视频| 国产亚洲精品第一综合不卡| 亚洲欧洲国产日韩| 国产成人欧美| freevideosex欧美| 久久人人爽人人片av| 精品国产一区二区三区久久久樱花| 在线观看美女被高潮喷水网站| 美女午夜性视频免费| 日韩不卡一区二区三区视频在线| 999精品在线视频| 男女边摸边吃奶| www日本在线高清视频| 在线天堂中文资源库| 国产一区二区 视频在线| 在线观看一区二区三区激情| 国产精品人妻久久久影院| 99久久人妻综合| 免费观看a级毛片全部| 一级黄片播放器| 欧美精品一区二区大全| 亚洲一区中文字幕在线| 欧美精品一区二区大全| 99久久精品国产国产毛片| 久久久久久久久久人人人人人人| 天美传媒精品一区二区| 欧美人与善性xxx| 久久午夜综合久久蜜桃| 国产不卡av网站在线观看| 男女边吃奶边做爰视频| 欧美精品高潮呻吟av久久| 久久这里只有精品19| 亚洲精品国产av蜜桃| 亚洲美女黄色视频免费看| 一级黄片播放器| 欧美精品一区二区大全| 久久久久精品性色| 久久人妻熟女aⅴ| 色播在线永久视频| 波野结衣二区三区在线| 色播在线永久视频| 午夜福利在线免费观看网站| 午夜福利视频精品| 国产在线免费精品| 久久青草综合色| kizo精华| 久久ye,这里只有精品| 国产av一区二区精品久久| 国产成人精品婷婷| 美女中出高潮动态图| 亚洲精品乱久久久久久| 国产精品麻豆人妻色哟哟久久| 极品人妻少妇av视频| 中文字幕制服av| 男人操女人黄网站| 亚洲国产欧美日韩在线播放| 免费人妻精品一区二区三区视频| 黄网站色视频无遮挡免费观看| 国产女主播在线喷水免费视频网站| 天天躁日日躁夜夜躁夜夜| 久久精品人人爽人人爽视色| 午夜日韩欧美国产| 国产有黄有色有爽视频| 免费在线观看视频国产中文字幕亚洲 | 永久免费av网站大全| 性色avwww在线观看| 午夜福利在线免费观看网站| av国产久精品久网站免费入址| 午夜福利在线免费观看网站| 亚洲国产最新在线播放| 欧美xxⅹ黑人| www日本在线高清视频| 男女免费视频国产| 色婷婷久久久亚洲欧美| 边亲边吃奶的免费视频| 亚洲精品第二区| 男女边摸边吃奶| 亚洲欧美中文字幕日韩二区| 男的添女的下面高潮视频| 下体分泌物呈黄色| 男的添女的下面高潮视频| a 毛片基地| 久久久亚洲精品成人影院| 国产精品免费视频内射| 青草久久国产| 一区二区三区激情视频| 69精品国产乱码久久久| 性色av一级| 国产黄频视频在线观看| 香蕉精品网在线| 午夜av观看不卡| 婷婷色av中文字幕| 亚洲av成人精品一二三区| 97精品久久久久久久久久精品| 看十八女毛片水多多多| 国产亚洲欧美精品永久| 国产乱来视频区| 亚洲成色77777| 欧美精品av麻豆av| 国产伦理片在线播放av一区| av国产精品久久久久影院| 国产伦理片在线播放av一区| 亚洲情色 制服丝袜| 99国产精品免费福利视频| 午夜免费鲁丝| 亚洲成色77777| videossex国产| 你懂的网址亚洲精品在线观看| 日本欧美国产在线视频| 老鸭窝网址在线观看| 亚洲五月色婷婷综合| 日产精品乱码卡一卡2卡三| 国产精品国产三级国产专区5o| 欧美亚洲 丝袜 人妻 在线| 妹子高潮喷水视频| 少妇被粗大猛烈的视频| 丁香六月天网| 大片电影免费在线观看免费| 一区二区日韩欧美中文字幕| 国产一区二区 视频在线| 99re6热这里在线精品视频| 天堂8中文在线网| 欧美激情极品国产一区二区三区| 黄色毛片三级朝国网站| 国产精品一区二区在线观看99| 人妻人人澡人人爽人人| 丝袜美腿诱惑在线| 亚洲国产色片| 久久精品亚洲av国产电影网| 欧美亚洲日本最大视频资源| 久久精品国产自在天天线| 自线自在国产av| 亚洲国产av新网站| 午夜福利视频在线观看免费| 高清av免费在线| 亚洲精华国产精华液的使用体验| 国产综合精华液| 亚洲久久久国产精品| 男男h啪啪无遮挡| 久久久久久久久久人人人人人人| 99久国产av精品国产电影| 久久免费观看电影| 精品国产超薄肉色丝袜足j| 香蕉国产在线看| 午夜精品国产一区二区电影| 亚洲av男天堂| 国产成人精品一,二区| 黑人猛操日本美女一级片| 亚洲,欧美精品.| 9色porny在线观看| 亚洲中文av在线| 午夜福利影视在线免费观看| 男女下面插进去视频免费观看| 免费观看性生交大片5| 看十八女毛片水多多多| 欧美国产精品va在线观看不卡| 永久免费av网站大全| 最近的中文字幕免费完整| 男人操女人黄网站| 丝瓜视频免费看黄片| 国产精品人妻久久久影院| 午夜福利乱码中文字幕| 天堂8中文在线网| 久久女婷五月综合色啪小说| av电影中文网址| 寂寞人妻少妇视频99o| 久久人人爽人人片av| 亚洲熟女精品中文字幕| 国产亚洲av片在线观看秒播厂| 国产成人免费观看mmmm| 国产av一区二区精品久久| 久久影院123| 久久av网站| 精品少妇内射三级| 日本免费在线观看一区| 亚洲五月色婷婷综合| 波多野结衣一区麻豆| 久久久久久人妻| 亚洲精品乱久久久久久| 日韩欧美一区视频在线观看| 久久人人爽av亚洲精品天堂| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产国语露脸激情在线看| 国产高清国产精品国产三级| 久久久国产欧美日韩av| 欧美亚洲 丝袜 人妻 在线| 国产视频首页在线观看| 欧美精品av麻豆av| 女人高潮潮喷娇喘18禁视频| 日韩不卡一区二区三区视频在线| 午夜激情av网站| 免费在线观看完整版高清| 成人国产av品久久久| 777米奇影视久久| 老女人水多毛片| 亚洲伊人久久精品综合| 亚洲图色成人| 人人妻人人澡人人看| 日韩中文字幕欧美一区二区 | 久久精品国产鲁丝片午夜精品| 国产极品粉嫩免费观看在线| 超碰97精品在线观看| 2022亚洲国产成人精品| 97人妻天天添夜夜摸| 国产精品av久久久久免费| 久久99热这里只频精品6学生| 日韩一区二区视频免费看| 99热网站在线观看| 女的被弄到高潮叫床怎么办| 午夜av观看不卡| 国产精品久久久久久精品电影小说| 精品国产乱码久久久久久男人| 免费观看性生交大片5| 亚洲欧美成人精品一区二区| 国产97色在线日韩免费| 国产欧美日韩一区二区三区在线| 精品福利永久在线观看| 精品少妇内射三级| 亚洲男人天堂网一区| 精品午夜福利在线看| 男人舔女人的私密视频| 免费观看在线日韩| 国产一区二区 视频在线| 人妻 亚洲 视频| 日韩大片免费观看网站| 韩国精品一区二区三区| 国产 一区精品| 日韩中文字幕欧美一区二区 | 超碰成人久久| av有码第一页| 9色porny在线观看| 国产精品香港三级国产av潘金莲 | 亚洲精品日本国产第一区| 亚洲国产日韩一区二区| 久久影院123| 高清视频免费观看一区二区| 高清av免费在线| 美女午夜性视频免费| 成人国产av品久久久| 中文欧美无线码| 久久精品夜色国产| 男女边摸边吃奶| 欧美日韩av久久| 永久网站在线| 亚洲精品日本国产第一区| 国产成人精品久久久久久| 嫩草影院入口| 成年人免费黄色播放视频| 亚洲欧洲精品一区二区精品久久久 | 制服诱惑二区| 18禁观看日本| 最近最新中文字幕免费大全7| 国产在线一区二区三区精| 最近最新中文字幕免费大全7| 精品亚洲成国产av| 欧美国产精品一级二级三级| 秋霞伦理黄片| 国产精品 欧美亚洲| 免费看不卡的av| 久久精品久久精品一区二区三区| 捣出白浆h1v1| 色视频在线一区二区三区| 亚洲中文av在线| 最近手机中文字幕大全| 亚洲av日韩在线播放| 麻豆精品久久久久久蜜桃| 男女啪啪激烈高潮av片| 性色av一级| 人人妻人人澡人人看| 久久久久久久亚洲中文字幕| 一级毛片 在线播放| 国产xxxxx性猛交| av天堂久久9| 国产成人一区二区在线| 亚洲 欧美一区二区三区| 欧美激情极品国产一区二区三区| 日日摸夜夜添夜夜爱| 老司机影院毛片| 看免费av毛片| 亚洲人成77777在线视频| 天天躁日日躁夜夜躁夜夜| 亚洲人成77777在线视频| av不卡在线播放| 人成视频在线观看免费观看| 人妻人人澡人人爽人人| 免费观看在线日韩| 9热在线视频观看99| 18在线观看网站| 超碰97精品在线观看| 欧美人与性动交α欧美精品济南到 | 欧美精品亚洲一区二区| 汤姆久久久久久久影院中文字幕| 国产亚洲一区二区精品| 视频区图区小说| 国产亚洲精品第一综合不卡| 免费久久久久久久精品成人欧美视频| 午夜福利一区二区在线看| 亚洲av电影在线观看一区二区三区| 看免费成人av毛片| 精品卡一卡二卡四卡免费| 亚洲精品aⅴ在线观看| 一二三四在线观看免费中文在| 国产黄频视频在线观看| 日韩制服丝袜自拍偷拍| 日韩一卡2卡3卡4卡2021年| tube8黄色片| 日韩成人av中文字幕在线观看| 伊人亚洲综合成人网| www.自偷自拍.com| 久久热在线av| 久久人妻熟女aⅴ| 国产在线一区二区三区精| 成人漫画全彩无遮挡| 寂寞人妻少妇视频99o| 天天躁夜夜躁狠狠躁躁| 久久热在线av| 精品福利永久在线观看| 国产在线一区二区三区精| 久久久久久久精品精品| 久久久久久久久久久久大奶| 国产亚洲av片在线观看秒播厂| 久久久久久久精品精品|