• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Automatic counting of microglial cell activation and its applications

    2016-12-01 09:23:28BeatrizGallegoColladoPablodeGracia
    關鍵詞:黃姓江夏瓊花

    Beatriz I. Gallego Collado, Pablo de Gracia

    1 Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid, Madrid, Spain2 Facultad de óptica y Optometría, Departamento de Oftalmología y Otorrinolaringología, Universidad Complutense de Madrid, Madrid, Spain3 Midwestern University, Chicago College of Optometry, Downers Grove, IL, USA4 Department of Neurobiology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA

    Automatic counting of microglial cell activation and its applications

    Beatriz I. Gallego Collado1,2,*,#, Pablo de Gracia3,4,*,#

    1 Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid, Madrid, Spain
    2 Facultad de óptica y Optometría, Departamento de Oftalmología y Otorrinolaringología, Universidad Complutense de Madrid, Madrid, Spain
    3 Midwestern University, Chicago College of Optometry, Downers Grove, IL, USA
    4 Department of Neurobiology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA

    How to cite this article: Gallego BI, de Gracia P (2016) Automatic counting of microglial cell activation and its applications. Neural Regen Res 11(8)∶1212-1215.

    Funding: This work was supported by the Science Foundation of Arizona through the Bisgrove Program to PdG, Grant Number∶ BSP 0529-13. BIG received funding from the Ophthalmological Network OFTARED (RD12-0034/0002) and the Institute of Health Carlos III. And also from the PN I+D+i 2008-2011, from the ISCIII-Subdireccion General de Redes y Centros de Investigación Cooperativa, from the European Programme FEDER, and from the project SAF2014-53779-R. BIG also received funding from the project∶ “The role of encapsulated NSAIDs in PLGA microparticles as a neuroprotective treatment” funded by the Spanish Ministry of Economy and Competitiveness.

    Beatriz I. Gallego Collado, O.D., Ph.D. or Pablo de Gracia, O.D., Ph.D., F.A.A.O.,

    bgallegocollado@gmail.com or pdegracia@midwestern.edu

    Both of these two authors

    contributed equally to this article.

    orcid:

    0000-0001-9864-3140

    (Beatriz I. Gallego Collado) 0000-0003-4319-2797

    (Pablo de Gracia)

    Accepted: 2016-08-15

    Glaucoma is a multifactorial optic neuropathy characterized by the damage and death of the retinal ganglion cells. This disease results in vision loss and blindness. Any vision loss resulting from the disease cannot be restored and nowadays there is no available cure for glaucoma; however an early detection and treatment, could offer neuronal protection and avoid later serious damages to the visual function. A full understanding of the etiology of the disease will still require the contribution of many scientific efforts. Glial activation has been observed in glaucoma, being microglial proliferation a hallmark in this neurodegenerative disease. A typical project studying these cellular changes involved in glaucoma often needs thousands of images - from several animals - covering different layers and regions of the retina. The gold standard to evaluate them is the manual count. This method requires a large amount of time from specialized personnel. It is a tedious process and prone to human error. We present here a new method to count microglial cells by using a computer algorithm. It counts in one hour the same number of images that a researcher counts in four weeks, with no loss of reliability.

    glaucoma; glial cells; microglial cells; automatic counting; image processing; inner plexiform layer; outer plexiform layer; bilateral activation

    Introduction

    Vision in mammals begins at the retina, which is the innermost layer of the eye and part of the central nervous system (CNS). The retina comprises a high scaffold of complex neurons that transform light into nerve impulses, which propagate through the visual pathway to the brain where visual processing is completed.

    Glaucoma is a chronic optic neuropathy characterized by neuronal death of retinal ganglion cells (RGCs). The disease is a prevalent visual pathology that leads to vision impairment (affecting > 60 million people worldwide) and is the second most frequent cause of irreversible blindness in the world (Quigley and Broman, 2006). Although age and ocular hypertension (OHT) constitute the major risk factors for the disease, the exact mechanisms involved in glaucoma pathophysiology are unknown. In some instances, the progress of the disease cannot be halted and, in others, major damage has already occurred by the time of diagnosis. Therefore, understanding the pathogenic mechanisms of glaucoma and developing new strategies for early diagnosis are paramount for improving the well-being of individuals suffering from glaucoma.

    Glial Cell Activation in Glaucoma: the Good and the Bad

    Activation of glial cells seems to play an important role in glaucomatous neurodegeneration. Glia are non-neuronal cells in the nervous system that support and protect neurons. Glia, especially microglial cells, are considered to be immune cells in the CNS (including the retina) and their activation after damage is crucial. Early, moderate, transient, well-controlled glial activation could be initially responsible for restoring damaged tissue. However, the sustained tissue stress that occurs in human glaucoma is associated with a chronic activation of glial cells-this hallmark of a harmful neuro-inflammatory process could lead to tissue damage. This concept supports the contention that, in glaucomatous neurodegeneration, glial cells could initiate an immune response that mayexacerbate the glaucomatous neurodegenerative injury (Tezel and the Fourth ARVO/Pfizer Ophthalmics Research Institute Conference Working Group, 2009).

    Although gliotic processes are heterogeneous, common features are shared among them. The most important features of gliotic processes are morphologic and immunophenotypic changes, increase or de novo expression of certain molecules, production of pro- or anti-inflammatory molecules, and cell proliferation (Ramírez et al., 2015b; de Hoz et al., 2016).

    Most research employs experimental unilateral glaucoma initiated in mice by an increase of intraocular pressure (IOP), with the contralateral normotensive eye used as a control. However, glaucomatous optic neuropathy is usually a bilateral disease, although asymmetric. Thus, the neuronal damage initially present in one eye eventually appears later in the contralateral eye (Ramírez et al., 2015b; de Hoz et al., 2016).

    With this in mind, our recent work has focused on the role of bilateral glial activation observed in a unilateral OHT mouse model, as a possible mechanism for understanding early development and progression of glaucomatous neurodegeneration. A significant finding from our research is that bilateral retinal gliosis was observed in both hypertensive and contralateral normotensive untreated eyes; this result supports the concept that the eye contralateral to experimental glaucoma should not be used as an internal control. Briefly, in our study, hypertensive eyes exhibited neuronal damage, evidenced by the frequent presence of NF-200+immunostaining localized in the soma and primary dendrites of some RGCs; this indicated an impairment of these neurons. In hypertensive eyes, a gliotic phenomenon presence was characterized by i) non-proliferative glial fibrillary acidic protein (GFAP)+astrocytic gliosis with morphological changes (loss of cellular complexity); ii) an overall GFAP increase in astrocytes and Müller cells, which is a clear sign of glial activation; iii) proliferative gliosis of ionized calcium binding adaptor molecule 1 (Iba-1)+microglia, characterized by shrinkage of cell processes and displaced microglia between different retinal layers; and iv) the presence of new Iba-1+cell morphotypes (morphologically suggestive of cell migration from the bloodstream). More interesting, in the contralateral normotensive untreated eyes, despite the absence of evidence of RGC death, macroglial and microglial gliosis occurred, similar to the hypertensive eyes. To underline, in both hypertensive and contralateral normotensive untreated eyes, Iba-1+cells and GFAP+cells showed up-regulation of major histocompatibility complex class II (MHC-II) molecules immunostaining (Ramírez et al., 2010, 2015b; Gallego et al., 2012; de Hoz et al., 2013; Rojas et al., 2014). Under normal conditions, MHC-II expression is very low in the CNS, because it is required for antigen presentation to T cells; however, under nearly all inflammatory and neurodegenerative conditions, MHC-II expression significantly increases in reactive glia.

    In light of these findings, and bearing in mind that glia constitute the immune cell population in the CNS, we suggested that an immune process was taking place in not only lasered eyes but also in contralateral retinas. Because we found no evidence of neuronal damage in contralateral retinas, we deduced that the glial response observed may represent an attempt to maintain homeostasis and protect retinal neurons from a stimulus that could come from the hypertensive eye and reach the contralateral retina by a hitherto unknown route. Possible mechanisms that would explain this bilateral eye communication include: i) a systemic hematic-immune involvement through a compromised blood-brain barrier in the hypertensive eyes, which has been found in glaucoma; ii) the propagation of signals into the opposite contralateral retina, passing through the optic chiasma; iii) some fibers from RGCs that cross the optic chiasm to reach the contralateral retina, known as retino-retinal projections; iv) a bilateral disruption of the anterior chamber associated immune deviation (ACAID), which has been reported with several unilateral eye injuries; or v) neurogenic mechanisms, which are also involved in the symmetrical spread of inflammation in rheumatoid arthritis (Ramírez et al., 2015b).

    These results do not clarify whether glial activation precedes or is a consequence of neuronal damage in glaucoma. It is possible that before any neuronal damage occurs, some early inflammatory responses are involved in the onset or progression of the glaucomatous neurodegeneration.

    We do know that ophthalmic diseases that affect retinal neurons share common pathophysiological features with cerebral neurodegenerative diseases. Thus, glial activation could be used in the development of new strategies for early diagnosis and treatment of neurodegenerative diseases, by controlling the development of neurodegeneration in the retina and also in other CNS locations.

    Microglial Proliferation: Challenges in Quantitative Assessments

    Microglial proliferation is a sign of gliosis and provides information about ongoing stress situations in the nervous system, including the retina (Ramírez et al., 2015a). This proliferation has been evaluated in quantitative studies of microglial cells using animal models of different eye diseases, and in other CNS conditions such as Alzheimer disease.

    The analysis of large numbers of tissue samples is required to achieve decisive data of statistical significance in these studies. The manual method (a researcher counts cellson an image) is still considered the gold standard for quantitative assessments of microglial cells in the CNS. These manual processes, however, are time consuming, affected by the bias of the researcher, and prone to human error. In an attempt to overcome these shortcomings, our group recently developed an image processing algorithm in MATLAB that accurately and automatically identifies and quantifies mouse retinal microglial cells, in both na?ve tissue and in a unilateral model of OHT exhibiting microgliotic processes (de Gracia et al., 2015).

    Figure 1 Illustration of the automatic retinal microglial cell quantification methodology.

    Microglial cells are characterized by small cellular bodies from which emerge numerous, long, profusely ramified branches; these cells are distributed over the parenchyma of the nervous tissue, but without overlap of neighboring cells. These cellular features, which are also observed in the retina, allow visual identification of a single microglial cell and are the key to our algorithm, which automatically determines the number of microglial cells in the inner and outer plexiform layers of the retina (Ramírez et al., 2015a).

    這是敲門歌,XX指出嫁姑娘家族的堂號?!疤锰枴笔羌易彘T戶的代稱,是家族文化重要的組成部分。如果出嫁姑娘姓黃,九寨黃姓的堂號是江夏堂,則會改成“江夏朝中招駙馬”。這里用了借喻,“揚州瓊花”代替嫁姑娘這件喜事;“滎陽城”代替女方的家?!皳P州瓊花”指《隋唐演義》中,揚州有一朵漂亮的牡丹花,楊廣去看而花不開;但李世民去,花就開了,說明李世民才是花主,暗示他才是天子。所以這里就用“揚州瓊花現(xiàn)”來表示要嫁的姑娘像揚州的花一樣找到正主了。

    These specific microglial cell features remain even during proliferative events; however, depending on particular characteristics of the tissue analyzed, microglial cells sometimes do not completely fulfil these criteria. This makes the process of cell recognition complex and not very reliable for both human and computational approaches. That complexity is noted on the nerve fiber layer of the retina, where Iba-1+cells adapt their somas and processes to the spaces within the fibers of the RGCs and the blood vessels. Nonetheless, instead of counting independent events in a research scenario, another quantitative approach is to calculate the area covered by specific immunolabeling, which produces an indirect measure of the number of cells in the tissue. An increase of the area covered by, for example, Iba-1 immunolabeling is also a mark of gliosis. This approach provided the key to developing another automatic tool in our algorithm that allows quantitative analysis of the area of the retina occupied by microglial cells (Figure 1).

    One of the benefits of our algorithm is the interactive work interface, which was developed to supply researchers with a graphic visualization of the process and the ability to change some parameters of interest, such as cell distance and image threshold. As a result, and despite a complex mathematicalprogramming environment, this new algorithm is easy to use and does not require the user to have a programing background. Another advantage of our algorithm is that it allows researchers not only to work with a 2-dimensional image but also to study 3-dimensional volume (de Gracia et al., 2015). Because of the complex 3-dimensional spatial distribution of microglial cells in nervous tissue, this is a very useful feature.

    With our new automated microglial cell quantification method, the time for counting a huge set of images can be radically reduced from weeks (manual procedure) to a few hours (computational analysis) without any statistically significant difference from results of a manual count by a human (gold standard). In addition, our results exhibited a good correlation not only in na?ve tissues but also in highly proliferative gliotic states (de Gracia et al., 2015).

    This algorithm has been developed for the quantification of microglial cells in retinal flat mount; however, due to the similarities of microglial cells within the CNS, this algorithm (once calibrated) will also facilitate quantitative tasks in other regions of the nervous system.

    Microglial Analysis: Development of New Neuroprotective Therapies

    Although it was already known that glaucoma is usually a bilateral but asymmetrically presenting disease, the contralateral eye in unilateral glaucoma models has been frequently used as an internal control. In our unilateral mouse model of laser induced OHT, the contralateral gliosis (bilateral reaction) may represent events linked with the initial steps of the glaucomatous neurodegeneration, previous to a neuronal death, and probably mediated by the ongoing inflammatory processes. Research about the events observed in the contralateral eyes in response to a unilateral model of glaucoma is sparse (Ramírez et al., 2015b); however, new studies focused on the implication of this activation of glial cells could provide a better understanding of glaucomatous pathophysiology. Research on steps prior to neurodegeneration in glaucoma, and therefore possible intervention points in the disease, has the potential to allow assessment and development of new neuroprotective therapies.

    Microglial proliferation has been observed in our studies, both in the presence of neuronal death and also without it; thus, future quantitative microglial studies could assist in the detection of early neurodegeneration and establish signs or events related to neurodegeneration. Also, the number of microglial cells in tissue could be issued as an index of recovery after the application of neuroprotective therapies. A prodigious amount of research is needed to collect strong evidence to fully understand the etiology of glaucoma and to develop treatments. At this point in time, our algorithm provides researchers with a useful tool to perform quick and accurate microglial cell analysis on large data sets of images.

    The algorithm will be provided at no cost to any researcher contacting the authors of this study (de Gracia et al., 2015).

    Acknowledgments: The authors of this paper thanks the Neuroscience Publications office at Barrow Neurological Institute for their editorial and manuscript preparation assistance.

    Conflicts of interest: None declared.

    This work has been presented in the following meetings:

    1. Salazar JJ, Gallego BI, Rojas B, Trivi?o A, Ramírez JM, de Gracia P (2013) A new automatic method for counting microglial cells in whole-mount mice retinas. Sociedad de Investigación de Retina de la Comunidad Valenciana (SIRCOVA). Co-patrocinio Association for Research in Vision and Ophthalmology (ARVO). Ophthal Res 50∶27-53.

    2. de Hoz R, Gallego BI, Rojas B, Ramírez AI, Salazar JJ, Trivi?o A, de Gracia P, Ramírez JM (2013) A new automatic method for microglial-cell quantification in whole-mount mouse retinas. Joint Eu ropean Research Meeting in Ophthalmology and Vision. European As sociation for Vision and Eye Research (EVER). Acta Ophthalmol 89. 3. de Gracia P, Gallego BI (2012) A new automatic method for coun ting microglial cells in healthy and glaucomatous retinas. American Academy of Optometry meeting, American Academy of Optometry (AAO).

    References

    de Gracia P, Gallego BI, Rojas B, Ramírez AI, de Hoz R, Salazar JJ, Trivino A, Ramírez JM (2015) Automatic counting of microglial cells in healthy and glaucomatous mouse retinas. PLoS One 10:e0143278.

    de Hoz R, Rojas B, Ramírez AI, Salazar JJ, Gallego BI, Trivino A, Ramírez JM (2016) Retinal macroglial responses in health and disease. Biomed Res Int 2016:2954721.

    de Hoz R, Gallego BI, Ramírez AI, Rojas B, Salazar JJ, Valiente-Soriano FJ, Aviles-Trigueros M, Villegas-Perez MP, Vidal-Sanz M, Trivino A, Ramírez JM (2013) Rod-like microglia are restricted to eyes with laser-induced ocular hypertension but absent from the microglial changes in the contralateral untreated eye. PLoS One 8:e83733.

    Gallego BI, Salazar JJ, de Hoz R, Rojas B, Ramírez AI, Salinas-Navarro M, Ortin-Martinez A, Valiente-Soriano FJ, Aviles-Trigueros M, Villegas-Perez MP, Vidal-Sanz M, Trivino A, Ramírez JM (2012) IOP induces upregulation of GFAP and MHC-II and microglia reactivity in mice retina contralateral to experimental glaucoma. J Neuroinflammation 9:92.

    Quigley HA, Broman AT (2006) The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 90:262-267.

    Ramírez AI, Rojas B, de Hoz R, Salazar JJ, Gallego BI, Trivi?o A, Ramírez JM (2015a) Microglia, inflammation, and glaucoma. Dover: SM Group Open Access eBooks ed.

    Ramírez AI, Salazar JJ, de Hoz R, Rojas B, Gallego BI, Salobrar-Garcia E, Valiente-Soriano FJ, Trivino A, Ramírez JM (2015b) Macro- and microglial responses in the fellow eyes contralateral to glaucomatous eyes. Prog Brain Res 220:155-172.

    Ramírez AI, Salazar JJ, de Hoz R, Rojas B, Gallego BI, Salinas-Navarro M, Alarcon-Martinez L, Ortin-Martinez A, Aviles-Trigueros M, Vidal-Sanz M, Trivino A, Ramírez JM (2010) Quantification of the effect of different levels of IOP in the astroglia of the rat retina ipsilateral and contralateral to experimental glaucoma. Invest Ophthalmol Vis Sci 51:5690-5696.

    Rojas B, Gallego BI, Ramírez AI, Salazar JJ, de Hoz R, Valiente-Soriano FJ, Avilés-Trigueros M, Villegas Pérez MP, Vidal-Sanz M, Trivi?o A, Ramírez JM (2014) Microglia in mice retina contralateral to experimental glaucoma exhibit multiple signs of activation in all retinal layers: a detailed description. J Neuroinflammation 11:133.

    Tezel G. the Fourth ARVO/Pfizer Ophthalmics Research Institute Conference Working Group (2009) The role of glia, mitochondria, and the immune system in glaucoma. Invest Ophthalmol Vis Sci 50:1001-1012.

    10.4103/1673-5374.189166

    *Correspondence to:

    猜你喜歡
    黃姓江夏瓊花
    福建江夏學院學報2021年總目次
    窗外飛絮
    瓊花的修剪技巧及在園林景觀設計中的應用
    揚州瓊花涂裝工程技術有限公司
    專用汽車(2020年2期)2020-04-08 10:57:28
    給你一個橙子好不好?
    中學生博覽(2018年8期)2018-05-07 08:59:28
    黃姓源頭 青銅器里的潢川黃國
    大眾考古(2015年9期)2015-06-26 07:58:28
    一起撐傘吧
    福建江夏學院法學院簡介
    海峽法學(2015年2期)2015-02-27 15:08:25
    生路
    生路
    小小說月刊(2010年9期)2010-05-14 14:55:03
    99久国产av精品国产电影| 能在线免费看毛片的网站| 午夜久久久在线观看| 亚洲欧美成人综合另类久久久| 高清午夜精品一区二区三区| 寂寞人妻少妇视频99o| 人妻夜夜爽99麻豆av| 欧美精品人与动牲交sv欧美| 18在线观看网站| 一区二区三区精品91| 婷婷色综合大香蕉| 搡女人真爽免费视频火全软件| 各种免费的搞黄视频| 国产欧美另类精品又又久久亚洲欧美| 国产极品粉嫩免费观看在线 | 午夜老司机福利剧场| 晚上一个人看的免费电影| 蜜桃在线观看..| 22中文网久久字幕| 国产亚洲欧美精品永久| 久久久久久久国产电影| 国产成人精品在线电影| 久久久久久伊人网av| 美女xxoo啪啪120秒动态图| 国产黄色视频一区二区在线观看| av视频免费观看在线观看| 亚洲精品aⅴ在线观看| 国产精品国产三级国产av玫瑰| av卡一久久| 纯流量卡能插随身wifi吗| 亚洲在久久综合| av网站免费在线观看视频| 自拍欧美九色日韩亚洲蝌蚪91| 丰满少妇做爰视频| 亚洲欧美色中文字幕在线| 99精国产麻豆久久婷婷| 亚洲av.av天堂| 丝袜美足系列| 精品亚洲成国产av| 男的添女的下面高潮视频| 日韩av免费高清视频| 高清欧美精品videossex| 超碰97精品在线观看| 国产 精品1| 日本黄色日本黄色录像| 人体艺术视频欧美日本| 久久99一区二区三区| 91国产中文字幕| 中国三级夫妇交换| 国产精品三级大全| 精品久久国产蜜桃| 久久精品久久精品一区二区三区| 亚洲综合精品二区| 国产精品熟女久久久久浪| 欧美 日韩 精品 国产| kizo精华| 免费高清在线观看日韩| 国产白丝娇喘喷水9色精品| 亚洲第一区二区三区不卡| 91国产中文字幕| 九色成人免费人妻av| 一区二区三区免费毛片| 熟妇人妻不卡中文字幕| 中文字幕久久专区| 国产免费现黄频在线看| 免费人妻精品一区二区三区视频| 国产一区二区在线观看av| 久久久久久伊人网av| 在线观看国产h片| 我要看黄色一级片免费的| 午夜激情福利司机影院| 亚洲少妇的诱惑av| 考比视频在线观看| 波野结衣二区三区在线| a级毛片在线看网站| 最新中文字幕久久久久| 日韩av免费高清视频| 亚洲精品av麻豆狂野| 国产精品熟女久久久久浪| 午夜精品国产一区二区电影| 国产免费又黄又爽又色| 2022亚洲国产成人精品| 亚洲精品av麻豆狂野| 亚洲美女搞黄在线观看| 99国产综合亚洲精品| 十分钟在线观看高清视频www| 亚洲精品国产av成人精品| 免费黄频网站在线观看国产| 日韩av不卡免费在线播放| 精品一区在线观看国产| 如何舔出高潮| 亚洲第一区二区三区不卡| 一级片'在线观看视频| 亚洲精品自拍成人| 国产精品免费大片| 韩国高清视频一区二区三区| 色94色欧美一区二区| 国产成人免费观看mmmm| 亚洲四区av| 亚洲丝袜综合中文字幕| av播播在线观看一区| 啦啦啦中文免费视频观看日本| 亚洲成人一二三区av| 99国产精品免费福利视频| 69精品国产乱码久久久| 国产精品久久久久成人av| 国产成人精品一,二区| 交换朋友夫妻互换小说| 成人18禁高潮啪啪吃奶动态图 | 国产成人一区二区在线| 国产精品偷伦视频观看了| 久久人人爽av亚洲精品天堂| 蜜桃国产av成人99| 精品国产露脸久久av麻豆| 黑人高潮一二区| 亚洲国产精品成人久久小说| 亚洲无线观看免费| 亚洲国产av新网站| 女性被躁到高潮视频| av专区在线播放| 汤姆久久久久久久影院中文字幕| 色视频在线一区二区三区| 国产欧美日韩一区二区三区在线 | 精品久久久久久久久av| 国模一区二区三区四区视频| 日韩一本色道免费dvd| 日韩中字成人| 日本爱情动作片www.在线观看| 精品久久久精品久久久| 久久精品久久久久久久性| 国产色爽女视频免费观看| 欧美最新免费一区二区三区| 人成视频在线观看免费观看| 全区人妻精品视频| 日本免费在线观看一区| 国产午夜精品久久久久久一区二区三区| 免费不卡的大黄色大毛片视频在线观看| 18禁在线播放成人免费| 五月天丁香电影| 亚洲少妇的诱惑av| 久久av网站| 天天操日日干夜夜撸| 久久精品国产自在天天线| 亚洲精品国产色婷婷电影| 亚洲精品国产av成人精品| 99热这里只有精品一区| 高清视频免费观看一区二区| 人体艺术视频欧美日本| 久久人人爽av亚洲精品天堂| 国产免费又黄又爽又色| 99热国产这里只有精品6| 精品久久久精品久久久| 国产毛片在线视频| 97超视频在线观看视频| 国产 精品1| 免费看光身美女| 国产成人免费观看mmmm| 啦啦啦啦在线视频资源| 亚洲成色77777| 亚洲精品色激情综合| 久久久久国产精品人妻一区二区| videosex国产| 久久久精品94久久精品| 新久久久久国产一级毛片| 久久免费观看电影| 美女内射精品一级片tv| 日日摸夜夜添夜夜添av毛片| 五月玫瑰六月丁香| 99热全是精品| 制服丝袜香蕉在线| 久久久久久久精品精品| 大又大粗又爽又黄少妇毛片口| 久久99蜜桃精品久久| 国产精品久久久久久av不卡| 国产精品国产av在线观看| av免费观看日本| 午夜老司机福利剧场| 赤兔流量卡办理| 日韩伦理黄色片| 我要看黄色一级片免费的| 在线播放无遮挡| 日韩制服骚丝袜av| 久久精品久久久久久久性| 五月开心婷婷网| 这个男人来自地球电影免费观看 | 精品人妻在线不人妻| 高清黄色对白视频在线免费看| 777米奇影视久久| 国产精品99久久99久久久不卡 | 午夜福利网站1000一区二区三区| 18在线观看网站| 一级a做视频免费观看| 少妇人妻精品综合一区二区| 免费少妇av软件| 久久久国产精品麻豆| 超色免费av| 久久午夜综合久久蜜桃| 黄色视频在线播放观看不卡| 尾随美女入室| 国产 一区精品| 丰满迷人的少妇在线观看| 亚洲av综合色区一区| 国产一区二区三区综合在线观看 | 亚洲综合色惰| 一区二区三区四区激情视频| 国产精品久久久久久精品古装| 午夜福利,免费看| 日产精品乱码卡一卡2卡三| 国产精品免费大片| 免费黄色在线免费观看| 欧美激情国产日韩精品一区| 日韩制服骚丝袜av| 我要看黄色一级片免费的| 国产午夜精品一二区理论片| 91久久精品电影网| 大片电影免费在线观看免费| 国产视频首页在线观看| a 毛片基地| 国产淫语在线视频| 永久免费av网站大全| 爱豆传媒免费全集在线观看| 国精品久久久久久国模美| 美女视频免费永久观看网站| 99久久人妻综合| 亚洲,欧美,日韩| 这个男人来自地球电影免费观看 | 国产亚洲av片在线观看秒播厂| 久久免费观看电影| 日本欧美国产在线视频| 夫妻性生交免费视频一级片| 97在线视频观看| 女的被弄到高潮叫床怎么办| freevideosex欧美| 欧美日韩av久久| 国产精品一区二区在线观看99| 丰满乱子伦码专区| 午夜影院在线不卡| 九九久久精品国产亚洲av麻豆| 亚洲五月色婷婷综合| 欧美最新免费一区二区三区| 国产高清有码在线观看视频| 亚洲欧美成人精品一区二区| 国产亚洲欧美精品永久| tube8黄色片| 午夜av观看不卡| 老司机影院成人| 岛国毛片在线播放| 色视频在线一区二区三区| 久久精品熟女亚洲av麻豆精品| 日韩伦理黄色片| 最近的中文字幕免费完整| 99视频精品全部免费 在线| 天美传媒精品一区二区| 欧美老熟妇乱子伦牲交| 欧美另类一区| 一级毛片aaaaaa免费看小| 日本wwww免费看| 久久精品国产亚洲网站| 看免费成人av毛片| 亚洲精品亚洲一区二区| 黄色配什么色好看| 一区二区av电影网| 日韩 亚洲 欧美在线| 大又大粗又爽又黄少妇毛片口| 精品国产露脸久久av麻豆| 一本—道久久a久久精品蜜桃钙片| 亚洲国产精品成人久久小说| 亚洲欧美色中文字幕在线| 欧美日韩综合久久久久久| 激情五月婷婷亚洲| 99久久精品一区二区三区| 国产一区二区在线观看av| 国产无遮挡羞羞视频在线观看| 亚洲av欧美aⅴ国产| 99九九在线精品视频| 99国产精品免费福利视频| 多毛熟女@视频| 久久久国产欧美日韩av| 成人国产麻豆网| 青春草国产在线视频| 亚洲欧美精品自产自拍| 卡戴珊不雅视频在线播放| 日韩在线高清观看一区二区三区| 多毛熟女@视频| 国产高清三级在线| 美女国产视频在线观看| 18禁动态无遮挡网站| 蜜臀久久99精品久久宅男| 国内精品宾馆在线| 国产精品久久久久久久电影| 王馨瑶露胸无遮挡在线观看| 国产精品一区二区在线观看99| 久久久久久久精品精品| 精品少妇黑人巨大在线播放| 天堂8中文在线网| 成年女人在线观看亚洲视频| 精品午夜福利在线看| 精品亚洲乱码少妇综合久久| 久久久久精品久久久久真实原创| 国产欧美日韩一区二区三区在线 | 亚洲精品第二区| 日本-黄色视频高清免费观看| 日日摸夜夜添夜夜爱| 熟女av电影| 日本猛色少妇xxxxx猛交久久| 乱码一卡2卡4卡精品| 久久久久精品久久久久真实原创| 亚洲精品国产av蜜桃| 一区二区三区精品91| 亚洲欧美一区二区三区国产| 纵有疾风起免费观看全集完整版| 99久国产av精品国产电影| 国产高清不卡午夜福利| 能在线免费看毛片的网站| 女性生殖器流出的白浆| 免费观看无遮挡的男女| 日韩,欧美,国产一区二区三区| 亚洲精品国产色婷婷电影| 成年女人在线观看亚洲视频| 精品久久国产蜜桃| 久久久精品免费免费高清| 国产男人的电影天堂91| 美女中出高潮动态图| 十分钟在线观看高清视频www| 99久久人妻综合| 久久精品久久久久久噜噜老黄| 亚洲精品456在线播放app| 亚洲精品,欧美精品| 亚洲五月色婷婷综合| 伊人亚洲综合成人网| 一本一本综合久久| 制服丝袜香蕉在线| 久久久久网色| 交换朋友夫妻互换小说| 丝袜脚勾引网站| 人妻夜夜爽99麻豆av| 99久国产av精品国产电影| 国产精品久久久久久久电影| 亚洲四区av| 肉色欧美久久久久久久蜜桃| 一本一本综合久久| 91久久精品电影网| 久久精品夜色国产| 免费高清在线观看视频在线观看| 日本黄色片子视频| 国产 一区精品| 性色av一级| 国产黄频视频在线观看| 999精品在线视频| 国产精品一国产av| 纯流量卡能插随身wifi吗| 观看av在线不卡| 亚洲av综合色区一区| 91国产中文字幕| 久久久精品区二区三区| 男人操女人黄网站| 久久久久久人妻| 国产国语露脸激情在线看| 久久久久久久国产电影| www.色视频.com| 久久精品国产鲁丝片午夜精品| 亚洲欧美成人综合另类久久久| 狠狠精品人妻久久久久久综合| 亚洲精品日韩av片在线观看| 18禁动态无遮挡网站| 国产一区二区在线观看日韩| 亚洲精品成人av观看孕妇| 黑丝袜美女国产一区| 免费av中文字幕在线| 韩国av在线不卡| 亚洲成人av在线免费| 欧美日韩视频高清一区二区三区二| 欧美97在线视频| 国产极品天堂在线| 夜夜骑夜夜射夜夜干| 国产一区二区三区综合在线观看 | 一边亲一边摸免费视频| 在线观看免费视频网站a站| 中文精品一卡2卡3卡4更新| 欧美精品高潮呻吟av久久| 国产一区亚洲一区在线观看| 亚洲精品久久成人aⅴ小说 | 国产免费又黄又爽又色| 国产亚洲午夜精品一区二区久久| 蜜桃在线观看..| 99九九线精品视频在线观看视频| 国产成人freesex在线| 国产av国产精品国产| 久久鲁丝午夜福利片| 国产高清有码在线观看视频| 国产一区亚洲一区在线观看| 午夜免费观看性视频| 丰满乱子伦码专区| 欧美人与善性xxx| 免费观看性生交大片5| 亚洲中文av在线| av卡一久久| 最近中文字幕2019免费版| 亚洲国产最新在线播放| av.在线天堂| 热99国产精品久久久久久7| 亚洲精品aⅴ在线观看| 精品人妻熟女av久视频| 在线观看免费日韩欧美大片 | 日韩三级伦理在线观看| 日韩欧美一区视频在线观看| 国产精品一区二区在线不卡| 人妻制服诱惑在线中文字幕| 精品国产国语对白av| av.在线天堂| 久久久久网色| 蜜臀久久99精品久久宅男| 婷婷色av中文字幕| 亚洲天堂av无毛| 亚洲国产成人一精品久久久| 女人精品久久久久毛片| 美女中出高潮动态图| 男女国产视频网站| 国产一区二区三区综合在线观看 | 97在线人人人人妻| 高清av免费在线| 热99久久久久精品小说推荐| 久久99热这里只频精品6学生| 黄色配什么色好看| 婷婷色综合www| 边亲边吃奶的免费视频| 国产亚洲一区二区精品| 亚洲欧美成人综合另类久久久| videos熟女内射| 黑人高潮一二区| 一区二区日韩欧美中文字幕 | 性色avwww在线观看| 人妻夜夜爽99麻豆av| 免费黄色在线免费观看| 观看av在线不卡| 精品亚洲乱码少妇综合久久| 少妇的逼好多水| 国产精品不卡视频一区二区| 高清不卡的av网站| 最近中文字幕2019免费版| 老司机影院成人| 亚洲av中文av极速乱| 亚洲av综合色区一区| 精品国产一区二区久久| 国产淫语在线视频| 人人妻人人添人人爽欧美一区卜| 色网站视频免费| 国产精品熟女久久久久浪| 男女边摸边吃奶| 国产精品久久久久久久久免| 成人国产av品久久久| 久久久国产一区二区| 国产不卡av网站在线观看| 校园人妻丝袜中文字幕| 高清午夜精品一区二区三区| 在线免费观看不下载黄p国产| 成人手机av| 午夜精品国产一区二区电影| av又黄又爽大尺度在线免费看| 99久久精品一区二区三区| 国产综合精华液| 欧美最新免费一区二区三区| 波野结衣二区三区在线| 最近手机中文字幕大全| 久久久午夜欧美精品| 亚洲精品中文字幕在线视频| 桃花免费在线播放| 午夜视频国产福利| 久久 成人 亚洲| 成年美女黄网站色视频大全免费 | 日韩伦理黄色片| av在线老鸭窝| 成人漫画全彩无遮挡| videosex国产| 简卡轻食公司| 国产一区二区三区av在线| 国产乱人偷精品视频| 精品久久国产蜜桃| 岛国毛片在线播放| 国产老妇伦熟女老妇高清| 久久久午夜欧美精品| 熟妇人妻不卡中文字幕| 高清av免费在线| 精品少妇黑人巨大在线播放| 春色校园在线视频观看| 亚洲精品,欧美精品| 亚洲图色成人| 免费久久久久久久精品成人欧美视频 | 亚洲精品成人av观看孕妇| 看非洲黑人一级黄片| 日本91视频免费播放| 国国产精品蜜臀av免费| 国产在线免费精品| 日韩亚洲欧美综合| 日本色播在线视频| 久久国产精品男人的天堂亚洲 | 成人二区视频| 各种免费的搞黄视频| 亚洲欧美成人精品一区二区| 精品国产国语对白av| 久久免费观看电影| 久久久久久人妻| 日韩av免费高清视频| 国产探花极品一区二区| 最近手机中文字幕大全| 久久99蜜桃精品久久| 中文字幕人妻熟人妻熟丝袜美| 精品久久久久久久久av| 国产成人精品福利久久| 丝袜脚勾引网站| 少妇被粗大猛烈的视频| 国产色婷婷99| 久久久久久久精品精品| 大话2 男鬼变身卡| 91精品国产九色| 最近最新中文字幕免费大全7| 免费看不卡的av| 亚洲婷婷狠狠爱综合网| 亚洲av中文av极速乱| 老熟女久久久| 久久ye,这里只有精品| 亚洲人成77777在线视频| 简卡轻食公司| 亚洲欧洲国产日韩| 日韩一区二区视频免费看| 久久国产亚洲av麻豆专区| 寂寞人妻少妇视频99o| 999精品在线视频| 日韩中文字幕视频在线看片| 精品人妻熟女毛片av久久网站| 最近手机中文字幕大全| 国产一区二区三区av在线| 在线观看一区二区三区激情| 精品少妇久久久久久888优播| 永久网站在线| 999精品在线视频| 自拍欧美九色日韩亚洲蝌蚪91| 日本黄色日本黄色录像| 久久久久精品性色| 日韩精品有码人妻一区| 少妇的逼水好多| 国产精品久久久久久av不卡| 亚洲av中文av极速乱| 日日啪夜夜爽| 欧美性感艳星| 午夜福利在线观看免费完整高清在| 国产精品久久久久久精品古装| 大码成人一级视频| 久久精品国产亚洲av涩爱| 女性被躁到高潮视频| av福利片在线| 国产av一区二区精品久久| 一区二区三区免费毛片| 国产精品偷伦视频观看了| 亚洲国产毛片av蜜桃av| 日韩成人av中文字幕在线观看| 男女免费视频国产| 亚洲精品国产av蜜桃| 欧美少妇被猛烈插入视频| 久久久久久久久久人人人人人人| 亚洲精品第二区| 色吧在线观看| 91精品三级在线观看| 美女国产高潮福利片在线看| 亚洲欧美成人综合另类久久久| 国产精品人妻久久久久久| 成人无遮挡网站| 日本与韩国留学比较| 亚洲第一av免费看| 色视频在线一区二区三区| 人成视频在线观看免费观看| 国产深夜福利视频在线观看| 久久久久人妻精品一区果冻| 插逼视频在线观看| 久热久热在线精品观看| 多毛熟女@视频| 99国产综合亚洲精品| 亚洲精品中文字幕在线视频| 精品久久久久久久久av| 久久国产精品大桥未久av| 妹子高潮喷水视频| 自拍欧美九色日韩亚洲蝌蚪91| 五月开心婷婷网| 一边摸一边做爽爽视频免费| 十分钟在线观看高清视频www| 伊人久久精品亚洲午夜| 国产成人aa在线观看| 亚洲av男天堂| 久久久精品免费免费高清| 日本爱情动作片www.在线观看| 大陆偷拍与自拍| 曰老女人黄片| 婷婷色麻豆天堂久久| 建设人人有责人人尽责人人享有的| 欧美日韩成人在线一区二区| 国产69精品久久久久777片| 色婷婷av一区二区三区视频| 日韩一区二区视频免费看| 啦啦啦视频在线资源免费观看| 99精国产麻豆久久婷婷| 免费观看的影片在线观看| 亚洲精品亚洲一区二区| 精品99又大又爽又粗少妇毛片| 成人影院久久| 在线看a的网站| 久久久久久久久久久丰满| 国产亚洲午夜精品一区二区久久| 精品人妻熟女毛片av久久网站| 亚洲精品国产av成人精品| 免费观看a级毛片全部| 最新的欧美精品一区二区| 国产免费又黄又爽又色| 18禁在线无遮挡免费观看视频| 国产精品一国产av| 少妇被粗大的猛进出69影院 |