• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Association between chromosomal aberration of COX8C and tethered spinal cord syndrome: arraybased comparative genomic hybridization analysis

    2016-12-01 09:23:40QiujiongZhaoShaocongBaiChengChengBenzhangTaoLekaiWangShuangLiangLingYinXingyiHangAijiaShangDepartmentofNeurosurgeryChinesePLAGeneralHospitalBeijingChina2iGeneTechBiotechnologyCoLtdBeijingChinaDepartmentofNeurology

    Qiu-jiong Zhao, Shao-cong Bai, Cheng Cheng Ben-zhang Tao Le-kai Wang Shuang Liang Ling Yin, Xing-yi Hang, Ai-jia Shang Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China2 iGeneTech Biotechnology Co., Ltd., Beijing, China Department of Neurology, Chinese PLA General Hospital, Beijing, China

    Association between chromosomal aberration of COX8C and tethered spinal cord syndrome: arraybased comparative genomic hybridization analysis

    Qiu-jiong Zhao1,#, Shao-cong Bai1,#, Cheng Cheng1, Ben-zhang Tao1, Le-kai Wang1, Shuang Liang1, Ling Yin3, Xing-yi Hang2,*, Ai-jia Shang1,*
    1 Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
    2 iGeneTech Biotechnology Co., Ltd., Beijing, China
    3 Department of Neurology, Chinese PLA General Hospital, Beijing, China

    How to cite this article: Zhao QJ, Bai SC, Cheng C, Tao BZ, Wang LK, Liang S, Yin L, Hang XY, Shang AJ (2016) Association between chromosomal aberration of COX8C and tethered spinal cord syndrome∶ array-based comparative genomic hybridization analysis. Neural Regen Res 11(8)∶1333-1338.

    Ai-jia Shang, M.D., Ph.D. or Xing-yi Hang, Ph.D.,

    shangaj@163.com or

    xingyi.hang@igenetech.com.

    #These authors contributed

    equally to this study.

    orcid:

    0000-0002-4895-5442

    (Ai-jia Shang)

    0000-0002-3736-2203

    (Xing-yi Hang)

    Accepted: 2016-08-09

    Graphical Abstract

    Copy number variations have been found in patients with neural tube abnormalities. In this study, we performed genome-wide screening using high-resolution array-based comparative genomic hybridization in three children with tethered spinal cord syndrome and two healthy parents. Of eight copy number variations, four were non-polymorphic. These non-polymorphic copy number variations were associated with Angelman and Prader-Willi syndromes, and microcephaly. Gene function enrichment analysis revealed that COX8C, a gene associated with metabolic disorders of the nervous system, was located in the copy number variation region of Patient 1. Our results indicate that array-based comparative genomic hybridization can be used to diagnose tethered spinal cord syndrome. Our results may help determine the pathogenesis of tethered spinal cord syndrome and prevent occurrence of this disease.

    nerve regeneration; neural tube defects; tethered spinal cord syndrome; comparative genomic hybridization; COX8C; gene function enrichment analysis; database of genomic variants; database of DECIPHER; copy number variations; neural regeneration

    Introduction

    Tethered spinal cord syndrome (TCS) is a neurodevelopmental disorder that results in spinal cord malformation (Payne, 2007; Cearns et al., 2016). TCS is classified as a neural tube defect, and although the incidence of neural tube defects is approximately 1% worldwide (Feuchtbaum et al., 1999; Tun?bilek et al., 1999; van der Put et al., 2001; Khoshnood et al., 2015; Atta et al., 2016), infants born with neural tube defects account for 20-25% of all congenital malformations (Laharwal et al., 2016). The causes of neural tube defects are multivariate, yet to date there is no convincing mechanistic evidence for their occurrence. Some possible contributing factors include gene mutations, chromosomal abnormalities, and environmental factors (Bassuk and Kibar, 2009; Joó, 2009a, b; Molloy et al., 2009; Wen et al., 2009). Recent studies have revealed novel risk factors for neural tube defects including heterozygous missense mutations in the genes, VANGL1 and FUZZY (Bartsch et al., 2012; Seo et al., 2015), as well as maternal folic acid deficiency (Bartsch et al., 2012; Seo et al., 2015). Altered methylation of MGMT, aDNA repair gene, is also associated with neural tube defects (Tran et al., 2012). Moreover, abnormal expression of genes coding for zinc finger proteins is reported to be risk factors (Grinberg and Millen, 2005; Costa-Lima et al., 2008).

    Previous studies have shown that chromosomal imbalances due to genomic instability are closely associated with neural developmental disorders (Au et al., 2010; Zhao et al., 2013). Copy number variations (CNVs) are found in patients with neural tube abnormalities in cerebral and spinal sections (Bassuk et al., 2013; Chen et al., 2013). Array-based comparative genomic hybridization (aCGH) is a modern technique for molecular karyotype analysis that combines conventional comparative genomic hybridization and microarray analysis (Saberi et al., 2014). In contrast to conventional hybridization, aCGH does not detect metaphase chromosomes. Instead, it targets genomic DNA to perform high-throughput screening of the whole genome for CNVs (Vissers et al., 2003). The aCGH approach can accurately locate CNVs on chromosomes, and clearly calculate CNV length and identify genes within variant fragments (Mosse et al., 2005). Nowadays, aCGH is commonly used for cancer and genetic disorder research (Kallioniemi, 2008; Sireteanu et al., 2012). In this study, we used aCGH to detect CNVs in three children with TCS and two healthy parents. In order to examine TCS pathogenesis at the chromosome and gene levels, we determined the relationship between these chromosomal aberrations and TCS, and consequently detected CNVs linked with occurrence and development of TCS.

    Subjects and Methods

    Subjects

    Three children diagnosed with typical TCS based on clinical criteria (Filippidis et al., 2010) by the Department of Neurosurgery at the Chinese PLA General Hospital and the Second Artillery General Hospital, and the healthy parents of Patient 1 were enrolled in the study. Peripheral blood samples were collected from the patients and healthy controls. Before initiation of the study, written consent was obtained from the guardians of all children. The study (Project ID: S2013-117-01) was approved by the ethics committee of the Chinese PLA General Hospital, China.

    Case 1 was a 2-year-old girl with a sacrococcygeal mass and right foot deformity. The sacrococcygeal mass was identified at birth. Physical examination revealed spina bifida. Strephenopodia of the right foot and a second enlarging sacrococcygeal mass were first observed at 8 months of age. The patient was diagnosed with TCS with myelomeningocele.

    Case 2 was a 12-year-old boy who presented with a lumbosacral mass at the age of 8 months. The patient was diagnosed with TCS with spinal cord lipoma. Surgical treatment was performed. Urinary abnormality occurred 11 years after surgery, along with urinary incontinence, nocturnal enuresis, urinary frequency, and urinary urgency. A further surgery was performed because magnetic resonance imaging showed spinal cord lipoma and recurrence of TCS.

    Case 3 was a 5-year-old girl with abnormal hair growth in the lumbosacral region at birth. Physical examination revealed a partial spinal canal defect. Because the hair growth increased, magnetic resonance imaging examination was performed. The results revealed a tethered spinal cord and split cord malformation (Type I). Surgery was performed to correct the malformation.

    aCGH analysis

    aCGH is a specific array-based genomic hybridization method that uses different fluorescent dyes to label DNA from patients and controls, to identify differences between the two groups (Sealfon and Chu, 2011; Brady and Vermeesch, 2012). By comparing the ratio of two different fluorescence signals at each target spot in the microarray, CNVs are detected in specific sequences or genes between two genomes (Gijsbers et al., 2011; Shoukier et al., 2013).

    Total DNA was extracted from peripheral whole blood using a commercially available DNA-isolation kit (BioChain Inc., Beijing, China), according to the manufacturer’s protocol. For each aCGH experiment, purified DNA and normal sex-matched DNA (1 μg each; Promega, Madison, WI, USA) were digested with AluI and RsaI (10 U each; Promega), and differentially labelled with cyanine-5 and cyanine-3 fluorescent dyes using a Genomic DNA Enzymatic Labeling Kit (Agilent, Santa Clara, CA, USA). aCGH analysis was performed using the Agilent 8 × 60K commercial array. This platform contains 60-mer oligonucleotide probes spanning the entire human genome with an overall mean probe spacing of 50 kb. After hybridization, arrays were scanned using a dual-laser scanner (Agilent), and images extracted and analyzed using the Feature Extraction (Agilent) and Workbench genomics software, respectively. Changes in test DNA copy number at specific loci were considered only if they were <-0.38 (deletion) or > 0.38 (amplification) of the log2 ratio values from at least five consecutive probes.

    TCS-related CNV analysis

    Removal of polymorphic CNVs using the Database of Genomic Variants

    CNV fragments were scanned against the Database of Genomic Variants (Iafrate et al., 2004; Wong et al., 2007). CNVs that completely matched those in the database were removed as they represent common polymorphic variants present in the normal population. Partially overlapping (< 40%) CNVs were considered non-polymorphic and retained for further analysis. In addition, discontinuous polymorphic fragments appearing within CNV sequences (total fragment length was shorter than half-lengths of detected CNVs) were not treated as common polymorphisms and were also retained for further analysis.

    Comparison of non-polymorphic CNVs with DECIPHER

    The non-polymorphic CNV fragments selected above were searched against the DECIPHER database (Firth et al., 2009). Cases were identified with CNVs similar to those reported in previously tested samples (partial overlap >60%) or containing documented CNVs. Additionally, chromosomal abnormalities, related phenotypes, and syndromes associated with these cases were identified.

    Table 1 Array-comparative genome hybridization analysis of TCS patients and controls

    Table 2 DECIPHER search results for non-polymorphic copy number variations (CNVs)

    Table 3 Syndromes and clinical phenotypes linked to non-polymorphic copy number variations

    Table 4 Genes contained in non-polymorphic copy number variations

    Figure 1 Chromosome maps of the three patients with tethered spinal cord syndrome.

    Table 5 Enrichment results for gene ontology (GO) analysis

    Gene function enrichment analysis

    Entire genes incorporated in non-polymorphic CNVs were identified using the University of California, Santa Cruz (UCSC) Genome Browser database (http://genome.ucsc.edu/). Gene function enrichment analyses were performed for the genes identified, including Gene Ontology (GO) (http://geneontology.org/) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway (http://www.genome.jp/kegg/) analyses.

    Enrichment P-values for each GO term or KEGG pathway were calculated using the hyper-geometric distribution method. P-values were then corrected for multiple hypotheses testing using the false discovery rate method. A P-value of 0.05 was set as the threshold value for significant gene enrichment for each GO term or KEGG pathway.

    Results

    Gene micro-repeat fragment location in TCS patients

    Results of the aCGH analysis for all three patients and two parents are shown in Table 1. Three micro-repeat fragments were detected in DNA isolated from Patient 1. A micro-deletion fragment was detected in Patient 2, while a micro-deletion and micro-repeat were detected in Patient 3. The father of Patient 1 had a normal karyotype, whereas the mother’s chromosome map showed micro-deletion and micro-repeat fragments. The micro-deletion fragment in Patient 2 and micro-repeat fragment in Patient 3 were located in the same region: 15q11.1q11.2 (Figure 1).

    Database searching of CNVs

    The eight identified CNVs were searched against the Database of Genomic Variants. The results showed that four CNVs were normal chromosomal polymorphisms, specifically, the 1p21.2 micro-repeat in Patient 1, 2p11.2 micro-deletion in Patient 3, and 7q11.22q11.23 micro-deletion and 19p12 micro-repeat in the mother of Patient 1.

    Investigation of the other four non-polymorphic CNVsin DECIPHER revealed eight specific CNVs in these regions (Table 2). Non-polymorphic CNVs in Patients 2 and 3 (ID 4 and 6 in Table 1) shared the same chromosomal initiation site, indicating that multiple CNVs occur in the same location. Further analyses revealed that these CNVs are associated with two syndromes (Angelman and Prader-Willi) and one phenotype (microcephaly) (Table 3).

    Table 6 Gene enrichment analysis

    Gene function enrichment analysis

    Within the four non-polymorphic CNVs regions, 13 genes were identified by the UCSC Genome Browser (Table 4). Function enrichment analysis of GO terms and KEGG pathways were performed for these genes. The results included a number of biological functions (e.g., gamete generation), molecular functions (e.g., ubiquitin-protein ligase activity), two cellular components (mitochondrial inner membrane and integral membrane component), as well as eight KEGG pathways, including viral myocarditis, cardiac muscle contraction, Parkinson’s disease, oxidative phosphorylation, ubiquitin-mediated proteolysis, Alzheimer’s disease, Huntington’s disease, and olfactory transduction. From these results, we found that the COX8C gene is closely related to neural system diseases such as Parkinson’s disease, Alzheimer’s disease, and Huntington’s disease (Tables 5, 6).

    Discussion

    Advantages of using aCGH for detection of rare chromosomal micro-variations

    Chromosomal sub-microscopic variations are strongly associated with human disease (Feuk et al., 2006). In clinical settings, the definite diagnosis of several diseases cannot be achieved using existing techniques. Consequently, some rare syndromes are labelled idiopathic or unexplained. Most of these syndromes are due to genomic imbalances created by chromosomal micro-variations such as micro-deletions and micro-repeats (D’Angelo et al., 2014). The aCGH approach efficiently detects chromosomal micro-aberrations and aids elucidation of idiopathic or unexplained diseases.

    Significance and limitations of aCGH analysis

    The main objective of this study was to identify non-random CNVs and evaluate their association with TCS. The main questions regarding the CNVs we identified are: (1) whether the CNVs are inherited; (2) whether they are found in the normal population; (3) whether their lengths are sufficient to contain genes with functional annotations; (4) whether they are linked to diseases in DECIPHER; and (5) whether any are unreported, unidentified, or novel. Although the Database of Genomic Variants and DECIPHER, which are globally representative databases, were used to determine the type of CNVs identified, ethnic differences are inevitable when using international databases.

    Diseases similar to TCS that are associated with COX8C

    CNVs similar to the ones we detected are found in the DECIPHER database. These CNVs are associated with Angelman and Prader-Willi syndromes, and microcephaly. All of these disorders involve significant neural abnormalities (Mabb et al., 2011; Mahmood et al., 2011; Cassidy et al., 2012). Furthermore, gene function analysis indicated a close association between COX8C and certain diseases including Parkinson’s, Alzheimer’s, and Huntington’s diseases, all of which are typical nervous system diseases (Bassil and Mollaei, 2012; Pogledi? and Relja, 2012; Gazewood et al., 2013). By comparing the CNVs from Patient 1 with those identified in her parents, we excluded the possibility of TCS being hereditary. Thus, we propose that the condition may be acquired during neural development.

    Conclusion

    In this study, we used high-resolution aCGH to identify pathogenic CNVs in samples from patients with typical TCS. Our findings suggest an association between certain CNVs and nervous system disease. Our data may be used in the future as a reference for the integration of available data, or for further studies with larger sample sizes. Ours study demonstrates specific transformation research, and shows that a molecular method can be used to clinically diagnose TCS. Our findings may help to shed new light on the pathogenesis of TCS.

    Acknowledgments: We are very grateful to the staffs of iGene-Tech Biotechnology Co., Ltd. in China for some of the experiment operations.

    Author contributions: QJZ and SCB performed the experiment. CC, BZT and LKW collected patients, and conducted clinical communication and treatment. SL and LY provided technical and capital supports. QJZ and XYH analyzed and explained data. AJS and XYH served as principle investigators. All authors approved the final version of the paper.

    Conflicts of interest: None declared.

    Plagiarism check: This paper was screened twice using Cross-Check to verify originality before publication.

    Peer review: This paper was double-blinded and stringently reviewed by international expert reviewers.

    References

    Atta CA, Fiest KM, Frolkis AD, Jette N, Pringsheim T, St Germaine-Smith C, Rajapakse T, Kaplan GG, Metcalfe A (2016) Global birth prevalence of spina bifida by folic acid fortification status: A systematic review and meta-analysis. Am J Public Health 106:e24-34.

    Au KS, Ashley-Koch A, Northrup H (2010) Epidemiologic and genetic aspects of spina bifida and other neural tube defects. Dev Disabil Res Rev 16:6-15.

    Bartsch O, Kirmes I, Thiede A, Lechno S, Gocan H, Florian IS, Haaf T, Zechner U, Sabova L, Horn F (2012) Novel VANGL1 gene mutations in 144 Slovakian, Romanian and German patients with neural tube defects. Mol Syndromol 3:76-81.

    Bassil N, Mollaei C (2012) Alzheimer’s dementia: a brief review. J Med Liban 60:192-199.

    Bassuk AG, Kibar Z (2009) Genetic basis of neural tube defects. Semin Pediatr Neurol 16:101-110.

    Bassuk AG, Muthuswamy LB, Boland R, Smith TL, Hulstrand AM, Northrup H, Hakeman M, Dierdorff JM, Yung CK, Long A, Brouillette RB, Au KS, Gurnett C, Houston DW, Cornell RA, Manak JR (2013) Copy number variation analysis implicates the cell polarity gene glypican 5 as a human spina bifida candidate gene. Hum Mol Genet 22:1097-1111.

    Brady PD, Vermeesch JR (2012) Genomic microarrays: a technology overview. Prenat Diagn 32:336-343.

    Cassidy SB, Schwartz S, Miller JL, Driscoll DJ (2012) Prader-Willi syndrome. Genet Med 14:10-26.

    Cearns MD, Escuin S, Alexandre P, Greene ND, Copp AJ (2016) Microtubules, polarity and vertebrate neural tube morphogenesis. J Anat 229:63-74.

    Chen X, Shen Y, Gao Y, Zhao H, Sheng X, Zou J, Lip V, Xie H, Guo J, Shao H, Bao Y, Shen J, Niu B, Gusella JF, Wu BL, Zhang T (2013) Detection of copy number variants reveals association of cilia genes with neural tube defects. PLoS One 8:e54492.

    Costa-Lima MA, Meneses HN, El-Jaick KB, Amorim MR, Castilla EE, Orioli IM (2008) No association of the polyhistidine tract polymorphism of the ZIC2 gene with neural tube defects in a South American (ECLAMC) population. Mol Med Rep 1:443-446.

    D’Angelo CS, Varela MC, de Castro CI, Kim CA, Bertola DR, Louren?o CM, Perez ABA, Koiffmann CP (2014) Investigation of selected genomic deletions and duplications in a cohort of 338 patients presenting with syndromic obesity by multiplex ligation-dependent probe amplification using synthetic probes. Mol Cytogenet 7:75.

    Feuchtbaum LB, Currier RJ, Riggle S, Roberson M, Lorey FW, Cunningham GC (1999) Neural tube defect prevalence in California (1990-1994): eliciting patterns by type of defect and maternal race/ ethnicity. Genet Test 3:265-272.

    Feuk L, Marshall CR, Wintle RF, Scherer SW (2006) Structural variants: changing the landscape of chromosomes and design of disease studies. Hum Mol Genet 15:R57-66.

    Filippidis AS, Kalani MY, Theodore N, Rekate HL (2010) Spinal cord traction, vascular compromise, hypoxia, and metabolic derangements in the pathophysiology of tethered cord syndrome. Neurosurg Focus 29:E9.

    Firth HV, Richards SM, Bevan AP, Clayton S, Corpas M, Rajan D, Vooren SV, Moreau Y, Pettett RM, Carter NP (2009) DECIPHER: Database of chromosomal imbalance and phenotype in humans using ensembl resources. Am J Hum Genet 84:524-533.

    Gazewood JD, Richards DR, Clebak K (2013) Parkinson disease: an update. Am Fam Physician 87:267-273.

    Gijsbers AC, Schoumans J, Ruivenkamp CA (2011) Interpretation of array comparative genome hybridization data: a major challenge. Cytogenet Genome Res 135:222-227.

    Grinberg I, Millen KJ (2005) The ZIC gene family in development and disease. Clin Genet 67:290-296.

    Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y, Scherer SW, Lee C (2004) Detection of large-scale variation in the human genome. Nat Genet 36:949-951.

    Joó JG (2009a) Recent perspectives on the development of the central nervous system and the genetic background of neural tube defects. Orv Hetil 150:873-882.

    Joó JG (2009b) Recent perspectives on the genetic background of neural tube defects with special regard to iniencephaly. Expert Rev Mol Diagn 9:281-293.

    Kallioniemi A (2008) CGH microarrays and cancer. Curr Opin Biotechnol 19:36-40.

    Khoshnood B, Loane M, de Walle H, Arriola L, Addor MC, Barisic I, Beres J, Bianchi F, Dias C, Draper E, Garne E, Gatt M, Haeusler M, Klungsoyr K, Latos-Bielenska A, Lynch C, McDonnell B, Nelen V, Neville AJ, O’Mahony MT, et al. (2015) Long term trends in prevalence of neural tube defects in Europe: population based study. BMJ 351:h5949.

    Laharwal MA, Sarmast AH, Ramzan AU, Wani AA, Malik NK, Arif SH, Rizvi M (2016) Epidemiology of the neural tube defects in Kashmir Valley. Surg Neurol Int 7:35.

    Mabb AM, Judson MC, Zylka MJ, Philpot BD (2011) Angelman syndrome: insights into genomic imprinting and neurodevelopmental phenotypes. Trends Neurosci 34:293-303.

    Mahmood S, Ahmad W, Hassan MJ (2011) Autosomal recessive primary microcephaly (MCPH): clinical manifestations, genetic heterogeneity and mutation continuum. Orphanet J Rare Dis 6:39-39.

    Molloy AM, Brody LC, Mills JL, Scott JM, Kirke PN (2009) The search for genetic polymorphisms in the homocysteine/folate pathway that contribute to the etiology of human neural tube defects. Birth Defects Res A Clin Mol Teratol 85:285-294.

    Mosse YP, Greshock J, Weber BL, Maris JM (2005) Measurement and relevance of neuroblastoma DNA copy number changes in the post-genome era. Cancer Lett 228:83-90.

    Payne J (2007) Tethered spinal cord syndrome. BMJ 335:42-43.

    Pogledi? I, Relja M (2012) Huntington’s disease. Lijec Vjesn 134:346-350.

    Saberi A, Shariati G, Hamid M, Galehdari H, Abdorasouli N (2014) Wolf-Hirschhorn syndrome: a case with normal karyotype, demonstrated by array CGH (aCGH). Arch Iran Med 17:642-644.

    Sealfon SC, Chu TT (2011) RNA and DNA Microarrays. Methods Mol Biol 671:3-34.

    Seo JH, Zilber Y, Babayeva S, Liu J, Kyriakopoulos P, De Marco P, Merello E, Capra V, Gros P, Torban E (2015) Mutations in the planar cell polarity gene, Fuzzy, are associated with neural tube defects in humans. Hum Mol Genet 24:3893.

    Shoukier M, Klein N, Auber B, Wickert J, Schr?der J, Zoll B, Burfeind P, Bartels I, Alsat EA, Lingen M, Grzmil P, Schulze S, Keyser J, Weise D, Borchers M, Hobbiebrunken E, R?bl M, G?rtner J, Brockmann K, Zirn B (2013) Array CGH in patients with developmental delay or intellectual disability: are there phenotypic clues to pathogenic copy number variants? Clin Genet 83:53-65.

    Sireteanu A, Covic M, Gorduza EV (2012) Array CGH: technical considerations and applications. Rev Med Chir Soc Med Nat Iasi 116:545-551.

    Tran S, Wang L, Le J, Guan J, Wu L, Zou J, Wang Z, Wang J, Wang F, Chen X, Cai L, Lu X, Zhao H, Guo J, Bao Y, Zheng X, Zhang T (2012) Altered methylation of the DNA repair gene MGMT is associated with neural tube defects. J Mol Neurosci 47:42-51.

    Tun?bilek E, Boduro lu K, Alika ifo lu M (1999) Neural tube defects in Turkey: prevalence, distribution and risk factors. Turk J Pediatr 41:299-305.

    van der Put NM, van Straaten HW, Trijbels FJ, Blom HJ (2001) Folate, homocysteine and neural tube defects: an overview. Exp Biol Med (Maywood) 226:243-270.

    Vissers Lisenka E, de Vries Bert B, Osoegawa K, Janssen Irene M, Feuth T, Choy Chik O, Straatman H, van der Vliet W, Huys Erik H, van Rijk A, Smeets D, van Ravenswaaij-Arts Conny M, Knoers Nine V, van der Burgt I, de Jong Pieter J, Brunner Han G, van Kessel Ad G, Schoenmakers Eric F, Veltman Joris A (2003) Array-based comparative genomic hybridization for the genomewide detection of submicroscopic chromosomal abnormalities. Am J Hum Genet 73:1261-1270.

    Wen S, Lu W, Zhu H, Yang W, Shaw GM, Lammer EJ, Islam A, Finnell RH (2009) Genetic polymorphisms in the thioredoxin 2 (TXN2) gene and risk for spina bifida. Am J Med Genet A 149A:155-160.

    Wong Kendy K, deLeeuw Ronald J, Dosanjh Nirpjit S, Kimm Lindsey R, Cheng Z, Horsman Douglas E, MacAulay C, Ng Raymond T, Brown Carolyn J, Eichler Evan E, Lam Wan L (2007) A comprehensive analysis of common copy-number variations in the human genome. Am J Hum Genet 80:91-104.

    Zhao J, Guan T, Wang J, Xiang Q, Wang M, Wang X, Guan Z, Xie Q, Niu B, Zhang T (2013) Influence of the antifolate drug Methotrexate on the development of murine neural tube defects and genomic instability. J Appl Toxicol 33:915-923.

    Copyedited by James R, Frenchman B, Yu J, Qiu Y, Li CH, Song LP, Zhao M

    10.4103/1673-5374.189200

    *Correspondence to:

    成人亚洲精品一区在线观看| 成人国产av品久久久| 国产精品一区二区在线观看99| 亚洲精品美女久久av网站| 日本黄色日本黄色录像| 99精品欧美一区二区三区四区| 视频区欧美日本亚洲| 国产精品 国内视频| 狂野欧美激情性xxxx| av国产精品久久久久影院| 色婷婷久久久亚洲欧美| 天天影视国产精品| 香蕉丝袜av| 99riav亚洲国产免费| 国产男女内射视频| 亚洲午夜精品一区,二区,三区| 久久久久久久国产电影| 国产一区二区激情短视频| 嫁个100分男人电影在线观看| 午夜久久久在线观看| 老司机深夜福利视频在线观看| 成人国产一区最新在线观看| 亚洲性夜色夜夜综合| 一进一出抽搐动态| 丁香六月欧美| 欧美日韩精品网址| kizo精华| 波多野结衣一区麻豆| 91大片在线观看| 变态另类成人亚洲欧美熟女 | 淫妇啪啪啪对白视频| 久热爱精品视频在线9| avwww免费| 香蕉丝袜av| 99热网站在线观看| 一区二区三区乱码不卡18| 日韩制服丝袜自拍偷拍| 一二三四社区在线视频社区8| 免费人妻精品一区二区三区视频| 日本av手机在线免费观看| 丰满饥渴人妻一区二区三| 1024香蕉在线观看| 丝袜人妻中文字幕| xxxhd国产人妻xxx| 亚洲伊人色综图| videosex国产| 日本vs欧美在线观看视频| 成人精品一区二区免费| 无遮挡黄片免费观看| 99国产综合亚洲精品| aaaaa片日本免费| 精品少妇内射三级| 国产精品麻豆人妻色哟哟久久| 丝袜美腿诱惑在线| 2018国产大陆天天弄谢| 日韩中文字幕欧美一区二区| 欧美日本中文国产一区发布| 中文字幕人妻熟女乱码| 搡老熟女国产l中国老女人| 97在线人人人人妻| 免费观看人在逋| 狂野欧美激情性xxxx| 超碰成人久久| 亚洲精品一二三| 18在线观看网站| 久久午夜综合久久蜜桃| 午夜精品国产一区二区电影| 免费观看av网站的网址| av又黄又爽大尺度在线免费看| 两性午夜刺激爽爽歪歪视频在线观看 | 久久亚洲真实| 成人18禁高潮啪啪吃奶动态图| 一级a爱视频在线免费观看| 少妇被粗大的猛进出69影院| 久久九九热精品免费| 国产一区二区 视频在线| 久久午夜亚洲精品久久| 国产老妇伦熟女老妇高清| 午夜两性在线视频| 丝袜在线中文字幕| 天天影视国产精品| 国产欧美日韩精品亚洲av| 19禁男女啪啪无遮挡网站| 久久精品国产亚洲av高清一级| aaaaa片日本免费| 成人影院久久| 久久影院123| 黄色丝袜av网址大全| 国精品久久久久久国模美| 在线观看66精品国产| 国产精品影院久久| 一进一出好大好爽视频| 国产精品九九99| 大陆偷拍与自拍| 黄片大片在线免费观看| 亚洲av国产av综合av卡| 99热国产这里只有精品6| 欧美另类亚洲清纯唯美| 精品国产国语对白av| 成人永久免费在线观看视频 | 国产精品麻豆人妻色哟哟久久| 伊人久久大香线蕉亚洲五| 狠狠精品人妻久久久久久综合| av视频免费观看在线观看| 在线永久观看黄色视频| 国产亚洲欧美在线一区二区| 99久久人妻综合| 精品亚洲乱码少妇综合久久| 麻豆成人av在线观看| 亚洲精品av麻豆狂野| 高清欧美精品videossex| 一级a爱视频在线免费观看| 飞空精品影院首页| 色在线成人网| 亚洲av电影在线进入| 在线观看免费日韩欧美大片| av又黄又爽大尺度在线免费看| 脱女人内裤的视频| 国产精品国产高清国产av | 乱人伦中国视频| 免费在线观看完整版高清| 男女下面插进去视频免费观看| 欧美日韩福利视频一区二区| 国产精品欧美亚洲77777| 精品国产国语对白av| 三上悠亚av全集在线观看| 少妇被粗大的猛进出69影院| 久久精品国产亚洲av高清一级| 国产区一区二久久| 热re99久久国产66热| 国产精品免费视频内射| 激情视频va一区二区三区| 黑人巨大精品欧美一区二区mp4| 水蜜桃什么品种好| 丁香六月天网| 成人亚洲精品一区在线观看| 最新的欧美精品一区二区| 免费不卡黄色视频| 91精品国产国语对白视频| 亚洲精品在线美女| 精品乱码久久久久久99久播| 国产精品久久久久久人妻精品电影 | 久久久久国产一级毛片高清牌| 啦啦啦视频在线资源免费观看| 97人妻天天添夜夜摸| 99国产极品粉嫩在线观看| 欧美午夜高清在线| 午夜福利在线免费观看网站| 中国美女看黄片| 亚洲天堂av无毛| 91大片在线观看| 免费日韩欧美在线观看| 老司机靠b影院| 午夜福利乱码中文字幕| 日韩视频一区二区在线观看| 免费观看a级毛片全部| 最近最新中文字幕大全电影3 | 欧美日韩中文字幕国产精品一区二区三区 | 久久精品成人免费网站| 欧美激情 高清一区二区三区| 午夜福利欧美成人| 人妻 亚洲 视频| 三上悠亚av全集在线观看| 亚洲精品在线美女| 亚洲全国av大片| 新久久久久国产一级毛片| 亚洲第一av免费看| 久热这里只有精品99| 捣出白浆h1v1| 电影成人av| 两人在一起打扑克的视频| 免费观看a级毛片全部| 欧美日韩视频精品一区| 精品欧美一区二区三区在线| 伦理电影免费视频| 国产免费视频播放在线视频| 男女高潮啪啪啪动态图| 成人18禁在线播放| 国产欧美日韩一区二区三| 丝袜喷水一区| 欧美精品高潮呻吟av久久| 成人av一区二区三区在线看| 亚洲欧美一区二区三区久久| 欧美乱码精品一区二区三区| 日韩一区二区三区影片| 免费在线观看影片大全网站| 蜜桃国产av成人99| 一级黄色大片毛片| 狠狠精品人妻久久久久久综合| 日韩 欧美 亚洲 中文字幕| 中文字幕制服av| 99久久人妻综合| 欧美精品高潮呻吟av久久| 久久亚洲精品不卡| 18禁国产床啪视频网站| 蜜桃国产av成人99| 国产在线观看jvid| 丝袜喷水一区| 国产91精品成人一区二区三区 | 人妻 亚洲 视频| 久久精品熟女亚洲av麻豆精品| 美女午夜性视频免费| 久久人妻福利社区极品人妻图片| 两性夫妻黄色片| 午夜久久久在线观看| 国产免费福利视频在线观看| 纵有疾风起免费观看全集完整版| 国产成人免费观看mmmm| 精品国内亚洲2022精品成人 | 成在线人永久免费视频| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美成人免费av一区二区三区 | 国产精品熟女久久久久浪| 九色亚洲精品在线播放| 蜜桃国产av成人99| 国产在线观看jvid| 国产精品 欧美亚洲| 亚洲精品久久午夜乱码| 一级a爱视频在线免费观看| 久久久欧美国产精品| 亚洲av日韩在线播放| 久久久久视频综合| 欧美 亚洲 国产 日韩一| 欧美精品高潮呻吟av久久| 精品国产乱码久久久久久男人| 亚洲成a人片在线一区二区| 中文字幕av电影在线播放| 久久精品熟女亚洲av麻豆精品| 美女主播在线视频| 国产精品免费视频内射| 国产av精品麻豆| 黄色丝袜av网址大全| 极品少妇高潮喷水抽搐| 99热国产这里只有精品6| 九色亚洲精品在线播放| 日韩视频一区二区在线观看| 日日爽夜夜爽网站| 人人妻人人爽人人添夜夜欢视频| 欧美黄色淫秽网站| 日韩欧美国产一区二区入口| 免费人妻精品一区二区三区视频| 99精品在免费线老司机午夜| 中文亚洲av片在线观看爽 | 中文欧美无线码| 亚洲第一欧美日韩一区二区三区 | 黄网站色视频无遮挡免费观看| 丁香六月天网| 久久中文字幕一级| 免费不卡黄色视频| 日本av手机在线免费观看| 丰满少妇做爰视频| 在线观看免费视频日本深夜| tube8黄色片| 91成年电影在线观看| 亚洲人成伊人成综合网2020| 黑人欧美特级aaaaaa片| 黑人巨大精品欧美一区二区mp4| 精品视频人人做人人爽| 亚洲欧美一区二区三区黑人| 交换朋友夫妻互换小说| 香蕉丝袜av| 国产欧美日韩综合在线一区二区| 亚洲色图综合在线观看| 999精品在线视频| 啦啦啦 在线观看视频| 国产精品久久久久久人妻精品电影 | 国产区一区二久久| 亚洲精品一卡2卡三卡4卡5卡| 精品少妇黑人巨大在线播放| 日韩有码中文字幕| 免费日韩欧美在线观看| 欧美激情 高清一区二区三区| 电影成人av| 欧美久久黑人一区二区| 12—13女人毛片做爰片一| 久久中文看片网| 成人国产av品久久久| 一本一本久久a久久精品综合妖精| 日韩有码中文字幕| av不卡在线播放| 日韩欧美一区视频在线观看| 亚洲精华国产精华精| 成人18禁高潮啪啪吃奶动态图| 激情视频va一区二区三区| 亚洲av日韩精品久久久久久密| 亚洲人成伊人成综合网2020| av电影中文网址| 新久久久久国产一级毛片| 久久亚洲真实| 怎么达到女性高潮| 在线观看一区二区三区激情| 欧美精品人与动牲交sv欧美| 亚洲免费av在线视频| 亚洲va日本ⅴa欧美va伊人久久| 国产精品免费一区二区三区在线 | 老熟女久久久| 99久久精品国产亚洲精品| 人人妻人人澡人人看| 亚洲 欧美一区二区三区| 国产片内射在线| 人妻久久中文字幕网| 精品福利观看| 男女无遮挡免费网站观看| 亚洲av国产av综合av卡| 脱女人内裤的视频| 99国产极品粉嫩在线观看| 国产黄色免费在线视频| 国产精品一区二区免费欧美| 搡老熟女国产l中国老女人| 丝袜喷水一区| 国产黄色免费在线视频| 国产av国产精品国产| 欧美日韩亚洲高清精品| 国产男女内射视频| 午夜福利影视在线免费观看| 一进一出好大好爽视频| 欧美人与性动交α欧美精品济南到| 淫妇啪啪啪对白视频| 中文字幕制服av| 欧美在线一区亚洲| 国产精品一区二区免费欧美| 91字幕亚洲| 国产精品自产拍在线观看55亚洲 | 在线观看免费视频日本深夜| 国产精品影院久久| 男人舔女人的私密视频| 99在线人妻在线中文字幕 | 午夜老司机福利片| 日韩大片免费观看网站| 波多野结衣一区麻豆| 黄色怎么调成土黄色| 久久婷婷成人综合色麻豆| av欧美777| 母亲3免费完整高清在线观看| 一级片'在线观看视频| 国产日韩欧美视频二区| 亚洲男人天堂网一区| 欧美乱妇无乱码| 黑人操中国人逼视频| av欧美777| 高清毛片免费观看视频网站 | 美国免费a级毛片| 国产高清视频在线播放一区| 免费女性裸体啪啪无遮挡网站| 夜夜夜夜夜久久久久| 午夜两性在线视频| 90打野战视频偷拍视频| 一级毛片电影观看| 国产精品影院久久| 亚洲av欧美aⅴ国产| 久久国产亚洲av麻豆专区| av欧美777| 三级毛片av免费| 一二三四在线观看免费中文在| 欧美精品人与动牲交sv欧美| 午夜激情av网站| 精品福利永久在线观看| 变态另类成人亚洲欧美熟女 | 大型黄色视频在线免费观看| 国产麻豆69| 嫩草影视91久久| 女警被强在线播放| 大型黄色视频在线免费观看| 操美女的视频在线观看| 亚洲第一av免费看| 国产亚洲午夜精品一区二区久久| 国产不卡一卡二| 熟女少妇亚洲综合色aaa.| 男女无遮挡免费网站观看| 高清av免费在线| 国产不卡一卡二| 国产精品免费大片| 一进一出好大好爽视频| 淫妇啪啪啪对白视频| 中文字幕人妻丝袜一区二区| 国产成人免费无遮挡视频| 日韩熟女老妇一区二区性免费视频| 久久国产亚洲av麻豆专区| 成人亚洲精品一区在线观看| 午夜福利影视在线免费观看| 精品免费久久久久久久清纯 | av在线播放免费不卡| 2018国产大陆天天弄谢| 另类亚洲欧美激情| 国产在线精品亚洲第一网站| 欧美日本中文国产一区发布| 丝袜美足系列| 欧美日韩亚洲综合一区二区三区_| 久久精品亚洲精品国产色婷小说| 纵有疾风起免费观看全集完整版| 黑人巨大精品欧美一区二区mp4| 黄片大片在线免费观看| 午夜视频精品福利| 操美女的视频在线观看| 国产又色又爽无遮挡免费看| 正在播放国产对白刺激| 亚洲久久久国产精品| 久久99热这里只频精品6学生| 亚洲熟妇熟女久久| 丰满少妇做爰视频| 大型av网站在线播放| 97人妻天天添夜夜摸| 国产黄色免费在线视频| 飞空精品影院首页| 免费不卡黄色视频| 久久精品熟女亚洲av麻豆精品| 色尼玛亚洲综合影院| 91麻豆精品激情在线观看国产 | 多毛熟女@视频| 国产又色又爽无遮挡免费看| 搡老乐熟女国产| 深夜精品福利| 在线观看免费高清a一片| 黄色视频,在线免费观看| 国产精品久久久久成人av| 亚洲一码二码三码区别大吗| 超碰成人久久| 亚洲av国产av综合av卡| 成人av一区二区三区在线看| 99久久精品国产亚洲精品| 搡老岳熟女国产| 国产激情久久老熟女| 蜜桃在线观看..| 淫妇啪啪啪对白视频| 美女高潮到喷水免费观看| 亚洲成人手机| 亚洲国产精品一区二区三区在线| 在线观看免费视频日本深夜| 最黄视频免费看| 亚洲少妇的诱惑av| 2018国产大陆天天弄谢| kizo精华| 在线观看免费高清a一片| 俄罗斯特黄特色一大片| 手机成人av网站| 欧美日韩成人在线一区二区| 天天躁夜夜躁狠狠躁躁| 欧美黄色淫秽网站| 另类亚洲欧美激情| 啦啦啦在线免费观看视频4| 国产精品自产拍在线观看55亚洲 | h视频一区二区三区| 大香蕉久久成人网| 悠悠久久av| 亚洲人成伊人成综合网2020| 国产精品香港三级国产av潘金莲| 国产在线精品亚洲第一网站| 亚洲av电影在线进入| 久久精品亚洲熟妇少妇任你| 亚洲av国产av综合av卡| 亚洲全国av大片| 亚洲成国产人片在线观看| 久久久精品免费免费高清| 淫妇啪啪啪对白视频| 91成年电影在线观看| 欧美精品啪啪一区二区三区| 亚洲人成电影观看| 亚洲av成人不卡在线观看播放网| 国产亚洲欧美精品永久| 中文字幕人妻丝袜一区二区| 搡老熟女国产l中国老女人| 人成视频在线观看免费观看| 妹子高潮喷水视频| 亚洲伊人久久精品综合| 老司机靠b影院| 一区在线观看完整版| 国产一区二区三区视频了| a在线观看视频网站| 亚洲久久久国产精品| 母亲3免费完整高清在线观看| 国产精品久久久久成人av| 国产成人精品在线电影| 亚洲avbb在线观看| 免费黄频网站在线观看国产| 国产一区二区在线观看av| 日韩免费av在线播放| 一区在线观看完整版| 午夜两性在线视频| 国产精品国产av在线观看| 国产xxxxx性猛交| 欧美日韩成人在线一区二区| 91老司机精品| 久久精品熟女亚洲av麻豆精品| 久9热在线精品视频| 老司机福利观看| 黄色 视频免费看| 1024视频免费在线观看| 精品卡一卡二卡四卡免费| 高清视频免费观看一区二区| 国产人伦9x9x在线观看| h视频一区二区三区| 美女主播在线视频| 纯流量卡能插随身wifi吗| 91国产中文字幕| 麻豆乱淫一区二区| 老鸭窝网址在线观看| 搡老熟女国产l中国老女人| 精品免费久久久久久久清纯 | 丰满少妇做爰视频| 肉色欧美久久久久久久蜜桃| 亚洲va日本ⅴa欧美va伊人久久| 肉色欧美久久久久久久蜜桃| 久久精品亚洲熟妇少妇任你| 天天操日日干夜夜撸| 欧美日韩精品网址| 丝袜人妻中文字幕| 麻豆成人av在线观看| 久久久久久久精品吃奶| 精品福利观看| 汤姆久久久久久久影院中文字幕| 丰满饥渴人妻一区二区三| 中国美女看黄片| 日韩中文字幕欧美一区二区| 欧美精品一区二区大全| 亚洲专区国产一区二区| 视频在线观看一区二区三区| 下体分泌物呈黄色| 亚洲国产欧美一区二区综合| 又紧又爽又黄一区二区| 中文欧美无线码| 久久久久久人人人人人| 国产成人一区二区三区免费视频网站| 韩国精品一区二区三区| 色婷婷av一区二区三区视频| 久久人人97超碰香蕉20202| 亚洲伊人久久精品综合| 天天躁狠狠躁夜夜躁狠狠躁| 精品午夜福利视频在线观看一区 | 电影成人av| 亚洲精品成人av观看孕妇| 免费人妻精品一区二区三区视频| 老汉色∧v一级毛片| 国产熟女午夜一区二区三区| 久久久久久久国产电影| 视频区图区小说| 国产精品影院久久| 操美女的视频在线观看| 国产成人系列免费观看| 国产精品 欧美亚洲| 免费在线观看完整版高清| 黑人欧美特级aaaaaa片| 老汉色av国产亚洲站长工具| 日本av手机在线免费观看| 国产一区二区激情短视频| 啦啦啦在线免费观看视频4| 亚洲中文av在线| 男男h啪啪无遮挡| 亚洲av日韩精品久久久久久密| 咕卡用的链子| 国产亚洲精品久久久久5区| 高清欧美精品videossex| 精品国产乱码久久久久久男人| 老司机深夜福利视频在线观看| 欧美精品人与动牲交sv欧美| 国产亚洲av高清不卡| 日韩人妻精品一区2区三区| 水蜜桃什么品种好| 69av精品久久久久久 | 黑丝袜美女国产一区| 真人做人爱边吃奶动态| 女人久久www免费人成看片| 久久国产亚洲av麻豆专区| 亚洲av电影在线进入| 99九九在线精品视频| 51午夜福利影视在线观看| a级毛片黄视频| 亚洲精华国产精华精| 男男h啪啪无遮挡| 国产精品99久久99久久久不卡| 亚洲av欧美aⅴ国产| 麻豆乱淫一区二区| 一区在线观看完整版| 亚洲国产成人一精品久久久| 亚洲人成伊人成综合网2020| 国产精品久久久av美女十八| 午夜成年电影在线免费观看| 久久天堂一区二区三区四区| 我的亚洲天堂| 99re6热这里在线精品视频| 国产成人免费无遮挡视频| 叶爱在线成人免费视频播放| 下体分泌物呈黄色| 制服诱惑二区| 国产在线一区二区三区精| 成年女人毛片免费观看观看9 | 手机成人av网站| 久久九九热精品免费| 国产精品影院久久| 久久久国产一区二区| 日韩欧美三级三区| 美女福利国产在线| 男女免费视频国产| 黄色成人免费大全| 在线观看免费午夜福利视频| 丁香六月天网| 国产片内射在线| 美女高潮到喷水免费观看| 欧美性长视频在线观看| 亚洲人成电影观看| 亚洲av成人不卡在线观看播放网| 成人三级做爰电影| 美女高潮喷水抽搐中文字幕| 亚洲欧美一区二区三区久久| 日韩人妻精品一区2区三区| 亚洲国产欧美日韩在线播放| 日韩大片免费观看网站| 欧美午夜高清在线| 国产成人精品久久二区二区免费| 一夜夜www| 999精品在线视频| 日韩中文字幕视频在线看片| 一本一本久久a久久精品综合妖精| 天天躁日日躁夜夜躁夜夜| 日韩大码丰满熟妇| 丝瓜视频免费看黄片|