• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Photo-depositing Ru and RuO2on Anatase TiO2Nanosheets as Co-catalysts for Photocatalytic O2Evolution from Water Oxidation

    2016-11-24 07:31:18ShiyangMiYuanxuLiuWendongWangCASKeyLaboratoryofMaterialsforEnergyConversionandDepartmentofChemicalPhysicsUniversityofScienceandTechnologyofChinaHefei230026China
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2016年5期

    Shi-yang Mi,Yuan-xu Liu,Wen-dong WangCAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics,University of Science and Technology of China,Hefei 230026,China.

    Photo-depositing Ru and RuO2on Anatase TiO2Nanosheets as Co-catalysts for Photocatalytic O2Evolution from Water Oxidation

    Shi-yang Mi,Yuan-xu Liu,Wen-dong Wang?
    CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics,University of Science and Technology of China,Hefei 230026,China.

    TiO2nanosheets mainly exposed(001)facet were prepared through a hydrothermal process with HF as the morphology-directing agent.Ru and RuO2species were loaded by photodeposition methods to prepare the photocatalysts.The structural features of the catalysts were characterized by X-ray diffraction,transmission electron microscopy,inductively coupled plasma atomic emission spectrum,and H2Temperature-programmed reduction.The photocatalytic property was studied by the O2evolution from water oxidation,which was examined with respect to the influences of Ru contents as well as the oxidation and reduction treatments,suggesting the charge separation effect of the Ru species co-catalysts on different facets of TiO2nanosheets.In contrast to Ru/TiO2and RuO2/TiO2with the single deposited co-catalyst,the optimized catalyst 0.5%Ru-1.0%RuO2/TiO2with dual co-catalysts achieved a much improved catalytic performance,in terms of the synergetic effect of dual co-catalysts and the enhanced charge separation effect.

    Anatase TiO2nanosheets,Photocatalytic O2evolution,Crystal facet,Ru co-catalyst,Charge separation

    I.INTRODUCTION

    The photocatalytic splitting of water is considered as one of the promising techniques to convert solar light energy into clean and renewable chemical energy[1]. Among the vast semiconductor photocatalysts applied to the studies of photocatalytic water splitting,TiO2appears to be the most suitable material owing to its high activity,low cost,chemical stability,and nontoxicity[2?4].Although much effort and great progress have been made,it is still a great challenge to overcome the disadvantages of conventional TiO2-based materials,such as exposure of low activity crystal facets, fast recombination of the photogenerated electrons and holes,and low absorbance of visible light.

    Theoretical calculation has demonstrated that the (001)surface of anatase TiO2is more active than the (101)surface[5],therefore conventional anatase TiO2nanoparticles prefer to expose the(101)crystal facets with low surface energy(0.44 J/m2)rather than the (001)facets with high surface energy(0.90 J/m2). To obtain TiO2mainly exposing high reactive crystal facets,hydrofluoric acid(HF)has been used as the structure-directing agent to fabricate nanocrystalline TiO2that exposed 47%(001)crystal facets and showed an excellent photocatalytic activity[6].Based on this breakthrough,a number of studies on TiO2-based materials with dominant highly reactive(001)facets and their enhanced photocatalytic properties have been reported[7?12].

    It is regarded as one of the crucial aspects of photocatalytic activity to reduce the recombination of photogenerated carriers,and one of the effective tactics to improve the photogenerated charge separation efficiency by loading metal or metal oxide nanoparticles as cocatalysts to build heterojunctions on photocatalysts[3, 9,13].The metal and metal oxide nanoparticles loaded on TiO2can be served as a trap for the photogenerated electrons and holes,respectively.Among the various elements used as effective co-catalysts loading in the form of metal or metal oxide,Ru presents remarkable catalytic activities due to the unique properties of Ru and RuO2[3].The enhancement of H2evolution by Ru on photocatalysts has been reported[14,15],which may be ascribed to electronic structure of the interface between the Ru particles and photocatalysts facilitating electron transfers from photocatalysts to Ru. Meanwhile,RuO2-loaded photocatalysts can promote the overall splitting of water[16,17],as the holes would be trapped by RuO2,resulting in efficient charge separation and improved photocatalytic activity.However, there are seldom reported photocatalysts with both Ru and RuO2nanoparticles as co-catalyst loading.

    Moreover,some researchers have found that photogenerated electrons and holes might voluntarily separate towards different crystal facets in the photochemi-cal process[18,19],and hence anisotropic-shaped semiconductor nanoparticles could display higher charge separation efficiency than spherical nanoparticles[7,20, 21].It has been revealed that loading reduction and oxidation co-catalysts on the right crystal facets of semiconductor would enhance the separation of electrons and holes.In the case of anatase TiO2,(001)and(101) facets have been demonstrated as oxidative and reductive sites,respectively[22,23].Recently,it has been reported that the deposition of dual co-catalysts,namely both reduction and oxidation co-catalysts,onto a semiconductor photocatalyst can significantly improve its photocatalytic activity[24?26]due to the synergetic effect of rapid consumption of photogenerated electrons and holes as well as the facile charge separation.

    ?Author to whom correspondence should be addressed.E-mail: wangwd@ustc.edu.cn,Tel.:+86-551-63603683

    In this work,anatase TiO2nanosheets with dominant(001)facets are synthesized by the hydrothermal method.Ru and RuO2nanoparticles were loaded by different photo-deposition processes.The photocatalytic O2evolution from water oxidation was examined to evaluate the performances of synthesized catalysts. The results may demonstrate the charge separation effect on crystal facets of anatase TiO2nanosheets,and high catalytic activity of the anatase TiO2nanosheets photocatalyst with both Ru and RuO2nanoparticles as co-catalyst loading is expected.

    II.EXPERIMENTS

    All chemicals employed in this work were analytical reagents and obtained from Sinopharm,including Ti(OBu)4(TBOT),40wt%HF,ethanol,NaOH pellets, RuCl3,and KIO3powder.

    TiO2nanosheets with dominant(001)crystal facets are synthesized by hydrothermal method[10,11].In a typical procedure,5 mL of TBOT was mixed with 20 mL of ethanol under strong stirring,and then 0.9 mL of 40wt%HF solution was added.The resulting solution was transferred into a Teflon autoclave with a capacity of 50 mL and then kept at 160°C for 24 h.When cooling to room temperature,the white precipitate was collected after centrifugation,washed with ethanol and distilled water for several times in turn,and dried at 80°C for 12 h.In order to remove the surface residual fluoride,the powder was dispersed in 0.1 mol/L NaOH solution and stirred overnight at room temperature,and then washed with distilled water several times to neutral and finally dried at 80°C for 12 h.

    The photo-deposition of Ru was conducted with RuCl3as precursor.Typically,0.15 g TiO2nanosheets were suspended in 50 mL of distilled water,and then the calculated RuCl3solution was added.The suspension was stirred for 2 h in the dark and then irradiated under a 500 W UV lamp with continuous stirring.After photo-deposition for 5 h,the suspension was filtered,washed with distilled water for at least three times and finally dried at 80°C.The obtained catalyst is denoted as Ru/TiO2.The photo-deposition of RuO2was conducted by a similar method to prepare RuO2/TiO2catalyst,and the only difference was that the solution used to suspend TiO2nanosheets was changed to 50 mL KIO3aqueous solution(0.1 mol/L). The photo-deposition of dual co-catalysts Ru and RuO2on TiO2nanosheets was prepared by two steps for Ru-RuO2/TiO2catalyst.Ru was firstly loaded after 5 h photo-deposition,and the suspension was moved to the dark.Then the calculated RuCl3solution and 5 mL of KIO3solution(1 mol/L)was added into the suspension and stirred for 2 h,which was subjected to another 5 h photo-deposition to deposit RuO2.

    The reduction treatment was performed at 150°C for 2 h in a flow of 5%H2/Ar with a heating rate of 5°C/min,while the oxidation treatment at 200°C for 2 h in a muffle.

    The contents of Ru and RuO2deposited on TiO2nanosheets were determined by an Optima 7300 DV inductively coupled plasma atomic emission spectrometer(ICP-AES).The phase compositions of the catalysts were analyzed by powder X-ray diffraction(XRD)with a Rigaku TTR-III diffractometer using Cu Kα radiation (λ=0.15405 nm). Transmission electron microscopy (TEM)and high-resolution transmission electron microscopy(HRTEM)images were taken on a JEOL JEM-2100F instrument.Temperature-programmed reduction(TPR)was performed at a heating rate of 5°C/min from room temperature up to 200°C in a flow of 5%H2/Ar.The amount of H2consumption during TPR was estimated from the integrated peak area using AgO2as a standard.

    The photocatalytic O2evolution from water oxidation was examined to evaluate the performances of synthesized catalysts.The photocatalytic reaction was carried out in a closed quartz glass reaction vessel at room temperature.10 mg of photocatalyst was dispersed into 40 mL of KIO3aqueous solution(0.02 mol/L),which was magnetically stirred throughout the whole photocatalytic reaction. Before irradiation,Ar was introduced to replace the air in the reaction system.The reaction was initiated by irradiation with a 500 W UV lamp,and the UV light was irradiated from the side. The evolved O2was analyzed by a Shimadzu GC-14C gas chromatograph equipped with a thermal conductivity detector.

    III.RESULTS AND DISCUSSION

    The actual Ru content determined by ICP-AES is listed in Table I for Ru/TiO2and RuO2/TiO2catalysts with different Ru loading.The result indicates the presence of Ru species and confirms the actual Ru content is very close to the nominal one.

    The XRD patterns of TiO2nanosheets and the photocatalysts that loaded with different co-catalysts are compared in Fig.1.TiO2nanosheets only shows thetypical diffraction patterns of anatase TiO2(JCPDS No.21-1272).However,the XRD patterns of all the photocatalysts with different Ru loading(not shown),almost identical to those of pure anatase TiO2nanosheets and the three typical catalysts as shown in Fig.1,are in absence of any diffraction peak related to either metallic Ru or ruthenium oxides.This result is consistent with the presence of very tiny nanoparticles of Ru species whose sizes may be beyond the detection limitation of XRD,as previously perceived in the case of Ru supported on TiO2and carbon nanotubes support [9,27?29].

    TABLE I The Ru content of nominal and actual catalysts.

    FIG. 1 XRD patterns of (a) TiO2 nanosheets, (b)0.5%Ru/TiO2,(c)1.0%RuO2/TiO2,and(d)0.5%Ru-1.0%RuO2/TiO2catalysts.

    Figure 2 shows the TEM and HRTEM images of the obtained TiO2nanosheets and typical photocatalysts to verify the formation of their morphology features. It is observed that the obtained TiO2nanosheets are composed of rectangular nanosheets with a length of 15?40 nm and thickness of 3?6 nm featuring a compressed truncated octahedral bipyramid shape[12].The HRTEM image indicates that two sets of lattice fringes with spacing of 0.235 and 0.189 nm may be identified. This result suggests two mainly exposed facets corresponding to(001)facet and other eight facets corresponding to(101)facet,respectively,and the percentages of(001)facet can be estimated to be about 70%in this work according to the previous studies[6,11,12]. However,the presence of Ru and RuO2particles are hardly to be discovered from the TEM images of three typical photocatalysts,which may be in line with the highly dispersed co-catalyst nanoparticles of Ru species beyond the detection limitation of XRD,and could be ascribed to the absence of sufficient contrast between for the detection of highly dispersed Ru species deposited on the TiO2nanosheets as well.

    The H2-TPR profiles of the selected catalysts are plotted in Fig.3 to compare their redox properties. There is not any reduction peak in the exaimed temperature region for the TiO2nanosheets(Fig.3(a)).For 0.5%Ru/TiO2catalyst,almost no peak appears except a trace of H2consumption near 100°C(Fig.3(b)),while an obvious peak centered at 131°C is observed after the oxidation treatment(Fig.3(c))but it totally disappears after the subsequent reduction treatment(Fig.3(d))as expected,which suggests the Ru species can be effectively loaded on TiO2nanosheets by photo-deposition. With respect to 1.0%RuO2/TiO2catalyst,it features a H2consumption peak at 104°C(Fig.3(e))due to the reduction of RuO2[30],and then the peak disappears after the reduction treatment(Fig.3(f));however,another peak located about 128°C is identified after the subsequent oxidation treatment(Fig.3(g)).It is verified that the content of Ru species is basically in accordance with the amount of H2consumption estimated from the integrated peak area.

    The photocatalytic property of the Ru species loaded TiO2nanosheets was evaluated by the O2evolution from water oxidation. The dependence of catalytic performance on the Ru content for Ru/TiO2catalyst is shown in Fig.4.There is no oxygen evolution for the only TiO2nanosheets without Ru species loading.The O2evolution rate increased apparently from 10.59 mmol/(g·h)to 18.48 mmol/(g·h)catalyst with the Ru content from 0.1wt%to 0.5wt%. However,the activity drastically decline to 5.43 mmol/(g·h)when the Ru content further inceases to 1.5wt%.The similar dependence of O2evolution rate on the Ru content is also noticed for RuO2/TiO2catalyst as indicated in Fig.5,where the optimum Ru content of 1.0wt%can be identified with the highest O2evolution rate of 20.25 mmol/(g·h).It suggests that the photodeposition of Ru or RuO2onto TiO2nanosheets may both be the effective way to promote its ptotocatalytic activity.

    It has been revealed that noble metals and metal oxides may be selectively deposited on the exposed(101) and(001)facets of TiO2[31],since the photogenerated electrons and holes mainly accumulate on the(101)and (001)facets during the photo-deposition process and then are involved in the photocatalytic reduction and oxidation reactions,respectively.In the present study, it is reasonable to infer that Ru and RuO2nanoparticlesare selectively deposited on(101)and(001)facets of the obtained TiO2nanosheets with the simultaneous exposure of the two facets for Ru/TiO2and RuO2/TiO2catalysts,respectively.The effect of Ru species on the O2evolution from photocatalytic water oxidation loaded might be explained by the charge separation effect on different facets of the TiO2nanosheets[25,26,32,33]. For the Ru/TiO2catalysts,Ru nanoparticles deposited on the exposed(101)facets of TiO2act as centers for trapping electrons when the content of Ru species is at a lower stage,which may enhance the separation of electrons and holes.However,the excessive Ru loading might hinder the incident light from irradiating TiO2and serve as the recombination centers for electrons and holes,which leads to the decrease of charge separation efficiency[33,34].A similar situation may also be applied for the RuO2/TiO2catalysts,the main difference is the RuO2nanoparticles deposited on the exposed(001)facets of TiO2act as centers for trapping holes.

    FIG.2 TEM and HRTEM images of TiO2nanosheets and catalysts.(a)Pure TiO2,(b)0.5%Ru/TiO2,(c)1.0%RuO2/TiO2, (d)0.5%Ru-1.0%RuO2/TiO2,and(e)HR-TEM image of pure TiO2.

    FIG.3 H2-TPR profiles of(a) TiO2 nanosheets, (b) 0.5%Ru/TiO2, (c) 0.5%Ru/TiO2 after oxidation, (d) 0.5%Ru/TiO2 after oxidation reduction, (e)1.0%RuO2/TiO2,(f)1.0%RuO2/TiO2after reduction, and(g)1.0%RuO2/TiO2after reduction and subsequent oxidation.

    FIG.4 Oxygen evolution rates over Ru/TiO2catalysts with different Ru contents.

    In order to further explore the charge separation effect on the different facets of TiO2nanosheets,the catalysts were subjected to oxidation and reduction treatments and the photocatalytic activities were examed as shown in Fig.6. For 0.5%Ru/TiO2catalyst,the O2evolution rate deeply decreases after the oxidationtreatment from 18.48 mmol/(g·h)to 6.04 mmol/(g·h) for 0.5%Ru/TiO2(Oxy). Since the oxidation transforms Ru deposited on TiO2(101)facets into RuO2as confirmed by TPR result,the incompatible configuration of co-catalyst RuO2(holes trapped)on the TiO2(101)facets(electrons accumulated)may result in the faster recombination of electrons and holes and thus much lower photocatalytic activity. It is noticed that the O2evolution rate then greatly recovers to 14.07 mmol/(g·h)for 0.5%Ru/TiO2(Oxy-Red) after the subsequent reduction treatment. On the other hand,the difference in O2evolution rate for 0.5%Ru/TiO2(Oxy)and 0.5%RuO2/TiO2also implies that Ru and RuO2may be selectively deposited on the different TiO2facets.The analogous tendency can also be observed for 1.0%RuO2/TiO2catalyst after the similar treatments,during which the O2evolution decreases from 20.25 mmol/(g·h)to 8.84 mmol/(g·h) after the reduction for 1.0%RuO2/TiO2(Red),and recovers to 17.19 mmol/(g·h)after the subsequent oxidation treatment for 1.0%RuO2/TiO2(Red-Oxy).The evident decrease in the photocatalytic activity for 1.0%RuO2/TiO2(Red)may also be due to the incompatible configuration of co-catalyst Ru(electrons accumulated)on the TiO2(001)facets(holes trapped).The difference between the recovered and the original activity is mainly ascribed to the possible calcination and loss of Ru species during the oxidation and reduction treatments.

    FIG.5 Oxygen evolution rates over RuO2/TiO2catalysts with different Ru content

    To fulfill a promising route to engineer the efficient photocatalyst by taking advantage of the charge separation effect,the dual co-catalysts on TiO2nanosheets was fabricated by two steps of photo-deposition for 0.5%Ru-1.0%RuO2/TiO2catalyst,where it may be inferred that Ru and RuO2are simultaneously and selectively deposited on(101)and(001)facets of the TiO2nanosheets,respectively. As compared in Fig.6,0.5%Ru-1.0%RuO2/TiO2sample deposited with dual co-catalysts features the highest O2evolution rate of 31.8 mmol/(g·h),which is not only superior to 0.5%Ru/TiO2and 1.0%RuO2/TiO2with the single co-catalyst at the optimum Ru content,but also much boosted in comparison with 1.5%Ru/TiO2and 1.5%RuO2/TiO2with the single co-catalyst at the same Ru content.The synergetic effect of dual co-catalysts may be due to the enhanced charge separation effect, achieved by both Ru and RuO2selectively deposited on (101)and(001)facets of TiO2nanosheets as the trapping centers of electrons and holes,which could further facilitate the charge separation and thus promote the photocatalytic reaction.

    FIG.6 Oxygen evolution rates overdifferent Ruloaded TiO2nanosheets catalysts. (a)0.5%Ru/TiO2, (b)0.5%Ru/TiO2(Oxy),(c)0.5%Ru/TiO2(Oxy-Red), (d) 1.0%RuO2/TiO2, (e) 1.0%RuO2/TiO2 (Red), (f) 1.0%RuO2/TiO2 (Red-Oxy), and (g) 0.5%Ru-1.0%RuO2/TiO2.

    IV.CONCLUSION

    In this work,anatase TiO2nanosheets with mainly exposed(001)facet of about 70%have been obtained by the hydrothermal process.Ru or RuO2nanoparticles are successfully loaded on the obtained TiO2nanosheets by photo-deposition methods to fabricate the photocatalysts.The structural characterizations suggest highly dispersed Ru species on the TiO2nanosheets.According to the photocatalytic O2evolution from water oxidation,the optimum Ru contents were identified to be 0.5wt%and 1.0wt%for Ru/TiO2and RuO2/TiO2catalysts,respectively. It may be explained by the charge separation effect of the Ru species co-catalysts on the different facets of TiO2nanosheets. Combined with the redox property and the influence of oxidation and reduction treatments on the photocatalytic behavior,it may be inferred that the co-catalysts of Ru and RuO2are selectively deposited on(101) and(001)facets of the TiO2nanosheets,respectively. The optimal photocatalytic activity was achieved for 0.5%Ru-1.0%RuO2/TiO2sample deposited with dual co-catalysts,which may be provn to be a promising route to engineer the efficient photocatalyst by fulfilling the enhanced charge separation effect.

    V.ACKNOWLEDGMENTS

    This work is supported by the Anhui Provincial Natural Science Foundation(No.1408085MB25).

    [1]S.S.Mao and X.B.Chen,Int.J.Energ.Res.31,619 (2007).

    [2]A.Fujishima and K.Honda,Nature 238,37(1972).

    [3]X.B.Chen,S.H.Shen,L.J.Guo,and S.S.Mao, Chem.Rev.110,6503(2010).

    [4]A.Fujishima,X.T.Zhang,and D.A.Tryk,Surf.Sci. Rep.63,515(2008).

    [5]A.Vittadini,A.Selloni,F.P.Rotzinger,and M. Gratzel,Phys.Rev.Lett.81,2954(1998).

    [6]H.G.Yang,C.H.Sun,S.Z.Qiao,J.Zou,G.Liu,S.C. Smith,H.M.Cheng,and G.Q.Lu,Nature 453,638 (2008).

    [7]X.G.Han,Q.Kuang,M.S.Jin,Z.X.Xie,and L.S. Zheng,J.Am.Chem.Soc.131,3152(2009).

    [8]G.Liu,H.G.Yang,X.W.Wang,L.N.Cheng,H.F. Lu,L.Z.Wang,G.Q.Lu,and H.M.Cheng,J.Phys. Chem.C 113,21784(2009).

    [9]L.C.Liu,Z.Y.Ji,W.X.Zou,X.R.Gu,Y.Deng, F.Gao,C.J.Tang,and L.Dong,Acs Catal.3,2052 (2013).

    [10]Y.B.Luan,L.Q.Jing,Y.Xie,X.J.Sun,Y.J.Feng, and H.G.Fu,Acs Catal.3,1378(2013).

    [11]X.H.Yang,Z.Li,C.H.Sun,H.G.Yang,and C.Z.Li, Chem.Mater.23,3486(2011).

    [12]W.J.Ong,L.L.Tan,S.P.Chai,S.T.Yong,and A. R.Mohamed,Nanoscale 6,1946(2014).

    [13]J.S.Jang,H.G.Kim,and J.S.Lee,Catal.Today 185, 270(2012).

    [14]M.Hara,J.Nunoshige,T.Takata,J.N.Kondo,and K. Domen,Chem.Commun.3000(2003).

    [15]I.Tsuji,H.Kato,and A.Kudo,Chem.Mater.18,1969 (2006).

    [16]Y.Ebina,N.Sakai,and T.Sasaki,J.Phys.Chem.B 109,17212(2005).

    [17]H.Kadowaki,N.Saito,H.Nishiyama,H.Kobayashi, Y.Shimodaira,and Y.Inoue,J.Phys.Chem.C 111, 439(2007).

    [18]H.Kato,K.Asakura,and A.Kudo,J.Am.Chem.Soc. 125,3082(2003).

    [19]J.L.Giocondi,P.A.Salvador,and G.S.Rohrer,Top. Catal.44,529(2007).

    [20]G.K.Mor,K.Shankar,M.Paulose,O.K.Varghese, and C.A.Grimes,Nano.Lett.5,191(2005).

    [21]P.D.Cozzoli,A.Kornowski,and H.Weller,J.Am. Chem.Soc.125,14539(2003).

    [22]N.Murakami,Y.Kurihara,T.Tsubota,and T.Ohno, J.Phys.Chem.C 113,3062(2009).

    [23]N.Roy,Y.Sohn,and D.Pradhan,Acs.Nano.7,2532 (2013).

    [24]F.Lin,D.G.Wang,Z.X.Jiang,Y.Ma,J.Li,R.G. Li,and C.Li,Energ.Environ.Sci.5,6400(2012).

    [25]R.G.Li,F.X.Zhang,D.G.Wang,J.X.Yang,M. R.Li,J.Zhu,X.Zhou,H.X.Han,and C.Li,Nat. Commun.4,(2013).

    [26]R.G.Li,H.X.Han,F.X.Zhang,D.G.Wang,and C. Li,Energ.Environ.Sci.7,1369(2014).

    [27]T.Abe,M.Tanizawa,K.Watanabe,and A.Taguchi, Energ.Environ.Sci.2,315(2009).

    [28]G.Y.Wang,Y.X.Gao,W.D.Wang,and W.X.Huang, Chin.J.Chem.Phys.25,475(2012).

    [29]Y.X.Gao,K.M.Xie,S.Y.Mi,N.Liu,W.D.Wang, and W.X.Huang,Int.J.Hydrogen.Energ.38,16665 (2013).

    [30]Y.H.Kim,E.D.Park,H.C.Lee,and D.Lee,Appl. Catal.A 366,363(2009).

    [31]X.Wang,R.G.Li,Q.Xu,H.X.Han,and C.Li,Acta. Phys.Chim.Sin.29,1566(2013).

    [32]T.Tachikawa,N.Wang,S.Yamashita,S.C.Cui,and T.Majima,Angew.Chem.Int.Edit.49,8593(2010).

    [33]C.Liu,X.G.Han,S.F.Xie,Q.Kuang,X.Wang,M. S.Jin,Z.X.Xie,and L.S.Zheng,Chem-Asian.J.8, 282(2013).

    [34]P.V.Snytnikov,V.A.Sobyanin,V.D.Belyaev,P.G. Tsyrulnikov,N.B.Shitova,and D.A.Shlyapin,Appl. Catal.A.239,149(2003).

    (Dated:Received on March 26,2016;Accepted on April 24,2016)

    成人毛片a级毛片在线播放| 国产精品精品国产色婷婷| 我要看日韩黄色一级片| 亚洲欧美中文字幕日韩二区| 国产久久久一区二区三区| 赤兔流量卡办理| 亚洲中文字幕日韩| 最新中文字幕久久久久| 一区二区三区四区激情视频 | 亚洲国产高清在线一区二区三| 最好的美女福利视频网| АⅤ资源中文在线天堂| 熟女人妻精品中文字幕| 亚洲在线自拍视频| 亚洲人成网站在线播放欧美日韩| 午夜a级毛片| 中国国产av一级| 麻豆国产av国片精品| 久久久a久久爽久久v久久| 看十八女毛片水多多多| 菩萨蛮人人尽说江南好唐韦庄 | 国产成人影院久久av| 人妻久久中文字幕网| 麻豆成人av视频| 亚洲激情五月婷婷啪啪| 色哟哟·www| 好男人在线观看高清免费视频| 日韩欧美国产在线观看| 亚洲欧美精品自产自拍| 99在线人妻在线中文字幕| 给我免费播放毛片高清在线观看| 大又大粗又爽又黄少妇毛片口| 夜夜看夜夜爽夜夜摸| 日韩欧美一区二区三区在线观看| 69av精品久久久久久| 女人被狂操c到高潮| 国产伦一二天堂av在线观看| 黄片wwwwww| 日本爱情动作片www.在线观看| 国产亚洲欧美98| 18+在线观看网站| 日韩av不卡免费在线播放| 一边亲一边摸免费视频| 热99re8久久精品国产| 欧美潮喷喷水| 2022亚洲国产成人精品| 一个人免费在线观看电影| 国产日本99.免费观看| 午夜免费男女啪啪视频观看| 亚洲av中文av极速乱| 有码 亚洲区| 亚洲国产色片| 免费观看精品视频网站| 精品一区二区三区人妻视频| 九九热线精品视视频播放| 最近的中文字幕免费完整| 成人欧美大片| 男的添女的下面高潮视频| 国产精品人妻久久久影院| 男插女下体视频免费在线播放| 日韩欧美国产在线观看| 成人毛片a级毛片在线播放| 亚洲内射少妇av| 99在线视频只有这里精品首页| 国内精品久久久久精免费| 寂寞人妻少妇视频99o| 在线免费观看的www视频| 亚洲成人中文字幕在线播放| 1000部很黄的大片| 中文精品一卡2卡3卡4更新| 亚洲欧美日韩高清专用| 在线播放无遮挡| 国产三级中文精品| 观看美女的网站| 又爽又黄无遮挡网站| 国产成人一区二区在线| 久久这里只有精品中国| 亚洲欧洲日产国产| 中国国产av一级| 日韩国内少妇激情av| 亚洲av二区三区四区| 男人舔奶头视频| 国产蜜桃级精品一区二区三区| 一级黄色大片毛片| 精品久久久久久久久亚洲| 亚洲真实伦在线观看| АⅤ资源中文在线天堂| 少妇猛男粗大的猛烈进出视频 | 一区二区三区四区激情视频 | 欧美激情国产日韩精品一区| 一级黄色大片毛片| 国产亚洲精品久久久久久毛片| 亚洲欧美精品专区久久| 国产高清视频在线观看网站| 在线观看美女被高潮喷水网站| 国产亚洲av嫩草精品影院| 久久草成人影院| 日韩大尺度精品在线看网址| 国产精品一区二区三区四区免费观看| 两个人的视频大全免费| 婷婷六月久久综合丁香| 一级二级三级毛片免费看| 国产亚洲av嫩草精品影院| 国产探花在线观看一区二区| 欧美日韩在线观看h| 亚洲av第一区精品v没综合| 精品99又大又爽又粗少妇毛片| 婷婷精品国产亚洲av| 亚洲av.av天堂| 日本欧美国产在线视频| 尾随美女入室| 亚洲av.av天堂| 1024手机看黄色片| 亚洲在久久综合| 国产精品av视频在线免费观看| 午夜老司机福利剧场| av在线老鸭窝| 久久99精品国语久久久| 美女内射精品一级片tv| 久久久精品大字幕| 久久久午夜欧美精品| 日本av手机在线免费观看| 亚洲图色成人| 久久精品人妻少妇| 日本爱情动作片www.在线观看| 九九爱精品视频在线观看| 欧美日韩一区二区视频在线观看视频在线 | 久久99热这里只有精品18| 一级毛片我不卡| 欧美最黄视频在线播放免费| 亚洲真实伦在线观看| 日日干狠狠操夜夜爽| 久久久久久久久久久丰满| av.在线天堂| 久久精品综合一区二区三区| 成年av动漫网址| 全区人妻精品视频| 久久久精品94久久精品| 校园春色视频在线观看| 天天躁夜夜躁狠狠久久av| 免费大片18禁| 尤物成人国产欧美一区二区三区| 亚洲精品日韩在线中文字幕 | 国产精品久久久久久久电影| 欧美性猛交黑人性爽| 久久久国产成人精品二区| 白带黄色成豆腐渣| 亚洲国产欧洲综合997久久,| 亚洲一区高清亚洲精品| 国产黄片美女视频| 日韩强制内射视频| 在线播放国产精品三级| 午夜福利在线在线| 男插女下体视频免费在线播放| a级一级毛片免费在线观看| 黄片无遮挡物在线观看| 亚洲av熟女| 又爽又黄a免费视频| 午夜福利高清视频| 亚洲精品影视一区二区三区av| 国产日韩欧美在线精品| 亚洲成人精品中文字幕电影| 给我免费播放毛片高清在线观看| 亚洲精华国产精华液的使用体验 | 国产成人a区在线观看| 欧美+亚洲+日韩+国产| 91在线精品国自产拍蜜月| 天堂影院成人在线观看| 一进一出抽搐gif免费好疼| 一级毛片久久久久久久久女| 精品人妻一区二区三区麻豆| 网址你懂的国产日韩在线| av专区在线播放| 亚洲精品国产av成人精品| or卡值多少钱| 国产视频内射| 欧美激情国产日韩精品一区| 国产精品无大码| 国产精品精品国产色婷婷| av女优亚洲男人天堂| 免费黄网站久久成人精品| 性插视频无遮挡在线免费观看| 日韩欧美精品免费久久| a级毛色黄片| av在线老鸭窝| 伦理电影大哥的女人| 欧美日韩精品成人综合77777| а√天堂www在线а√下载| 一卡2卡三卡四卡精品乱码亚洲| 人人妻人人澡人人爽人人夜夜 | 好男人在线观看高清免费视频| 啦啦啦韩国在线观看视频| 99视频精品全部免费 在线| 91麻豆精品激情在线观看国产| 欧美成人a在线观看| 亚洲欧美日韩高清专用| 女的被弄到高潮叫床怎么办| 欧美高清成人免费视频www| 国内精品美女久久久久久| 男女做爰动态图高潮gif福利片| 久久人人爽人人爽人人片va| 日韩成人av中文字幕在线观看| 最近手机中文字幕大全| 如何舔出高潮| 亚洲丝袜综合中文字幕| 99久久九九国产精品国产免费| 国产免费一级a男人的天堂| 国产精品,欧美在线| 好男人视频免费观看在线| 尤物成人国产欧美一区二区三区| 国产黄片美女视频| 午夜福利在线在线| 亚洲av中文字字幕乱码综合| 欧美高清成人免费视频www| 日韩一本色道免费dvd| 长腿黑丝高跟| 亚洲欧美清纯卡通| 成人欧美大片| 村上凉子中文字幕在线| 在线观看午夜福利视频| 大又大粗又爽又黄少妇毛片口| 亚洲激情五月婷婷啪啪| 午夜亚洲福利在线播放| 免费看日本二区| 欧美日韩综合久久久久久| 国产精品久久久久久精品电影| 99riav亚洲国产免费| 国产日韩欧美在线精品| 伦理电影大哥的女人| 麻豆成人av视频| 亚洲成人中文字幕在线播放| 一夜夜www| 精品99又大又爽又粗少妇毛片| 亚洲不卡免费看| 国产视频内射| 欧美激情国产日韩精品一区| 26uuu在线亚洲综合色| 69av精品久久久久久| 久久99热6这里只有精品| 日韩成人伦理影院| 人妻制服诱惑在线中文字幕| 中文字幕制服av| 精品久久久久久久人妻蜜臀av| 国产极品精品免费视频能看的| 成人三级黄色视频| 亚洲va在线va天堂va国产| 午夜精品国产一区二区电影 | 国产老妇伦熟女老妇高清| 中文字幕av在线有码专区| 亚洲真实伦在线观看| 欧美性猛交╳xxx乱大交人| 亚洲成人精品中文字幕电影| 综合色丁香网| 亚洲天堂国产精品一区在线| 精品一区二区三区人妻视频| 亚洲国产欧美人成| 桃色一区二区三区在线观看| 免费无遮挡裸体视频| 亚洲av免费在线观看| 国产人妻一区二区三区在| 18+在线观看网站| 亚洲精品乱码久久久久久按摩| 舔av片在线| 国产老妇伦熟女老妇高清| 一级毛片电影观看 | 伦精品一区二区三区| 2021天堂中文幕一二区在线观| 日韩强制内射视频| 日本黄色片子视频| 黄色一级大片看看| 久久这里只有精品中国| 最后的刺客免费高清国语| 男女那种视频在线观看| 欧美区成人在线视频| 久久久成人免费电影| 18禁在线无遮挡免费观看视频| 国产精品麻豆人妻色哟哟久久 | 亚洲精品久久国产高清桃花| 亚洲精品国产av成人精品| 久久人人爽人人爽人人片va| 久久午夜亚洲精品久久| 日韩视频在线欧美| 男女啪啪激烈高潮av片| 床上黄色一级片| 一级黄片播放器| 亚洲色图av天堂| 国产精品一及| 国产人妻一区二区三区在| 99久久精品一区二区三区| 久久热精品热| 我要搜黄色片| 国内久久婷婷六月综合欲色啪| 国产亚洲精品久久久久久毛片| 色综合亚洲欧美另类图片| 老司机影院成人| 99热全是精品| 久久人人爽人人片av| 国产亚洲精品av在线| 91av网一区二区| 欧美性感艳星| 有码 亚洲区| 美女 人体艺术 gogo| 久久久久久久久久成人| 国产色婷婷99| 99在线视频只有这里精品首页| 亚洲va在线va天堂va国产| 大又大粗又爽又黄少妇毛片口| 日本免费一区二区三区高清不卡| 青春草亚洲视频在线观看| 亚洲美女搞黄在线观看| 身体一侧抽搐| 日韩av在线大香蕉| 日韩欧美在线乱码| 亚洲av.av天堂| 日韩一区二区三区影片| 精品不卡国产一区二区三区| or卡值多少钱| 一本精品99久久精品77| 亚洲激情五月婷婷啪啪| 两个人视频免费观看高清| 精品久久久久久久久久免费视频| 久久精品人妻少妇| 免费看美女性在线毛片视频| 亚洲第一电影网av| 麻豆成人av视频| 一本一本综合久久| 午夜精品一区二区三区免费看| 2021天堂中文幕一二区在线观| 夜夜爽天天搞| 亚洲图色成人| 亚洲欧美精品自产自拍| 少妇裸体淫交视频免费看高清| 又黄又爽又刺激的免费视频.| 日韩一本色道免费dvd| 少妇裸体淫交视频免费看高清| 久久久久久久久久久丰满| 日本免费一区二区三区高清不卡| 一级毛片电影观看 | 波多野结衣高清无吗| 国产一区二区三区在线臀色熟女| 久99久视频精品免费| 人人妻人人看人人澡| 日韩一本色道免费dvd| 精品久久久久久久久av| 亚洲欧美中文字幕日韩二区| 不卡视频在线观看欧美| 日日撸夜夜添| 日日干狠狠操夜夜爽| 五月玫瑰六月丁香| 少妇熟女欧美另类| 亚洲av二区三区四区| 国产黄a三级三级三级人| 久久久国产成人精品二区| 成人亚洲欧美一区二区av| 欧美一区二区亚洲| 青春草视频在线免费观看| 国产不卡一卡二| 亚洲欧美日韩高清专用| 亚洲在久久综合| 波多野结衣高清作品| 99热6这里只有精品| 国产黄片美女视频| 欧美一区二区亚洲| 精品国内亚洲2022精品成人| 婷婷色综合大香蕉| 日韩av在线大香蕉| 免费看日本二区| 日韩欧美精品免费久久| 蜜桃亚洲精品一区二区三区| 熟女电影av网| 欧美一区二区亚洲| 成人一区二区视频在线观看| 97人妻精品一区二区三区麻豆| 在线免费十八禁| 色综合色国产| 国产一区二区激情短视频| 99热这里只有精品一区| 自拍偷自拍亚洲精品老妇| 国模一区二区三区四区视频| 亚洲无线观看免费| 麻豆国产97在线/欧美| 亚洲精品乱码久久久v下载方式| 我的老师免费观看完整版| 中出人妻视频一区二区| 欧美区成人在线视频| 亚洲av第一区精品v没综合| 久久亚洲国产成人精品v| 黑人高潮一二区| 乱码一卡2卡4卡精品| 国产真实伦视频高清在线观看| 亚洲va在线va天堂va国产| a级一级毛片免费在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 嫩草影院新地址| 亚洲三级黄色毛片| 久久久成人免费电影| 校园春色视频在线观看| 最好的美女福利视频网| 少妇熟女欧美另类| 国产极品精品免费视频能看的| 国产黄色小视频在线观看| 亚洲av免费高清在线观看| 亚洲,欧美,日韩| 99热网站在线观看| 如何舔出高潮| 亚洲精品自拍成人| 国产精品女同一区二区软件| 国产精品日韩av在线免费观看| 午夜精品国产一区二区电影 | 午夜a级毛片| 国产黄色视频一区二区在线观看 | 在线国产一区二区在线| 男女下面进入的视频免费午夜| 美女cb高潮喷水在线观看| 国产在线男女| 热99在线观看视频| 熟女人妻精品中文字幕| 久久久欧美国产精品| 国产精品久久久久久精品电影| 久99久视频精品免费| 99久久九九国产精品国产免费| АⅤ资源中文在线天堂| 成人鲁丝片一二三区免费| ponron亚洲| videossex国产| 免费看光身美女| 久久久久久大精品| 一本精品99久久精品77| 哪个播放器可以免费观看大片| 国产精品一区www在线观看| 成人亚洲欧美一区二区av| 亚洲七黄色美女视频| 欧美日本视频| 97在线视频观看| 亚洲欧美日韩高清在线视频| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲精品国产av成人精品| 色综合色国产| 免费观看人在逋| 欧美变态另类bdsm刘玥| 国产av不卡久久| 又黄又爽又刺激的免费视频.| 亚洲av.av天堂| 国产精品永久免费网站| 看非洲黑人一级黄片| 男人狂女人下面高潮的视频| 久久久午夜欧美精品| 午夜爱爱视频在线播放| 国产午夜福利久久久久久| 色播亚洲综合网| 成人高潮视频无遮挡免费网站| 国产一区二区三区在线臀色熟女| 美女被艹到高潮喷水动态| 久久久久性生活片| 91麻豆精品激情在线观看国产| 别揉我奶头 嗯啊视频| 91av网一区二区| 如何舔出高潮| 精品久久久久久久久亚洲| 国产91av在线免费观看| 精华霜和精华液先用哪个| 国产一级毛片在线| 国产亚洲5aaaaa淫片| 99热6这里只有精品| 国产高潮美女av| 国内精品宾馆在线| 不卡一级毛片| 久久午夜亚洲精品久久| 亚洲第一区二区三区不卡| 亚洲精品国产av成人精品| 在线观看免费视频日本深夜| 夜夜爽天天搞| 九草在线视频观看| 国产一区二区激情短视频| 免费观看精品视频网站| av又黄又爽大尺度在线免费看 | 亚洲国产欧洲综合997久久,| 中国美女看黄片| 亚洲国产精品合色在线| 天美传媒精品一区二区| 伦精品一区二区三区| 一级毛片久久久久久久久女| 啦啦啦观看免费观看视频高清| av免费在线看不卡| 中文欧美无线码| 天天一区二区日本电影三级| 精品欧美国产一区二区三| 欧美性感艳星| 级片在线观看| 成年av动漫网址| 国产精品久久久久久亚洲av鲁大| 禁无遮挡网站| 国产精品不卡视频一区二区| 日本五十路高清| 国产成年人精品一区二区| 18禁裸乳无遮挡免费网站照片| 久久精品国产亚洲av天美| 日韩国内少妇激情av| 天堂中文最新版在线下载 | 国产三级在线视频| 亚洲精品久久国产高清桃花| 在线播放无遮挡| 国产成人精品婷婷| 一卡2卡三卡四卡精品乱码亚洲| 1000部很黄的大片| 免费人成视频x8x8入口观看| 18+在线观看网站| 婷婷六月久久综合丁香| 日韩一区二区三区影片| 亚洲人成网站在线播放欧美日韩| 国产视频首页在线观看| 欧洲精品卡2卡3卡4卡5卡区| 久久亚洲精品不卡| 黄色欧美视频在线观看| 国产一区二区三区在线臀色熟女| 伦理电影大哥的女人| 午夜福利视频1000在线观看| 日本-黄色视频高清免费观看| 午夜激情欧美在线| 五月伊人婷婷丁香| 99热这里只有是精品50| 最近视频中文字幕2019在线8| 欧美日本视频| 好男人视频免费观看在线| 永久网站在线| 夜夜夜夜夜久久久久| 男女做爰动态图高潮gif福利片| 亚洲在线观看片| 黄色视频,在线免费观看| 国产黄片美女视频| 亚洲国产精品成人久久小说 | 亚洲人成网站在线播| 在线免费观看的www视频| 在线国产一区二区在线| 少妇猛男粗大的猛烈进出视频 | 国产精品一二三区在线看| 搡女人真爽免费视频火全软件| 午夜精品一区二区三区免费看| 美女xxoo啪啪120秒动态图| 国产精品一区二区三区四区免费观看| 久久久色成人| 国产真实伦视频高清在线观看| 高清在线视频一区二区三区 | 免费人成视频x8x8入口观看| 久久久久久九九精品二区国产| 蜜桃亚洲精品一区二区三区| 亚洲精品色激情综合| 久久久久免费精品人妻一区二区| 成人无遮挡网站| 国产av在哪里看| 高清在线视频一区二区三区 | 亚洲高清免费不卡视频| 日本免费一区二区三区高清不卡| 成熟少妇高潮喷水视频| 又粗又硬又长又爽又黄的视频 | 少妇的逼好多水| 欧美激情国产日韩精品一区| 欧美成人一区二区免费高清观看| 日韩一本色道免费dvd| 欧美另类亚洲清纯唯美| 国产成人福利小说| 少妇高潮的动态图| 人妻少妇偷人精品九色| 久久精品久久久久久噜噜老黄 | 在线观看av片永久免费下载| 欧美另类亚洲清纯唯美| 国产成人福利小说| 亚洲经典国产精华液单| 国产麻豆成人av免费视频| 成人国产麻豆网| 国产av麻豆久久久久久久| 99国产精品一区二区蜜桃av| 久久精品91蜜桃| 久久久国产成人精品二区| 免费不卡的大黄色大毛片视频在线观看 | 亚洲精品粉嫩美女一区| 一个人看视频在线观看www免费| 国产亚洲精品久久久com| 村上凉子中文字幕在线| 99热这里只有是精品50| 亚洲av熟女| 欧美精品一区二区大全| 极品教师在线视频| 又粗又硬又长又爽又黄的视频 | 一级毛片久久久久久久久女| 寂寞人妻少妇视频99o| 亚洲一区高清亚洲精品| 黑人高潮一二区| 亚洲在久久综合| 欧美色视频一区免费| 黄片wwwwww| 亚洲丝袜综合中文字幕| 久久韩国三级中文字幕| 日韩一本色道免费dvd| 久久精品国产鲁丝片午夜精品| 中文字幕熟女人妻在线| 亚洲人成网站在线播放欧美日韩| 国产精品伦人一区二区| 深夜精品福利| 久久久久国产网址| 久久久国产成人免费| 国产av在哪里看| 黄色欧美视频在线观看| 免费搜索国产男女视频| 久久99精品国语久久久| 亚洲人成网站高清观看| 91在线精品国自产拍蜜月| 男的添女的下面高潮视频| 级片在线观看| 最近中文字幕高清免费大全6| 亚洲一区二区三区色噜噜| 亚洲av不卡在线观看| 丰满乱子伦码专区| 亚洲人成网站在线播放欧美日韩| 国产精品久久久久久久久免|