蔣志麗,杜 娟
(哈爾濱師范大學(xué))
?
一類(lèi)非線性三階邊值問(wèn)題解的存在性
蔣志麗,杜 娟
(哈爾濱師范大學(xué))
通過(guò)一個(gè)構(gòu)造的方法來(lái)研究一類(lèi)非線性三階微分方程解的存在性,并且提出了在再生核空間中計(jì)算方程近似解的一種迭代方法,通過(guò)數(shù)值算例可以證明,此迭代方法是具有高精度的.
存在性;非線性三階邊值問(wèn)題;再生核空間
非線性三階邊值問(wèn)題在物理學(xué),工程學(xué),生物學(xué)等各個(gè)領(lǐng)域起著重要作用. 例如參考文獻(xiàn)[1-4].
在該文中,考慮如下一般的模型:
(1)
該文給出了一個(gè)存在性定理和一個(gè)簡(jiǎn)單的迭代方法,用來(lái)在再生核空間中計(jì)算方程(1)的近似解.
其內(nèi)積為:
(2)
(3)
易證以下兩個(gè)引理.
引理1.1 對(duì)任意的正整數(shù)i,j.
其內(nèi)積為:
(4)
(5)
(6)
其中βik是正交化系數(shù).
由文獻(xiàn)[5]知以下兩個(gè)引理:
構(gòu)造迭代序列un(x),令
(7)
證明 由上極限的定義可知,對(duì)?ε>0,?N>0,以及序列nk,使得當(dāng)n>N時(shí),
定理3.2 若對(duì)?x∈[0,1],y,z,w∈
由(7)可得
vn+1?(x)有界.
f (x,u(x),u′(x),u″(x)),n→∞
表1
[1] Aftabizadeh A R. Existence and uniquness theorems for fourth-order boundary value problems[J]. Math Anal Appl,1986, 116:415-426.
[2] 李敏.非線性二階積分-微分解的構(gòu)造性逼近[J].哈爾濱師范大學(xué)學(xué)報(bào):自然科學(xué)版,2014,30(6):23-26.
[3] Gupta C P. Existence and uniquenness theorems for a bending of an elastic beam equation,Appl Anal 1988,26:289-304.
[4] Del Pino M A, Manasevich R F. Existence for a fourth-order nonlin-ear boundary value problem under a two parameter nonresonance condi-tion,Proc Amer Math Soc,1991, 112:81-86.
[5] Cui M G, Lin Y Z. Nonlinear numerical Analysis in the Reproducing kernel space.Nova Science Publisher,New York, 2008.
(責(zé)任編輯:于達(dá))
Existence Results for a Third-order Nonlinear Boundary Value Problems
Jiang Zhili, Du Juan
(Harbin Normal University)
In this work, the existence of solution to a third-order nonlinear differential equations is investigated by a constructive method. In the meantime, a iterative method of computing approximate solution in the reproducing kernel space is presented. It’s demonstrated by numerical examples that this method is of high precision.
Existence; Third-order nonlinear boundary value problems; Reproducing kernel space
2016-01-06
O175
A
1000-5617(2016)02-0016-03