• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    對(duì)側(cè)步馬前肢運(yùn)動(dòng)軌跡數(shù)學(xué)模型建立與分析

    2016-11-26 07:13:48姚芳芳孟軍曾亞琦姚新奎王東王歡張亞昂孔麒森程潔馬立山張弦
    新疆農(nóng)業(yè)科學(xué) 2016年8期
    關(guān)鍵詞:階次四階三階

    姚芳芳,孟軍,曾亞琦,姚新奎,王東,王歡,張亞昂,孔麒森,程潔,馬立山,張弦

    (新疆農(nóng)業(yè)大學(xué)動(dòng)物科學(xué)學(xué)院,烏魯木齊 830052)

    ?

    對(duì)側(cè)步馬前肢運(yùn)動(dòng)軌跡數(shù)學(xué)模型建立與分析

    姚芳芳,孟軍,曾亞琦,姚新奎,王東,王歡,張亞昂,孔麒森,程潔,馬立山,張弦

    (新疆農(nóng)業(yè)大學(xué)動(dòng)物科學(xué)學(xué)院,烏魯木齊 830052)

    【目的】對(duì)側(cè)步馬不同模型和階次前肢運(yùn)動(dòng)軌跡曲線擬合效果進(jìn)行分析研究,為側(cè)步馬性能測(cè)定提供參考?!痉椒ā炕隈R匹運(yùn)動(dòng)軌跡曲線的特點(diǎn),采用Matlab軟件中Cftool工具箱分別獲取多項(xiàng)式擬合模型、高斯擬合模型和傅里葉擬合模型擬合方程式,并對(duì)擬合情況進(jìn)行比較?!窘Y(jié)果】傅里葉三階和高斯三階函數(shù)模型對(duì)側(cè)步馬肩關(guān)節(jié)、腕關(guān)節(jié)擬合效果極顯著優(yōu)于多項(xiàng)式模型(P<0.01);傅里葉三階函數(shù)模型對(duì)側(cè)步馬前蹄擬合效果極顯著優(yōu)于高斯和多項(xiàng)式函數(shù)模型(P<0.01);傅里葉四階函數(shù)模型對(duì)前飛節(jié)擬合效果顯著優(yōu)于高斯和多項(xiàng)式函數(shù)模型(P<0.01);傅里葉四階和高斯四階函數(shù)模型對(duì)肘關(guān)節(jié)擬合效果顯著優(yōu)于多項(xiàng)式函數(shù)模型(P<0.01)。【結(jié)論】肩關(guān)節(jié)和腕關(guān)節(jié)最優(yōu)擬合模型為傅里葉三階和高斯三階函數(shù)擬合模型;肘關(guān)節(jié)最優(yōu)擬合模型為傅里葉四階和高斯四階函數(shù)模型;前飛節(jié)最優(yōu)擬合模型為傅里葉四階函數(shù)模型;前蹄最優(yōu)擬合模型為傅里葉三階函數(shù)模型。

    對(duì)側(cè)步馬;運(yùn)動(dòng)軌跡曲線;數(shù)學(xué)模型;擬合精度

    0 引 言

    【研究意義】馬匹與人體一樣,是一個(gè)形體與結(jié)構(gòu)組織都非常復(fù)雜的生命系統(tǒng),運(yùn)動(dòng)生物力學(xué)研究的正是該生命系統(tǒng)的運(yùn)動(dòng)規(guī)律[1],而運(yùn)動(dòng)參數(shù)與競(jìng)爭(zhēng)性能息息相關(guān)[2],通過測(cè)量馬匹的運(yùn)動(dòng)參數(shù)來預(yù)測(cè)馬匹的運(yùn)動(dòng)性能潛力是馬匹運(yùn)動(dòng)生物力學(xué)的一個(gè)重大難題。一些專業(yè)的騎師和訓(xùn)練師們認(rèn)為評(píng)估馬匹近心端的肢體構(gòu)象和運(yùn)動(dòng)是評(píng)估馬匹前肢運(yùn)動(dòng)性能至關(guān)重要的元素。【前人研究進(jìn)展】生物力學(xué)研究在人的運(yùn)動(dòng)參數(shù)方面已經(jīng)有了較為長(zhǎng)足的研究,并建立各類數(shù)據(jù)庫,為人體運(yùn)動(dòng)訓(xùn)練[3]、下肢運(yùn)動(dòng)模擬[4-5]及人體肢體康復(fù)[6]提供強(qiáng)有力的基礎(chǔ)保障,并且近30年以來,研究者從不同角度提出了多種預(yù)測(cè)上肢伸展姿勢(shì)的方法[7]?!颈狙芯壳腥朦c(diǎn)】在馬匹運(yùn)動(dòng)性能方面的研究,目前主要集中在速度、體型結(jié)構(gòu)、步法特征方面和肢體角度變化方面的研究,目前國(guó)內(nèi)只有孟軍[8]做過初步研究。缺少相關(guān)研究的主要原因是在馬匹運(yùn)動(dòng)過程中角度難以測(cè)量、數(shù)據(jù)難以獲取,但隨著運(yùn)動(dòng)捕捉技術(shù)日漸完善,目前已經(jīng)可以解決這一問題?!緮M解決的關(guān)鍵問題】數(shù)學(xué)模型的建立既能有效地反映出運(yùn)動(dòng)過程一般變化趨勢(shì),又能最大程度地排除隨機(jī)誤差的干擾。通過數(shù)學(xué)模型的建立可以進(jìn)一步的解決馬匹訓(xùn)練和性能測(cè)定的量化這一難題。通過研究可以為對(duì)側(cè)步馬匹的性能測(cè)定提供數(shù)據(jù)支持。

    1 材料與方法

    1.1 材 料

    研究對(duì)象為17匹對(duì)側(cè)步型成年速步馬。

    1.2 主要設(shè)備

    所用的器材有:JVC-PX100、Kwon3D XP。

    1.3 方 法

    1.3.1

    速步賽時(shí),在馬匹行進(jìn)路線左側(cè)直道處架設(shè)1臺(tái)高速攝像機(jī),用于采集比賽視頻和Kwon3D XP標(biāo)尺視頻,JVC-PX100幀速率為50f/s,快門速度為1/1000s,用以獲取馬匹運(yùn)動(dòng)狀態(tài)運(yùn)動(dòng)軌跡各坐標(biāo)點(diǎn)相關(guān)數(shù)據(jù)。

    1.3.2 數(shù)據(jù)處理

    使用Kwon3D XP三維運(yùn)動(dòng)采集軟件對(duì)視頻進(jìn)行數(shù)字化處理,得到運(yùn)動(dòng)軌跡各坐標(biāo)點(diǎn)數(shù)據(jù);使用Excel整理并統(tǒng)計(jì)數(shù)據(jù);用Matlab2013a的Cftool工具箱進(jìn)行函數(shù)擬合。研究中所應(yīng)用的數(shù)據(jù)是多個(gè)不同個(gè)體馬匹左前肢體一個(gè)完整運(yùn)動(dòng)一個(gè)周期(即馬匹前肢第一次即將離地到第二次即將離地)運(yùn)動(dòng)軌跡坐標(biāo)為數(shù)據(jù),進(jìn)行函數(shù)擬合,以便驗(yàn)證不同馬匹間的運(yùn)動(dòng)軌跡曲線是否具有一直規(guī)律性。

    1.3.3 模型分析

    選擇多項(xiàng)式函數(shù)擬合模型、高斯函數(shù)擬合模型和傅里葉函數(shù)擬合模型對(duì)馬匹左前肢肩關(guān)節(jié)、肘關(guān)節(jié)、腕關(guān)節(jié)、前飛節(jié)和前蹄五個(gè)關(guān)節(jié)點(diǎn)的運(yùn)動(dòng)軌跡曲線進(jìn)行擬合分析,根據(jù)擬合度(R2)越大越好和均方差RMSE越小越好的原則確定最佳關(guān)節(jié)點(diǎn)運(yùn)動(dòng)軌跡曲線模型和階次。

    1.3.3.1 傅里葉函數(shù)模型

    1.3.3.2 高斯函數(shù)模型:

    f(x)=ae-(x-b)2/C2.

    1.3.3.3 多項(xiàng)式函數(shù)模型:

    f(x)=anxn+an-1xn-1+…+a2x+a0.

    2 結(jié)果與分析

    2.1 不同函數(shù)擬合模型及階次對(duì)肩關(guān)節(jié)運(yùn)動(dòng)軌跡曲線的擬合效果

    考慮到曲線擬合時(shí)的簡(jiǎn)并性、優(yōu)化性和精準(zhǔn)度的原則,研究對(duì)各馬匹前肢各關(guān)節(jié)點(diǎn)的運(yùn)動(dòng)軌跡曲線進(jìn)行擬合,研究過程中對(duì)多項(xiàng)式函數(shù)、高斯函數(shù)和傅里葉函數(shù)及其二階、三階和四階函數(shù)進(jìn)行比較,選取最優(yōu)擬合模型及階次。不同方程擬合模型及不同模型階次對(duì)肩關(guān)節(jié)運(yùn)動(dòng)軌跡曲線的擬合系數(shù)(R2)和均方差(RMSE)均有極顯著影響(P<0.01)。表1

    對(duì)肩關(guān)節(jié)運(yùn)動(dòng)軌跡曲線的擬合過程中傅里葉函數(shù)模型及高斯函數(shù)模型的R2和RMSE均極顯著優(yōu)于多項(xiàng)式函數(shù)(P<0.01);三階和四階的R2和RMSE之間無顯著差異性(P>0.05),但極顯著優(yōu)于二階的R2和RMSE(P<0.01)。表2

    表1 不同擬合模型及階次對(duì)肩關(guān)節(jié)運(yùn)動(dòng)軌跡曲線的最小二乘方差分析Table 1 table Analysis of Least-squares variance of different fitting model and order of shoulder joint trajectory curve

    注:同列,*表示顯著影響(P<0.05),**表示極顯著影響(P<0.01)。下同

    Note: In the same column, “*” are significantly different (P<0.05), “**”are greatly significantly different (P<0.01). The same as below

    表2 不同擬合模型及階次對(duì)肩關(guān)節(jié)運(yùn)動(dòng)軌跡曲線的擬合參數(shù)Table 2 The fitting parameters of different fitting model and order of shoulder joint trajectory curve

    注:同列肩標(biāo)不同小寫字母之間差異顯著(P<0.05),不同大寫字母之間差異極顯著(P<0.01)。下同

    Note: In the same column, with different super scripts lower case are significantly different(P<0.05),Values with different supers cripts capital letters are greatly significantly different(P<0.01). The same as below

    2.2 不同擬合模型及階次對(duì)肘關(guān)節(jié)運(yùn)動(dòng)軌跡曲線的擬合效果

    不同方程擬合模型及不同模型階次對(duì)肘關(guān)節(jié)運(yùn)動(dòng)軌跡曲線的擬合系數(shù)(R2)和均方差(RMSE)均有極顯著影響(P<0.01)。表3

    對(duì)肘關(guān)節(jié)運(yùn)動(dòng)軌跡曲線的擬合過程中傅里葉函數(shù)模型及高斯函數(shù)模型的R2和RMSE極顯著優(yōu)于多項(xiàng)式函數(shù)(P<0.01);二階、三階和四階函數(shù)的R2和RMSE之間存在極顯著差異性,且四階函數(shù)的R2和RMSE極顯著優(yōu)于二階和三階函數(shù)(P<0.01)。表4

    表3 不同擬合模型及階次對(duì)肘關(guān)節(jié)運(yùn)動(dòng)軌跡曲線的最小二乘方差分析Table 3 Analysis of Least-squares variance of different fitting model and order of elbow joint trajectory curve

    表4 不同擬合模型及階次對(duì)肘關(guān)節(jié)運(yùn)動(dòng)軌跡曲線的擬合參數(shù)Table 4 The fitting parameters of different fitting model and order of elbow joint trajectory curve

    2.3 不同函數(shù)擬合模型及階次對(duì)腕關(guān)節(jié)運(yùn)動(dòng)軌跡曲線的擬合效果

    不同方程擬合模型對(duì)腕關(guān)節(jié)運(yùn)動(dòng)軌跡曲線的擬合系數(shù)(R2)和均方差(RMSE)均有極顯著影響(P<0.01);不同方程擬合模型階次對(duì)腕關(guān)節(jié)運(yùn)動(dòng)軌跡曲線的擬合系數(shù)(R2)影響顯著(P<0.05),對(duì)均方差(RMSE)影響極顯著 (P<0.01)。表5

    在對(duì)腕關(guān)節(jié)運(yùn)動(dòng)軌跡曲線的擬合過程中傅里葉函數(shù)模型及高斯函數(shù)模型的R2和RMSE極顯著優(yōu)于多項(xiàng)式函數(shù)(P<0.01);對(duì)于不同模型階次R2之間,二階和三階函數(shù)之間無顯著差異(P>0.05),三階與四階函數(shù)之間無顯著差異(P>0.05),但四階與二階函數(shù)之間存在顯著差異(P<0.05),四階優(yōu)于二階函數(shù);不同模型階次RMSE之間,三階與四階函數(shù)之間無顯著差異(P<0.05),但均極顯著優(yōu)于二階函數(shù)(P<0.01)。表6

    表5 不同擬合模型及階次對(duì)腕關(guān)節(jié)運(yùn)動(dòng)軌跡曲線的最小二乘方差分析Table 5 Analysis of Least-squares variance of different fitting model and order of wrist joint trajectory curve

    表6 不同擬合模型及階次對(duì)腕關(guān)節(jié)運(yùn)動(dòng)軌跡曲線的擬合參數(shù)Table 6 The fitting parameters of different fitting model and order of wrist joint trajectory curve

    2.4 不同擬合模型及階次對(duì)前飛節(jié)運(yùn)動(dòng)軌跡曲線的擬合效果

    不同方程擬合模型和方程擬合模型階次對(duì)前飛節(jié)運(yùn)動(dòng)軌跡曲線的擬合系數(shù)(R2)和均方差(RMSE)均有極顯著影響(P<0.01)。表7

    在對(duì)前飛節(jié)運(yùn)動(dòng)軌跡曲線的擬合過程中傅里葉函數(shù)模型與高斯函數(shù)模型和多項(xiàng)式函數(shù)的R2和RMSE之間存在極顯著差異,且傅里葉函數(shù)的R2和RMSE均極顯著優(yōu)于高斯函數(shù)和多項(xiàng)式函數(shù)(P<0.01);對(duì)于不同模型階次R2和RMSE之間,二階、三階和四階函數(shù)之間存在極顯著差異(P<0.01),且四階的R2和RMSE均極顯著優(yōu)于二階和三階函數(shù)(P<0.01)。表8

    表7 不同擬合模型及階次對(duì)前飛節(jié)運(yùn)動(dòng)軌跡曲線的最小二乘方差分析Table 7 Analysis of Least-squares variance of different fitting model and order of fetlock joint trajectory curve

    表8 不同擬合模型及階次對(duì)前飛節(jié)運(yùn)動(dòng)軌跡曲線的擬合參數(shù)Table 8 The fitting parameters of different fitting model and order of wrist joint trajectory curve

    2.5 不同擬合模型及階次對(duì)前蹄運(yùn)動(dòng)軌跡曲線的擬合效果

    不同方程擬合模型和方程擬合模型階次對(duì)前蹄運(yùn)動(dòng)軌跡曲線的擬合系數(shù)(R2)和均方差(RMSE)均有極顯著影響(P<0.01)。表9

    在對(duì)前蹄運(yùn)動(dòng)軌跡曲線的擬合過程中傅里葉函數(shù)模型與高斯函數(shù)模型和多項(xiàng)式函數(shù)的R2和RMSE之間存在極顯著差異,且傅里葉函數(shù)的R2和RMSE均極顯著優(yōu)于高斯函數(shù)和多項(xiàng)式函數(shù)(P<0.01);對(duì)于不同模型階次R2和RMSE之間,三階和四階函數(shù)之間無顯著差異(P<0.01),但四階的R2和RMSE極顯著優(yōu)于二階函數(shù)(P<0.01),四階的R2和RMSE顯著優(yōu)于二階函數(shù)(P<0.05)。表10

    表9 不同擬合模型及階次對(duì)前蹄運(yùn)動(dòng)軌跡曲線的最小二乘方差分析Table 9 Analysis of Least-squares variance of different fitting model and order of forehoof trajectory curve

    表10 不同擬合模型及階次對(duì)前蹄運(yùn)動(dòng)軌跡曲線的擬合參數(shù)Table 10 The fitting parameters of different fitting model and order of forehoof trajectory curve

    3 討 論

    3.1 最佳運(yùn)動(dòng)軌跡曲線擬合模型的選擇

    數(shù)學(xué)模型的建立能有效地反映實(shí)驗(yàn)室數(shù)據(jù)的一般趨勢(shì)變換,還能在最大程度上排除誤差干擾,便于量化馬匹在運(yùn)動(dòng)過程中的實(shí)時(shí)變化。多項(xiàng)式是由多個(gè)單項(xiàng)式組成的簡(jiǎn)單的連續(xù)函數(shù),其圖形為一條平滑的曲線,用多項(xiàng)式擬合肢體運(yùn)動(dòng)軌跡曲線往往較高階次的函數(shù)才能達(dá)到理想的擬合度。高斯函數(shù)[9]的曲線圖形類似于正態(tài)分布,要求拐角兩側(cè)基本對(duì)稱,而傅里葉函數(shù)[10]圖形類似正余弦函數(shù),兩端有周期延伸趨勢(shì)。

    研究表明,不同方程擬合模型及不同擬合模型的階數(shù)對(duì)馬匹前肢各關(guān)節(jié)運(yùn)動(dòng)軌跡曲線擬合具有很大影響。對(duì)各馬匹前肢的前蹄、前飛節(jié)、腕關(guān)節(jié)、肘關(guān)節(jié)、肩關(guān)節(jié)運(yùn)動(dòng)軌跡研究中比較了多項(xiàng)式函數(shù)、高斯函數(shù)和傅里葉函數(shù)三種擬合模型的擬合效果,從中選取各關(guān)節(jié)點(diǎn)運(yùn)動(dòng)估計(jì)曲線最適合的數(shù)學(xué)函數(shù)模型。研究表明,總體上傅里葉函數(shù)擬合的相關(guān)系數(shù)R2略大,RMSE更趨近于0,但是,在肩關(guān)節(jié)和腕關(guān)節(jié)的曲線擬合中傅里葉與高斯函數(shù)模型無顯著差異,在肘關(guān)節(jié)的曲線擬合中高斯函數(shù)擬合與傅里葉函數(shù)擬合差異性不顯著,即表明這三個(gè)點(diǎn)用兩種方法擬合均可。但是孟軍[8]在他的研究中表明,傅里葉函數(shù)的參數(shù)與速度的相關(guān)性較高斯函數(shù)高,且傅里葉函數(shù)更能反映速步運(yùn)動(dòng)的實(shí)際運(yùn)動(dòng)規(guī)律。在前飛節(jié)的運(yùn)動(dòng)軌跡曲線擬合中傅里葉函數(shù)的擬合結(jié)果優(yōu)于其他的擬合模型及階次。在前蹄的運(yùn)動(dòng)軌跡曲線擬合中傅里葉函數(shù)的擬合結(jié)果優(yōu)于其他的擬合模型及階次。傅里葉函數(shù)擬合模型的擬合效果優(yōu)于高斯函數(shù)擬合模型,其原因之一在于傅里葉函數(shù)的平移性質(zhì),F(xiàn)ω0(ω)=F(ω-ω0),即Fω0(ω)=可由F(ω)向右平移ω0得到,高斯函數(shù)的主要特征之一是對(duì)稱性,馬匹肢體末端的關(guān)節(jié)點(diǎn)移動(dòng)位移范圍廣,運(yùn)動(dòng)狀態(tài)復(fù)雜,導(dǎo)致用高斯函數(shù)擬合模型效果不佳,而實(shí)際上馬匹運(yùn)動(dòng)就可以看著是一個(gè)個(gè)運(yùn)步周期疊加而成,所以傅里葉函數(shù)比高斯函數(shù)更能反映馬匹運(yùn)動(dòng)的實(shí)際狀態(tài)。因此,在以后的實(shí)踐過程中可采用傅里葉函數(shù)模型和高斯函數(shù)擬合模型擬合肩關(guān)節(jié)和腕關(guān)節(jié)的運(yùn)動(dòng)軌跡曲線;采用傅里葉和高斯函數(shù)模型擬合肘關(guān)節(jié)運(yùn)動(dòng)軌跡曲線;采用傅里葉函數(shù)模型擬合前飛節(jié)運(yùn)動(dòng)軌跡曲線;采用傅里葉函數(shù)模型擬合前蹄運(yùn)動(dòng)軌跡曲線。

    3.2 最佳運(yùn)動(dòng)軌跡曲線擬合模型階次的選擇

    研究對(duì)各馬匹前肢的前蹄、前飛節(jié)、腕關(guān)節(jié)、肘關(guān)節(jié)、肩關(guān)節(jié)運(yùn)動(dòng)軌跡研究中比較了多項(xiàng)式函數(shù)、高斯函數(shù)和傅里葉函數(shù)三種擬合模型不同階次的擬合效果,從中選取各關(guān)節(jié)點(diǎn)運(yùn)動(dòng)軌跡曲線擬合最優(yōu)的數(shù)學(xué)函數(shù)模型及階次。根據(jù)曲線擬合誤差的有關(guān)理論[11],曲線擬合效果由擬合精度和均方差控制,擬合精度越趨近于1、均方差越趨近于0,擬合效果越好。

    研究結(jié)果中可發(fā)現(xiàn),各關(guān)節(jié)點(diǎn)不同擬合模型的R2值均是擬合階次越高擬合系數(shù)越高,均方差RMSE越小,但是在肩關(guān)節(jié)、腕關(guān)節(jié)和前蹄的運(yùn)動(dòng)軌跡曲線擬合中三階與四階函數(shù)無顯著差異(P>0.05),均方差RMSE也無顯著差異(P<0.05),根據(jù)曲線在軌跡規(guī)劃和生產(chǎn)應(yīng)用中的優(yōu)化設(shè)計(jì)等情況[12],應(yīng)選用擬合系數(shù)和均方差都無顯著差異的三階函數(shù),此觀點(diǎn)與王宏、趙長(zhǎng)寬等人[13]研究人類手指運(yùn)動(dòng)軌跡觀點(diǎn)一致,故在擬合肩關(guān)節(jié)、腕關(guān)節(jié)和前蹄的運(yùn)動(dòng)軌跡曲線時(shí)應(yīng)選用三階函數(shù)模型。在肘關(guān)節(jié)和前飛節(jié)的運(yùn)動(dòng)曲線擬合過程中四階的擬合系數(shù)R2和均方差RMSE顯著優(yōu)于三階函數(shù)和二階函數(shù)的擬合效果,故在擬合肘關(guān)節(jié)和前飛節(jié)的運(yùn)動(dòng)軌跡曲線時(shí)應(yīng)采用四階函數(shù)模型。

    4 結(jié) 論

    通過對(duì)對(duì)側(cè)步馬匹前肢肩關(guān)節(jié)、肘關(guān)節(jié)、腕關(guān)節(jié)、前飛節(jié)和前蹄的運(yùn)動(dòng)軌跡進(jìn)行的分析和研究,建立了便捷的測(cè)定馬匹肢體運(yùn)動(dòng)軌跡的方法,并通過MATLAB軟件中的Cftool工具箱擬合算法,得到了馬匹前肢五個(gè)關(guān)節(jié)點(diǎn)的最優(yōu)運(yùn)動(dòng)軌跡曲線擬合模型和階次,得出了馬匹前肢肩關(guān)節(jié)和腕關(guān)節(jié)最優(yōu)擬合模型為傅里葉三階和高斯三階函數(shù)擬合模型,肘關(guān)節(jié)最優(yōu)擬合模型為傅里葉四階和高斯四階函數(shù)模型,前飛節(jié)最優(yōu)擬合模型為傅里葉四階函數(shù)模型,前蹄最優(yōu)擬合模型為傅里葉三階函數(shù)模型的結(jié)論,為以后馬匹性能測(cè)定、建立馬匹肢體運(yùn)動(dòng)軌跡模型、仿真運(yùn)動(dòng)機(jī)器馬的優(yōu)化設(shè)計(jì)提供了條件。

    References)

    [1]徐智勇,傅承毓,王滿意,等. 用擬合函數(shù)法準(zhǔn)確預(yù)測(cè)運(yùn)動(dòng)目標(biāo)的軌跡[J]. 光電工程,2000,(1):17-19.

    XU Zhi-yong, FU Cheng-yu, WANG Man-yi, et al.(2000). Accurate Prediction for Trace of a Moving Target with Fitting Function Method [J].Opto-ElectronicEngineering,(1):17-19 .(in Chinese)

    [2] Barrey, E. (1999). Methods, applications and limitations of gait analysis in horses.VeterinaryJournal, 157(1):7-22.

    [3]王晏.人體下肢運(yùn)動(dòng)分析[D]. 大連:大連理工大學(xué)碩士論文,2005.

    WANG Yan. (2005).TheLowerLimbsMotionAnalysis[D]. Master Dissertation. Dalian University of Technology, Dalian. (in Chinese)

    [4]肖博.人體下肢運(yùn)動(dòng)信息采集系統(tǒng)設(shè)計(jì)[D]. 北京:北京工業(yè)大學(xué) 碩士論文,2012.

    XIAO Bo. (2012).AcquisitionSystemDesignofHumanLowerLimbsMotionInformation[D]. Master Dissertation. Beijing University of Technology, Beijing. (in Chinese)

    [5]洪曉明.人體下肢運(yùn)動(dòng)力學(xué)分析與建模[D]. 杭州:杭州電子科技大學(xué),2009.

    HONG Xiao-ming. (2009).TheAnalysisofMovementMechanicsandModelingofHumanLowerLimb[D]. Master Dissertation. Hangzhou Electronic Science and Technology University, Hangzhou. (in Chinese)

    [6]單大卯.髕骨運(yùn)動(dòng)軌跡的實(shí)驗(yàn)性研究[J].北京體育大學(xué)學(xué)報(bào),2004,(8):1 057-1 059,1 101.

    SHAN Da-mao. (2004). Specialized Experiments for the Moving Track of the Knee Cap [J].JournalofBeijingSportUniversity, 27(8):1,057-1,059,1,101. (in Chinese).

    [7]郭璐,沈模衛(wèi). 基于曲線擬合的上肢伸展姿勢(shì)及其運(yùn)動(dòng)軌跡預(yù)測(cè)[J]. 人類工效學(xué),2013,(3):75-81,85.

    GUO Lu, SHEN Mo-wei.(2013). Based on Curve Fitting of Upper Limbs Stretch Posture and Movement Track Prediction [J].ChineseJournalofErgonomics, (3):75-81,85.(in Chinese).

    [8]孟軍.伊犁馬速步賽血?dú)庵笜?biāo)、分段速度和步態(tài)特征變化規(guī)律研究[D].烏魯木齊:新疆農(nóng)業(yè)大學(xué)博士論文,2013.

    MENG Jun. (2013).VariationLawofBloodGasIndexes,SegmentationSpeedandGaitCharacteristicsofIliHorseinTrottingRace[D]. PhD Dissertation. Xinjiang Agricultural University, Urumqi. (in Chinese)

    [9]王仕璠.信息光學(xué)理論與應(yīng)用[M].北京:北京郵電大學(xué)出版社,2004:5-6.

    WANG Shi-fan.(2004).InformationOpticsTheoryandApplication[M].Beijing: Beijing University of Posts and Telecommunications Press:5-6. (in Chinese)

    [10]張建國(guó),李冱岸編著.復(fù)變函數(shù)與積分變換[M].北京:機(jī)械工業(yè)出版社,2010:79-80.

    ZHANG Jian-guo, LI Hu-an.(2010).ComplexFunctionandIntegralTransform[M].Beijing: China Machine Press:79-80. (in Chinese)

    [11] Albert, F., Ribotciscar, E., Fiocchi, M., Bergenheim, M., & Roll, J. P. (2005). Proprioceptive feedback in humans expresses motor invariants during writing. Experimental Brain Research.experimentelle Hirnforschung.expérimentationCérébrale,164(2):242-249.

    [12] Waiboer, R. R., Aarts, R. G. K. M., & Jonker, J. B. (2005). Application of a perturbation method for realistic dynamic simulation of industrial robots.MultibodySystemDynamics, 13(3):323-338.

    [13] 王宏,趙長(zhǎng)寬,姬彥巧. 人類手指運(yùn)動(dòng)軌跡的計(jì)算機(jī)仿真[J]. 東北大學(xué)學(xué)報(bào),2006,(8):891-894.

    WANG Hong, ZHAO Chang-kuan,JI Yan-qiao. (2006). Emulation of Kinematic Trajectory of Fingertip [J].JournalofNortheasternUniversity, (8): 891-894. (in Chinese)

    Fund project:Supported by Major Projects of Science and Technology, Department of Xinjiang Uygur Autonomous Region (Horse Key Technology Research and Demonstration (for Sport, Meat and Milk) (No.201130101); National Support Program for Science and Technology: Research and Integration of Key Technologies of High Quality Sport Horse Breeding (No.2011BAD28B06); National Support Program for Science and Technology: Study on Cultivation and Breed Propagation Technology and Integrated Demonstration of Speedy, Milk and Endurance New Horse Breed (2012BAD44B00)and Graduate student research innovation project "Relationship between gait characteristics and motor performance of the young trot Horse" (No. XJAUGRI2015005)

    Mathematical Model Establishment and Analysis of Forelimb Trajectory for Horse in Pacing

    YAO Fang-fang,MENG Jun,ZENG Ya-qi,YAO Xin-kui,WANG Dong,WANG Huan,ZHANG Ya-ang,KONG Qi-sen,CHENG Jie,MA Li-shan,ZHANG Xian

    (College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China)

    【Objective】 The purpose of this project is to analyze and study the fitting effect of different models and the steps of the front limb movement trajectory curve of the lateral horse in order to in order to provide a reference for the horse performance measurement.【Method】This paper was based on the horses' characteristics of the trajectory curve, and Cftool toolbox in Matlab software was adopted to get three times polynomial fitting model, Gaussian function fitting model and Fourier function fitting model fitting equations, and the fitting condition were compared.【Result】The results showed that there was no difference at fitting effect in Fourier third-order function model and Gaussian third-order function model for pacing horses at shoulder and elbow joints(P>0.05), but they were all better than polynomial model (P< 0.01); Fourier third-order function model was significantly better than Gaussian function model and polynomial model (P< 0.01) at forehoof fitting; For the fetlock joint, fitting situation at Fourier forth-order function were superior to the Gaussian third-order function and polynomial fitting model (P< 0.01); For the elbow joint, Fourier and Gaussian model fourth-order function model, the fitting effect was significantly better than polynomial function (P< 0.01).【Conclusion】Shoulder and wrist joint optimal fitting model is Fourier and Gaussian third-order function fitting model; Elbow joint optimal fitting model is Fourier and Gaussian forth-order function model; fetlock joint optimal fitting model is Fourier forth-order function model; Forehoof optimal fitting model is Fourier third-order function model.

    pacing horse ; trajectory curve; mathematical; fitting precision

    10.6048/j.issn.1001-4330.2016.08.026

    2016-03-30

    新疆維吾爾自治區(qū)科技廳重大專項(xiàng)“馬(運(yùn)動(dòng)、肉用、乳用)生產(chǎn)關(guān)鍵技術(shù)研究與示范”(201130101);國(guó)家科技支撐計(jì)劃項(xiàng)目“優(yōu)質(zhì)運(yùn)動(dòng)馬培育生產(chǎn)關(guān)鍵技術(shù)研究與集成示范”(2011BAD28B06);國(guó)家科技支撐計(jì)劃項(xiàng)目“速步、乳用、耐力馬新品種(系)培育及良種擴(kuò)繁技術(shù)研究與集成示范”(2012BAD44B00);2015年新疆農(nóng)業(yè)大學(xué)研究生科研創(chuàng)新項(xiàng)目“青年速步馬步態(tài)特征與運(yùn)動(dòng)性能相關(guān)性研究”( XJAUGRI2015005)

    姚芳芳(1989-),女,湖南永順人,碩士研究生,研究方向?yàn)轳R的繁育,(E-mail)635798595@qq.com

    姚新奎(1961-),男,新疆奎屯人,教授,博士生導(dǎo)師,研究方向?yàn)轳R類科學(xué),(E-mail)yxk61@126.com

    S821

    A

    1001-4330(2016)08-1554-08

    猜你喜歡
    階次四階三階
    四階p-廣義Benney-Luke方程的初值問題
    三階非線性微分方程周期解的非退化和存在唯一性
    階次分析在驅(qū)動(dòng)橋異響中的應(yīng)用
    基于Vold-Kalman濾波的階次分析系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)*
    基于齒輪階次密度優(yōu)化的變速器降噪研究
    三類可降階的三階非線性微分方程
    帶參數(shù)的四階邊值問題正解的存在性
    三階微分方程理論
    四階累積量譜線增強(qiáng)方法的改進(jìn)仿真研究
    基于四階累積量和簡(jiǎn)化粒子群的盲分離算法
    青田县| 伊宁市| 教育| 永州市| 黄石市| 诸城市| 赤水市| 衡东县| 彰化市| 定州市| 曲麻莱县| 吉木萨尔县| 平湖市| 进贤县| 江达县| 邢台市| 察雅县| 延庆县| 团风县| 济阳县| 同江市| 彭州市| 兴安县| 木兰县| 衢州市| 翁源县| 南木林县| 祁门县| 得荣县| 中阳县| 耿马| 关岭| 汉沽区| 饶阳县| 区。| 博湖县| 泰州市| 教育| 汶川县| 青田县| 平塘县|