• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Energy-Efficient Process Planning Using Improved Genetic Algorithm

    2016-12-01 03:18:53DaiMinTangDunbingHuangZhiqingYangJun

    Dai Min,Tang Dunbing,Huang Zhiqing,Yang Jun

    College of Mechanical and Electrical Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China

    Energy-Efficient Process Planning Using Improved Genetic Algorithm

    Dai Min,Tang Dunbing*,Huang Zhiqing,Yang Jun

    College of Mechanical and Electrical Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China

    Nowadays,energy consumption which closely contacts with environmental impacts of manufacturing processes has been highly commented as a new productivity criterion.However,little attention has paid to the development of process planning methods that take energy consumption into account.An energy-efficient process planning model that incorporates manufacturing time and energy consumption is proposed.Eor solving the problem,an improved genetic algorithm method is employed to explore the optimal solution.Einally,a case study for process planning is given.The experimental result generates interesting effort,and therefore allows improving the energy efficiency of manufacturing processes in process planning.

    energy consumption;process planning;improved genetic algorithm;energy efficiency

    0 Introduction

    Nowadays,a new productivity criterion,energy efficiency has been highly commented in manufacturing processes owning to the increasing environmental awareness.Manufacturing companies have consumed a large amount of energy for production,and they are responsible for approximately 33%of the global total energy consumption;The associated amount of CO2emissions generated by energy is 38%[1].Therefore,reducing environmental impacts like energy consumption should be taken into account to improve energy efficiency of manufacturing processes.

    Process planning,as one of the most significant compositions in manufacturing processes, plays a critical role in linking product design and manufacturing.Issues on manufacturing cost and time,like process planning,production criteria, have been widely discussed.However,decreasing energy consumption as one of objectives in process planning has been limited.

    One of the most significant research works is the work by Sheng and Srinivasan,who presented an environmentally conscious multi-objective process planning approach based on manufacturing features[2],and they further explored local and global optimum process planning regarding process energy consumption,process time,waste mass and surface quality factors from the perspective of the micro and macro-planning level[3,4]. Ref.[5]designed a framework for environmental process planning to evaluate configurations of a product and its associated environmental impacts during the advanced product quality planning process.Ref.[6]developed a multi-objective mathematical model for environmental supportive process planning by considering cost,time and environmental impact simultaneously.Ref.[7] introduced energy consumption as one of objectives of process planning for computer numerical control(CNC)machining and confirmed that the energy consumption as a new performance indicator can be added to a multi-criteria process plan-ning system.Ref.[8]proposed a new process planning approach that considers environmental factors like carbon emissions,and a comparatively green and economical process plan was obtained.Ref.[9]discussed a methodology for the process planning of energy-efficient machining processes based on numerical simulations. Ref.[10]presented an approach to estimate energy consumption and material flows that were incurred in a highly automated manufacturing system considering multiple process plans.In summary,the efforts mentioned above provide an important starting point for exploring energy-efficient process plan decisions which alleviate environmental impacts while maintaining traditional production criteria like time and cost.However, it has some limitations in the literature.Eirst, much research is mainly concerned with the holistic framework of process planning with environmental-friendly design,and the implementation of the specific strategies like decision-making optimization needs to be further investigated.Second,process planning is also a combinatorial optimization problem and optimization algorithm needs to be more effective and efficient by employing intelligent meta-heuristic and searching approaches.Therefore,a bi-objective optimization problem of minimizing the manufacturing time and the total energy consumption is proposed in the paper and an improved genetic algorithm method is adopted to realize the optimization process.

    *Corresponding author,E-mail address:d.tang@nuaa.edu.cn.

    How to cite this article:Dai Min,Tang Dunbing,Huang Zhiqing,et al.Energy-efficient process planning using improved genetic algorithm[J].Trans.Nanjing Univ.Aero.Astro.,2016,33(5):602-609.

    http://dx.doi.org/10.16356/j.1005-1120.2016.05.602

    1 Problem Description

    1.1 Representation of process planning

    Process planning plays an important role in a product design and manufacturing process through the effective linkage of computer-aided design(CAD)with computer-aided manufacturing(CAM).According to the definition of process planning[11],the three major considerations are required:(1)to generate operations of a part based on features technology like feature extraction;(2)to identify manufacturing resources (e.g.machines and tools)available to the operations;(3)to determine the sequence of all the selected operations according to some cost-effective criteria like manufacturing cost and time.In process planning,there exist the precedence constraints due to the geometric and manufacturing interactions and technological requirements for a part,including datum interactions,material-removal interactions,feature priorities and fixed order of machining operations[12].All the operations sequencing of a part should satisfy these precedence constraints.

    1.2 Energy consumption modeling for process planning

    Due to the rising trend for environmentfriendly design and manufacturing,energy consumption becomes a significant consideration in process planning.A process plan for a part usually includes a series of operations,and each operation consumes an amount of energy.As is shown in Fig.1,one machine is allowed to process several operations,and the power profile for the machine consists of three energy consumption stages:start-up stage,idle stages and processing stages.According to the energy-consuming characteristic of one operation processed on one machine tool[13-15],the total energy consumption is consisted of the following energy modules at the three aforementioned stages.Assume that there are n operations processed for a part on m machines.

    Fig.1 Power profile of machine for the machining operations

    (1)When a machine tool is at the readiness operation stage,the energy is consumed to acti-vate machine components(like the start-up of the machine tool and spindle)and to ensure the operational readiness of the machine tool.The energy consumption E1can be expressed as

    where Tirepresents the startup time of machine i and Pi(t)the input power of machine i over time.

    (2)When a machine tool is at the idle running stage,the machine components that implement activities such as loading or unloading workpiece,positioning and clamping,and changing cutting tools have energy demand;In addition, the machine tool that waits for the next operation to be executed also consumes energy.The energy demand E2can be calculated as

    where T2ijrepresents the idle time before the operation j is executed to process on machine i,andthe unload power when the operation j is executed to process on machine i.

    (3)When a machine tool is at the machining operation stage,the energy is consumed to remove workpiece material and to maintain the normal operation of machine components.The required energy E3is described as follows

    where T3ijrepresents the processing time when the operation j is executed to process on machine i and Paijthe cutting power when the operation j is executed to process on machine i.α,βrepresent the coefficients of the load power,and they can be calculated by means of the equations of linear regression[13].

    In the process plan of a part,the total energy consumption(E)is the sum of E1,E2and E3, and it is expressed as

    1.3 Manufacturing time modeling for process planning

    A mathematical model that minimizes the manufacturing time is considered as one of the optimization objectives for process planning.Here, the manufacturing time is defined as the maximum completion time of all jobs,namely, makespan.Two constraints need to be satisfied: one machine can process only one job at a time; the different operations of one job cannot be performed simultaneously.The objective function can be described as

    where Cmaxis the makespan,Cimkljthe completion time of operation k,which is the i th position processed on machine m,in the l th alternative process plan of job j,and Xljthe integer variable that has two possible values:0 or 1.It is equal to 1 if the l th alternative process plan is picked for job j,and 0 otherwise.Yimkljis an integer variable that has two possible values:0 or 1.It is equal to 1 if operation k in the l th alternative process plan of job j is the i th position processed on machine m,and 0 otherwise.

    2 Optimization Method

    Genetic algorithm(GA)has been widely used for objective optimization problems[16].One of its prominent advantages is able to quickly obtain good results with high efficiency in a complex solution space.In order to enhance the performance of GA,an improved GA is adapted for the energy-efficient process planning in this section.

    2.1 Population initialization

    According to the precedence constraints between features for a part,a constraint matrix approach is developed to make each initial chromosome legal,and the procedure is described as follows.

    Step 1 Construct an associated constraint matrix A based on the precedence constraint relationship between features.

    (1)Determine the number of precedence constraints between features as the dimensions of the row vector for A and make sure the first element of each row for A is fixed and the sequence of the remaining elements in each row are random.

    (2)Determine the number of the feature elements for each precedence constraint and select the maximum number as the column vector for A.If the number of feature elements for a precedence constraint is less than the maximum number,all the other elements are filled with 0.

    Step 2 Query each element of the associated constraint matrix A and record the feature elements which are not in A to create a row vector B.

    Step 3 Generate an initial process plan S1at random,retain the position of each element for B in S1and then replace the remaining positions of S1with 0 to produce a non-associated constraint process plan S11.

    Step 4 Create an associated constraint process plan S22based on the elements of the remaining positions of S1and regenerate S22based on the ordinal relation of the elements in A.

    Step 5 Copy the elements of the newto the positions of S11with 0 in order to obtain a legal process plan S*1.

    Eor example,an illegal process plan with four precedence constraints given by Li,et al.[12]is illustrated in Table 1.The associated constraint matrix A based on the precedence constraints between features and the non-associated constraint row vector B can be obtained,and the process of a feasible process plan is shown in Fig.2.

    Table 1 Example of illegal process plan with four precedence constraints

    2.2 Fitness function

    In this study,two following objectives are considered as the fitness functions to explore the energy-efficient process planning.

    (1)Minimize the manufacturing time,namely,makespan.

    (2)Minimize the total energy consumption.

    Fig.2 Example process of constraint matrix approach

    2.3 Selection operator

    In the algorithm,the rank-based selection strategy has been employed for selection operator.In rank-based selection mechanism,the best chromosomes are selected from the parents and offspring individuals.In this way,as the rankbased selection will only accept improvements, the elitist population can be reproduced for the next generation.

    2.4 Crossover operator

    Owning to illegal solutions generated in many existing approaches,these solutions should be transformed feasible plans using auxiliary methods like constraint adjustment method,penalty function method and finite search space method, and it is adverse to improve the searching efficiency of the algorithms.Thus,a new crossover operation method based on precedence constrain module is proposed to avoid yielding infeasible solutions.The procedure of crossover operation for energy-efficient process planning is designed as follows and a crossover instance is shown in Fig. 3.

    Step 1 Divide precedence constraint modules for an initially generated process plan based on the associated constraint matrix.The precedence constraints between features which contact with each other are defined as one precedence constraint module.There is no constraint relationship between precedence constraint modules.In addition,the non-associated constraint row vector is defined as one of precedence constraint mod-ules.

    Step 2 Pick a pair of parent individuals Parent 1 and Parent 2,and initial two empty children individuals Child 1 and Child 2.

    Step 3 Select one precedence constraint module at random,and append the elements of the precedence constraint module included in Parent 1 and Parent 2 to the same positions of the corresponding individuals Child 1 and Child 2,respectively.

    Step 4 Append the remaining elements of Parent 1 and Parent 2 to the remaining empty positions in Child 2 and Child 1 in sequence,respectively.

    Fig.3 Crossover for a pair of chromosomes of energyefficient process planning

    2.5 Mutation operator

    A mutation operator,which satisfies a random probability(i.e.mutation probability)based on uniformly distributed rule,can be implemented to produce the solutions with greater fitness. In the proposed algorithm,the mutation operation is required to randomly select two elements and swap the elements in the two selected positions to obtain the resulting chromosome,and the feasibility of the chromosome is ensured by means of the constraint matrix approach.

    3 Case Study

    A prismatic part taken from the work of Li, et al.[11]is considered as a case study.There are fourteen defined manufacturing features need to be realized,and there are twenty machining operations processed on five machines.The detailed information of the features,operations,machines and precedence constraints for the part is listed in Tables 2,3.Several experiments are carried out for three different scenarios:(1)Makespan is used as the only objective;(2)energy consumption is used as the only objective;(3)both makespan and energy consumption are used as the objective.Meanwhile,the improved genetic algorithm(IGA)is compared with other algorithms such as standard genetic algorithm(SGA)and simulated annealing(SA).

    Table 2 Technical specification for one part[11]

    Table 3 Data for unload power consumption of each machine

    Based on IGA,the experimental results under Scenarios(1),(2)and(3)are shown in Figs.4,5 and 6,respectively.In Scenario(1), the best makespan is 337.5 s and the optimal sequencing of machining operations is found to be O1—O11—O6—O2—O12—O13—O14—O15—O16—O18—O17—O19—O20—O3—O5—O7—O8—O9—O10—O4.In addition,the corresponding energy consumption calculated is 1 134 k W·s. Given that the maximum completion time will be allowed to delay without affecting delivery time, and in Scenario(2),the optimal energy consumption is 989.24 k W·s and the corresponding makespan is 452 s,which means a 12.77%improvement in the energy consumption compared with the manufacturing time as the single objective.The associated process plan is given as: O1—O18—O6—O2—O17—O11—O3—O5—O7—O4—O8—O9—O10—O12—O13—O14—O19—O20—O15—O16.Eurthermore,the relationship between makespan and energy consumption has been explored.As is shown Fig.6,the experimental result illustrates that the relationship between makespan and energy consumption is prominently conflicting and that decision-makers should make a significant trade-off between them to implement an energy-efficient process planning.On the one hand,the energy consumption decreases as the makespan increases.Thus,the decision-makers can consider the manufacturing time without affecting delivery time,ranging from 380 s to 410 s.Compared with the single performance measure(i.e.,makespan),the average energysaving ratio is 6.95%.On the other hand,there is a significant amount of energy saving by assigning the importance weights between the makespan and energy consumption.Eor instance,the importance weights of the makespan and energy consumption are set to 0.6 and 0.4,respectively. The makespan is 412.5 s and the energy consumption is 1 038 k W·s.It can obtain 8.47%of energy saving and the optimal process plan is given by:O1—O2—O6—O5—O18—O11—O3—O4—O12—O13—O14—O17—O19—O20—O7—O8—O9—O10—O15—O16.At the same time,the proposed algorithm is further compared with SGA and SA in term of the optimum result for makespan.It is obvious that IGA is quickly able to converge to the optimal solution and outperforms SGA and SA as shown in Fig.7.

    Fig.4 Optimal result of makespan for Scenario(1)

    Fig.5 Optimal result of energy for Scenario(2)

    Fig.6 Plots of energy versus makespan for Scenario(3)

    Fig.7 Comparison of three algorithms for makespan

    4 Conclusions

    The model for the energy-efficient process planning has been developed in sustainable manufacturing processes,and new performance criterion energy efficiency is considered as one of optimization objectives.The effective improved genetic algorithm is adopted to search for the optimal solutions in different optimization objectives. The approach is then employed for a prismatic part;The result indicates that the energy-efficient process plan has approximately 13%energy saving without delaying delivery time compared with a process plan that only concerns manufacturing time.At the same time,bi-objective optimization problems with objectives of minimizing the energy consumption and makespan are tested.The experimental result shows that there is a significant trade-off between the energy consumption and makespan.There is a significant amount of energy saving by assigning the importance weights between the makespan and energy consumption based on decision-makers′preference. In addition,the comparison experiment with several other algorithms is given to verify the performance of the proposed algorithm.

    Acknowledgements

    This work was supported by a Marie Curie International Research Staff Exchange Scheme Eellowship within the 7th European Community Eramework Programme (No.294931),the National Science Eoundation of China (No.51175262),Jiangsu Province Science Eoundation for Excellent Youths(No.BK20121011),and Jiangsu Province Industry-Academy-Research Grant(No.BY201220116).

    [1] International Energy Agency.Worldwide trends in energy use and efficiency[M/OL].(2008-07-07). http://www.iea.org/publications/freepublications/ publication/Indicators_2008.pdf.

    [2] SHENG P,SRINIVASAN M.Multi-objective process planning in environmentally conscious manufacturing:a feature-based approach[J].CIRP Annals-Manufacturing Technology,1995,44(1):433-437.

    [3] SRINIVASAN M,SHENG P.Eeature-based process planning for environmentally conscious machining—Part 1:Microplanning[J].Robotics and Computer-Integrated Manufacturing,1999,15(1):257-270.

    [4] SRINIVASAN M,SHENG P.Eeature based process planning in environmentally conscious machining—Part 2:Macroplanning[J].Robotics and Computer-Integrated Manufacturing,1999,15(1):271-281.

    [5] SINGH S,GOODYER J,POPPLEWELL K.Integrated environmental process planning for the design and manufacture of automotive components[J].International Journal of Production Research,2007,45 (18/19):4189-4205.

    [6] KAI J,ZHANG H C,BALASUBRAMANIAM P, et al.A multiple objective optimization model for environmental benign process planning[C]//Industrial Engineering and Engineering Management.Beijing, China:IE&EM′09,2009:869-873.

    [7] NEWMAN S T,NASSEHI A,IMANI-ASRAI R, et al.Energy efficient process planning for CNC machining[J].CIRP Journal of Manufacturing Science and Technology,2012,5(2):127-136.

    [8] YIN R,CAO H,LI H,et al.A process planning method for reduced carbon emissions[J].International Journal of Computer Integrated Manufacturing,2014,27(12):1175-1186.

    [9] NEUGEBAUER R,HOCHMUTH C,SCHMIDT G,et al.Energy efficient process planning based on numerical simulations[C]//17th CIRP Conference on Modelling of Machining Operations.Sintra,Portugal:Trans Tech Publications,2011:212-221.

    [10]CHOI Y C,XIROUCHAKIS P.A production planning in highly automated manufacturing system considering multiple process plans with different energy requirements[J].International Journal of Advanced Manufacturing Technology,2014,70(5/6/7/8):853-867.

    [11]LI W D,MCMAHON C A.A simulated annealingbased optimization approach for integrated process planning and scheduling[J].Int J Comput Integr Manuf,2007,20(1):80-95.

    [12]LI W D,ONG S K,NEE A Y C.Hybrid genetic algorithm and simulated annealing approach for the optimization of process plans for prismatic parts[J].International Journal of Production Research,2002,40 (8):1899-1922.

    [13]HU S,LIU E,HE Y,et al.An on-line approach for energy efficiency monitoring of machine tools[J]. Journal of Cleaner Production,2012,27:133-140.

    [14]LI W,KARA S.An empirical model for predicting energy consumption of manufacturing processes:A case of turning process[C]//36th International Matador Conference.London,United Kingdom:SAGE Publications Ltd,2011:1636-1646.

    [15]LI W,ZEIN A,KARA S,et al.An investigation into fixed energy consumption of machine tools[C]// 18th CIRP International Conference on Life Cycle Engineering:Glocalized Solutions for Sustainability in Manufacturing.Braunschweig,Germany:Springer Science and Business Media,2011:268-273.

    [16]TANG C,WAN Z.Application of hybrid genetic algorithm in aeroelastic multidisciplinary design optimization of large aircraft[J].Transactions of Nanjing University of Aeronautics and Astronautics,2013,30 (2):109-117.

    Dr.Dai Min received Ph.D.degree in College of Mechanical and Electrical Engineering,Nanjing University of Aeronautics and Astronautics in 2015 and B.S.degree in College of Mechanical Engineering,Yangzhou University in 2011.He works on heuristic optimization algorithms in production scheduling.

    Prof.Tang Dunbing is currently professor in College of Mechanical and Electrical Engineering at Nanjing University of Aeronautics and Astronautics in China.He received his Ph.D.from Nanjing University of Science and Technology in March 2000.His research interests include engineering design and manufacturing system modeling.

    Mr.Huang Zhiqing received B.S.degree in College of Mechanical and Electrical Engineering,Nanjing University of Aeronautics and Astronautics in 2015.He works on heuristic optimization algorithms in production scheduling.

    Mr.Yang Jun is currently a Ph.D.candidate in College of Mechanical and Electrical Engineering,Nanjing University of Aeronautics and Astronautics.He received B.S.degree from Nanjing University of Aeronautics and Astronautics in 2015.He works on heuristic optimization algorithms in product design.

    (Executive Editor:Xu Chengting)

    TH186 Document code:A Article ID:1005-1120(2016)05-0602-08

    (Received 6 May 2015;revised 22 September 2015;accepted 27 October 2015)

    免费在线观看成人毛片| 村上凉子中文字幕在线| 国产欧美日韩一区二区三| 18禁美女被吸乳视频| 精品熟女少妇八av免费久了| 天堂av国产一区二区熟女人妻| 精品国产亚洲在线| 草草在线视频免费看| 一个人免费在线观看电影| 黄色片一级片一级黄色片| 一本精品99久久精品77| 婷婷亚洲欧美| 久久精品夜夜夜夜夜久久蜜豆| 性色av乱码一区二区三区2| 美女 人体艺术 gogo| 国内精品久久久久精免费| 日本成人三级电影网站| 国产私拍福利视频在线观看| 高清毛片免费观看视频网站| 久久国产精品人妻蜜桃| 麻豆成人av在线观看| 午夜福利欧美成人| 色播亚洲综合网| 又爽又黄无遮挡网站| 在线播放无遮挡| 日韩人妻高清精品专区| 国产精品自产拍在线观看55亚洲| e午夜精品久久久久久久| 窝窝影院91人妻| 三级国产精品欧美在线观看| 久久精品综合一区二区三区| 美女 人体艺术 gogo| 免费一级毛片在线播放高清视频| av中文乱码字幕在线| 淫秽高清视频在线观看| 国产美女午夜福利| 欧美日韩国产亚洲二区| 久久精品国产自在天天线| 制服丝袜大香蕉在线| 老司机午夜十八禁免费视频| 无限看片的www在线观看| 2021天堂中文幕一二区在线观| 国产精品爽爽va在线观看网站| 操出白浆在线播放| 搡老熟女国产l中国老女人| 日韩欧美国产一区二区入口| 免费看美女性在线毛片视频| 一卡2卡三卡四卡精品乱码亚洲| 久久精品国产亚洲av涩爱 | av国产免费在线观看| 综合色av麻豆| 99久久精品国产亚洲精品| 成年女人毛片免费观看观看9| 日韩欧美在线乱码| 女同久久另类99精品国产91| 国内揄拍国产精品人妻在线| 国产精华一区二区三区| 免费一级毛片在线播放高清视频| 在线视频色国产色| 亚洲七黄色美女视频| 亚洲第一欧美日韩一区二区三区| 欧美最新免费一区二区三区 | 十八禁网站免费在线| 美女cb高潮喷水在线观看| 黑人欧美特级aaaaaa片| 我的老师免费观看完整版| АⅤ资源中文在线天堂| 桃色一区二区三区在线观看| 欧美高清成人免费视频www| 国产三级中文精品| av在线天堂中文字幕| 免费在线观看成人毛片| 久久久久免费精品人妻一区二区| 少妇人妻一区二区三区视频| 欧美黑人巨大hd| 日韩欧美在线二视频| 欧美日韩精品网址| 亚洲精品色激情综合| 国产精品嫩草影院av在线观看 | 两个人视频免费观看高清| 午夜福利成人在线免费观看| 在线a可以看的网站| www.色视频.com| 午夜福利在线观看吧| www.熟女人妻精品国产| 麻豆久久精品国产亚洲av| 麻豆国产97在线/欧美| 在线观看免费午夜福利视频| 欧美乱码精品一区二区三区| 日本 av在线| 国模一区二区三区四区视频| 国产探花在线观看一区二区| 亚洲精品一区av在线观看| 制服丝袜大香蕉在线| 午夜福利成人在线免费观看| 国产一区二区三区视频了| 国产精品三级大全| e午夜精品久久久久久久| 99国产精品一区二区三区| 国产真人三级小视频在线观看| 女人十人毛片免费观看3o分钟| 亚洲精品乱码久久久v下载方式 | 色视频www国产| 国产精品99久久久久久久久| 在线观看一区二区三区| 欧美色视频一区免费| 成人精品一区二区免费| 国产不卡一卡二| 久久6这里有精品| 亚洲久久久久久中文字幕| 三级男女做爰猛烈吃奶摸视频| 黄片小视频在线播放| 亚洲最大成人手机在线| netflix在线观看网站| 午夜福利18| 69人妻影院| 国产精品永久免费网站| 日本黄大片高清| 国产三级黄色录像| 成年免费大片在线观看| 白带黄色成豆腐渣| 国产一区二区亚洲精品在线观看| 两人在一起打扑克的视频| 免费看光身美女| 国产免费av片在线观看野外av| 嫁个100分男人电影在线观看| 免费在线观看日本一区| 日本与韩国留学比较| 欧美激情在线99| 中文字幕人妻熟人妻熟丝袜美 | 亚洲第一欧美日韩一区二区三区| 国产精品久久久久久亚洲av鲁大| 岛国在线免费视频观看| 人妻丰满熟妇av一区二区三区| 精品电影一区二区在线| 久久久久久久精品吃奶| 国产成人av激情在线播放| 中文字幕av成人在线电影| 国内毛片毛片毛片毛片毛片| 国产高清videossex| 精品一区二区三区人妻视频| 18禁在线播放成人免费| 国产在视频线在精品| 成人av一区二区三区在线看| 国产高清有码在线观看视频| 欧美最黄视频在线播放免费| 国产不卡一卡二| 久久九九热精品免费| 亚洲av中文字字幕乱码综合| 一区福利在线观看| 可以在线观看的亚洲视频| 成人永久免费在线观看视频| 岛国视频午夜一区免费看| 在线免费观看不下载黄p国产 | 韩国av一区二区三区四区| 亚洲成人中文字幕在线播放| 高清毛片免费观看视频网站| 国产精品99久久久久久久久| 亚洲精品美女久久久久99蜜臀| 午夜激情福利司机影院| 亚洲av五月六月丁香网| 久久精品综合一区二区三区| 久久久久精品国产欧美久久久| 人妻夜夜爽99麻豆av| av在线天堂中文字幕| 丰满人妻熟妇乱又伦精品不卡| 国语自产精品视频在线第100页| 欧美三级亚洲精品| 亚洲久久久久久中文字幕| 国产欧美日韩精品一区二区| 国语自产精品视频在线第100页| 一区二区三区高清视频在线| 美女高潮喷水抽搐中文字幕| 久久久国产成人免费| 国产精品一区二区免费欧美| 色综合婷婷激情| 日本黄大片高清| 3wmmmm亚洲av在线观看| 露出奶头的视频| 99在线视频只有这里精品首页| 久久国产精品人妻蜜桃| 熟女电影av网| 99久久精品热视频| 天天躁日日操中文字幕| 欧美成人免费av一区二区三区| 国产精品乱码一区二三区的特点| 丁香欧美五月| 日本a在线网址| 久久草成人影院| 9191精品国产免费久久| 欧美一区二区精品小视频在线| 日本免费a在线| 午夜久久久久精精品| 日韩欧美国产一区二区入口| 欧美成狂野欧美在线观看| 国产伦在线观看视频一区| 免费av毛片视频| 国产美女午夜福利| 亚洲人成网站在线播放欧美日韩| 淫秽高清视频在线观看| 天堂网av新在线| 亚洲美女黄片视频| 久久九九热精品免费| 特级一级黄色大片| 国产一区二区亚洲精品在线观看| 九色国产91popny在线| 国产三级在线视频| 精品熟女少妇八av免费久了| 久久香蕉精品热| 精品久久久久久久毛片微露脸| svipshipincom国产片| 日本免费一区二区三区高清不卡| 嫁个100分男人电影在线观看| 搡老熟女国产l中国老女人| 国产私拍福利视频在线观看| 熟女少妇亚洲综合色aaa.| 悠悠久久av| 亚洲欧美日韩卡通动漫| 国产伦精品一区二区三区四那| 男人舔女人下体高潮全视频| 美女高潮的动态| 午夜两性在线视频| 久久亚洲真实| 特级一级黄色大片| 精品久久久久久久毛片微露脸| av黄色大香蕉| avwww免费| 18禁黄网站禁片午夜丰满| 国语自产精品视频在线第100页| 国产一区二区亚洲精品在线观看| 国产在线精品亚洲第一网站| 精品国产三级普通话版| 老司机午夜福利在线观看视频| 身体一侧抽搐| www.www免费av| 久久精品亚洲精品国产色婷小说| 久久久久久大精品| 免费观看精品视频网站| 午夜免费观看网址| 蜜桃久久精品国产亚洲av| 神马国产精品三级电影在线观看| 一本一本综合久久| 久久国产精品影院| 欧美激情在线99| 精品久久久久久久人妻蜜臀av| 久久精品国产亚洲av香蕉五月| 午夜激情福利司机影院| 久久久久久九九精品二区国产| 天天躁日日操中文字幕| 国内精品一区二区在线观看| 有码 亚洲区| 美女cb高潮喷水在线观看| 亚洲精品美女久久久久99蜜臀| 91久久精品国产一区二区成人 | 日本黄色片子视频| 亚洲成av人片在线播放无| 人人妻人人澡欧美一区二区| 欧美成狂野欧美在线观看| 看片在线看免费视频| 国产午夜福利久久久久久| 亚洲国产精品999在线| 久久久久久久精品吃奶| 亚洲人成网站在线播| 亚洲精品一卡2卡三卡4卡5卡| 久久精品国产清高在天天线| 51午夜福利影视在线观看| 熟女少妇亚洲综合色aaa.| 日本成人三级电影网站| 中文字幕人妻丝袜一区二区| 久99久视频精品免费| 可以在线观看毛片的网站| 国产野战对白在线观看| 免费观看人在逋| 亚洲欧美精品综合久久99| 国产黄片美女视频| 亚洲av美国av| 夜夜夜夜夜久久久久| 免费无遮挡裸体视频| 18禁国产床啪视频网站| 国产一区二区三区视频了| 日韩欧美三级三区| 一进一出抽搐动态| 成人永久免费在线观看视频| 搡女人真爽免费视频火全软件 | 中国美女看黄片| 国产探花在线观看一区二区| 成人av一区二区三区在线看| 舔av片在线| 亚洲欧美精品综合久久99| 欧美日韩精品网址| 中文字幕人妻丝袜一区二区| 日本撒尿小便嘘嘘汇集6| 在线国产一区二区在线| 人人妻人人澡欧美一区二区| 国产精品女同一区二区软件 | e午夜精品久久久久久久| 身体一侧抽搐| 日韩亚洲欧美综合| 亚洲精品在线美女| 国产成人影院久久av| 老熟妇乱子伦视频在线观看| 亚洲av第一区精品v没综合| 99久久99久久久精品蜜桃| 亚洲熟妇中文字幕五十中出| 最近最新中文字幕大全电影3| 国产一区在线观看成人免费| 国产成人欧美在线观看| 亚洲自拍偷在线| 国产麻豆成人av免费视频| 欧美日韩黄片免| 在线观看午夜福利视频| 黄色成人免费大全| 亚洲黑人精品在线| 日韩精品中文字幕看吧| 免费看美女性在线毛片视频| 国产精品亚洲美女久久久| 一个人免费在线观看的高清视频| 午夜日韩欧美国产| 久久香蕉国产精品| 窝窝影院91人妻| 深夜精品福利| 欧美一级a爱片免费观看看| 国产免费av片在线观看野外av| 精品午夜福利视频在线观看一区| 在线视频色国产色| 欧美一级毛片孕妇| 亚洲国产精品sss在线观看| 老司机午夜十八禁免费视频| 国产男靠女视频免费网站| 一进一出抽搐动态| 久久久久久九九精品二区国产| 欧美成狂野欧美在线观看| 熟女电影av网| 国产亚洲精品久久久com| 国产精品98久久久久久宅男小说| 最近最新免费中文字幕在线| 变态另类成人亚洲欧美熟女| 亚洲狠狠婷婷综合久久图片| 最新美女视频免费是黄的| 亚洲美女视频黄频| 桃色一区二区三区在线观看| 亚洲中文字幕一区二区三区有码在线看| 欧美激情在线99| 免费看光身美女| 免费观看人在逋| 国产亚洲精品一区二区www| 中文字幕熟女人妻在线| 欧美日韩国产亚洲二区| 极品教师在线免费播放| 内射极品少妇av片p| 99国产综合亚洲精品| 午夜日韩欧美国产| 偷拍熟女少妇极品色| 亚洲午夜理论影院| 极品教师在线免费播放| 内射极品少妇av片p| 在线观看美女被高潮喷水网站 | 免费av不卡在线播放| 搡老妇女老女人老熟妇| 国产精品乱码一区二三区的特点| 欧美在线一区亚洲| 一级黄色大片毛片| 十八禁人妻一区二区| 国产老妇女一区| 午夜福利在线观看吧| 国产黄片美女视频| 十八禁人妻一区二区| 熟女电影av网| 亚洲最大成人手机在线| 午夜福利高清视频| 中文字幕精品亚洲无线码一区| 伊人久久大香线蕉亚洲五| 亚洲人成电影免费在线| 午夜福利在线在线| 老司机午夜福利在线观看视频| 亚洲国产精品sss在线观看| 国产成人欧美在线观看| 男人舔女人下体高潮全视频| 丰满人妻熟妇乱又伦精品不卡| 国产蜜桃级精品一区二区三区| 在线播放国产精品三级| 99热只有精品国产| 啦啦啦韩国在线观看视频| 国产成人福利小说| 波多野结衣巨乳人妻| 成人特级av手机在线观看| 波多野结衣巨乳人妻| 久久久精品欧美日韩精品| 亚洲无线观看免费| 91在线精品国自产拍蜜月 | 亚洲最大成人手机在线| 久久久久久九九精品二区国产| 国产成人aa在线观看| 亚洲精品亚洲一区二区| 国产亚洲欧美98| 欧美日本亚洲视频在线播放| 成人亚洲精品av一区二区| 久久亚洲精品不卡| 两个人看的免费小视频| 哪里可以看免费的av片| 久久久久久久久中文| 亚洲av电影在线进入| 中文资源天堂在线| 久久久久久久精品吃奶| 又黄又粗又硬又大视频| 19禁男女啪啪无遮挡网站| 俺也久久电影网| 国产麻豆成人av免费视频| 网址你懂的国产日韩在线| 亚洲精品粉嫩美女一区| 国产成人啪精品午夜网站| 国产男靠女视频免费网站| 欧美色视频一区免费| 免费av不卡在线播放| 欧美成人性av电影在线观看| a级一级毛片免费在线观看| 久久婷婷人人爽人人干人人爱| 国产麻豆成人av免费视频| 一个人看视频在线观看www免费 | 成年免费大片在线观看| 国产一区二区三区视频了| 99久久无色码亚洲精品果冻| 在线播放无遮挡| 国产欧美日韩精品亚洲av| 欧美国产日韩亚洲一区| 91av网一区二区| 老司机午夜十八禁免费视频| 精品一区二区三区人妻视频| 久久精品91无色码中文字幕| 成人永久免费在线观看视频| 久久久久久久午夜电影| 午夜精品一区二区三区免费看| 亚洲激情在线av| 12—13女人毛片做爰片一| 91久久精品国产一区二区成人 | а√天堂www在线а√下载| 成人国产综合亚洲| 日韩欧美精品免费久久 | 亚洲国产欧美人成| 一本综合久久免费| 精品久久久久久久末码| 国内精品美女久久久久久| svipshipincom国产片| 久久中文看片网| 夜夜躁狠狠躁天天躁| 国产欧美日韩精品亚洲av| 欧美高清成人免费视频www| 精品免费久久久久久久清纯| 欧美区成人在线视频| 真人一进一出gif抽搐免费| 又粗又爽又猛毛片免费看| 桃色一区二区三区在线观看| 久久精品国产亚洲av香蕉五月| 亚洲在线观看片| 一个人免费在线观看的高清视频| 久久久久国产精品人妻aⅴ院| 午夜老司机福利剧场| 国内精品美女久久久久久| 一级黄片播放器| 精华霜和精华液先用哪个| 国产精品 欧美亚洲| 久久久久久久久久黄片| 看黄色毛片网站| 18禁美女被吸乳视频| 国产老妇女一区| 在线观看日韩欧美| 日本与韩国留学比较| 色av中文字幕| 黄片小视频在线播放| 成人精品一区二区免费| 岛国在线免费视频观看| 久久精品91蜜桃| 在线免费观看不下载黄p国产 | 日本五十路高清| 欧美极品一区二区三区四区| 天堂动漫精品| netflix在线观看网站| 69av精品久久久久久| 全区人妻精品视频| 三级毛片av免费| 亚洲精品日韩av片在线观看 | 动漫黄色视频在线观看| 一区二区三区免费毛片| 精品福利观看| 中亚洲国语对白在线视频| 亚洲专区国产一区二区| 在线观看日韩欧美| 精华霜和精华液先用哪个| 一本精品99久久精品77| 90打野战视频偷拍视频| 少妇高潮的动态图| 久9热在线精品视频| 欧美日本亚洲视频在线播放| av黄色大香蕉| or卡值多少钱| 又紧又爽又黄一区二区| 美女 人体艺术 gogo| 最新中文字幕久久久久| 日韩大尺度精品在线看网址| 国内毛片毛片毛片毛片毛片| 亚洲人成网站在线播放欧美日韩| 国内精品久久久久久久电影| 国产精品av视频在线免费观看| 亚洲人成网站高清观看| 叶爱在线成人免费视频播放| 久久国产精品影院| 午夜激情福利司机影院| 婷婷六月久久综合丁香| 午夜视频国产福利| 天天躁日日操中文字幕| 国产乱人视频| 欧美中文综合在线视频| 国产一区二区在线av高清观看| 欧美精品啪啪一区二区三区| 久9热在线精品视频| 亚洲精品日韩av片在线观看 | 少妇人妻一区二区三区视频| 国产精品一区二区免费欧美| 亚洲av一区综合| 午夜两性在线视频| 夜夜夜夜夜久久久久| 91麻豆精品激情在线观看国产| 午夜日韩欧美国产| 免费看十八禁软件| 嫩草影视91久久| 色尼玛亚洲综合影院| 欧美日韩中文字幕国产精品一区二区三区| 欧美日韩精品网址| 黄色片一级片一级黄色片| 久久亚洲精品不卡| 小蜜桃在线观看免费完整版高清| 亚洲五月天丁香| 成人国产一区最新在线观看| 国内久久婷婷六月综合欲色啪| 女生性感内裤真人,穿戴方法视频| 成人国产综合亚洲| 黄色片一级片一级黄色片| 热99在线观看视频| 在线国产一区二区在线| 最后的刺客免费高清国语| 午夜免费成人在线视频| 九色国产91popny在线| 国内毛片毛片毛片毛片毛片| 999久久久精品免费观看国产| 首页视频小说图片口味搜索| 五月玫瑰六月丁香| 亚洲va日本ⅴa欧美va伊人久久| 亚洲欧美日韩高清专用| 3wmmmm亚洲av在线观看| 日日摸夜夜添夜夜添小说| 老鸭窝网址在线观看| 精品人妻偷拍中文字幕| 亚洲第一电影网av| 国产精品精品国产色婷婷| 中文亚洲av片在线观看爽| 美女高潮的动态| 日本精品一区二区三区蜜桃| 日本熟妇午夜| 99精品久久久久人妻精品| 久久精品夜夜夜夜夜久久蜜豆| 波多野结衣巨乳人妻| 在线观看午夜福利视频| 亚洲成人精品中文字幕电影| 久久久精品大字幕| 免费人成视频x8x8入口观看| 波多野结衣高清无吗| 久久人妻av系列| 亚洲av第一区精品v没综合| 91久久精品电影网| 校园春色视频在线观看| 综合色av麻豆| 午夜两性在线视频| 99久国产av精品| 国产一区二区亚洲精品在线观看| av天堂中文字幕网| 欧美3d第一页| 亚洲熟妇熟女久久| 一个人看的www免费观看视频| 非洲黑人性xxxx精品又粗又长| 宅男免费午夜| 熟妇人妻久久中文字幕3abv| 在线观看日韩欧美| 国产欧美日韩一区二区三| 特级一级黄色大片| 欧美日韩福利视频一区二区| 免费av毛片视频| 国产精品亚洲美女久久久| 久久久国产成人免费| 国产精品av视频在线免费观看| netflix在线观看网站| 成年人黄色毛片网站| av欧美777| 中文资源天堂在线| 亚洲欧美日韩高清专用| 久久婷婷人人爽人人干人人爱| 亚洲国产日韩欧美精品在线观看 | av中文乱码字幕在线| 欧美一级a爱片免费观看看| 99久久无色码亚洲精品果冻| 男女午夜视频在线观看| 免费人成在线观看视频色| 精品久久久久久久末码| 日韩成人在线观看一区二区三区| 美女被艹到高潮喷水动态| 午夜老司机福利剧场| 啦啦啦免费观看视频1| 国产av麻豆久久久久久久| 十八禁人妻一区二区| 午夜福利欧美成人| 在线观看舔阴道视频| 别揉我奶头~嗯~啊~动态视频| 婷婷六月久久综合丁香| 国产免费男女视频| 国产美女午夜福利| 亚洲av免费在线观看|