• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Efficient Removal Phenol Red over Ternary Heterostructured Ag-Bi2MoO6/BiPO4Composite Photocatalyst

    2016-11-24 07:31:20DayuJiangDaXuJiaZhengYangYangChangLiuYushuangWangGuangboCheXueLinLiminChangKeyLaboratoryofPreparationandApplicationsofEnvironmentalFriendlyMaterialsMinistryofEducationJilinNormalUniversityChangchun130103China
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2016年5期

    Da-yu Jiang,Da Xu,JiaZheng,Yang Yang,Chang Liu,Yu-shuang Wang,Guang-bo Che, Xue Lin,Li-min ChangKey Laboratory of Preparation and Applications of Environmental Friendly Materials,Ministry of Education,Jilin Normal University,Changchun 130103,China

    Efficient Removal Phenol Red over Ternary Heterostructured Ag-Bi2MoO6/BiPO4Composite Photocatalyst

    Da-yu Jiang,Da Xu,Jia?Zheng,Yang Yang,Chang Liu,Yu-shuang Wang,Guang-bo Che, Xue Lin?,Li-min Chang
    Key Laboratory of Preparation and Applications of Environmental Friendly Materials,Ministry of Education,Jilin Normal University,Changchun 130103,China

    The fabrication of multicomponent composite systems may provide benefits in terms of charge separation and the retardation of charge pair recombination.In this work,a ternary heterostructured Ag-Bi2MoO6/BiPO4composite was fabricated through a low-temperature solution-phase route for the first time.The XRD,SEM,EDX and XPS results indicated the prepared sample is a three-phase composite of BiPO4,Bi2MoO6,and Ag.Ag nanoparticles were photodeposited on the surface of Bi2MoO6/BiPO4nanosheets,which not only increase visible-light absorption via the surface plasmon resonance,but also serve as good electron acceptor for facilitating quick photoexcited electron transfer.The interface between Bi2MoO6and BiPO4facilitates the migration of photoinduced electrons from Bi2MoO6to BiPO4,which is also conductive to reduce the recombination of electron-holes.Thus,the ternary heterostructured Ag-Bi2MoO6/BiPO4composite showed significant photocatalytic activity,higher than pure Bi2MoO6,BiPO4,and Bi2MoO6/BiPO4.Moreover,the possible photocatalytic mechanism of the Ag-Bi2MoO6/BiPO4heterostructure related to the band positions of the semiconductors was also discussed.In addition,the quenching effects of different scavengers revealed that the reactive·OH and O2·?play a major role in the phenol red decolorization.

    Heterostructure,Bi2MoO6,BiPO4,Ag,Photocatalysis,Visible light

    I.INTRODUCTION

    In recent decades,TiO2has been applied and investigated broadly for the photodegradation of organic pollutants in water owing to its low cost,strong oxidizing power,and nontoxic nature[1].However,the main drawbacks of limited visible light utilization and low quantum yields limit its practical applications[2-4].Therefore,many efforts have been made to fabricate excellent visible-light-driven photocatalysts such as Bi2WO6[5],Bi2MoO6[6],BiVO4[7],InVO4[8], etc.Among these photocatalysts,Bi2MoO6has been found to show excellent visible-light-driven photocatalytic activity for water splitting and for the degradation of organic contaminants[9-12].However,further research on the enhancement of the Bi2MoO6photocatalytic performance is still indispensable because of its poor quantum yield.

    Among a variety of methods,the construction of composite photocatalysts has been proven to be an effective method for improving photocatalytic activity for the degradation of organic contaminants[13,14].In the composite photocatalysts,the interface between coupled semiconductors and/or metals can lead to more efficient interfacial charge transfer and enhance the photoinduced charge separation.So far,a variety of Bi2MoO6-based photocatalysts have been prepared,such as Bi2MoO6/TiO2[15],Bi2MoO6/C[16], Bi2MoO6/Bi2O3[17],and Ag/Bi2MoO6[18].In our previous work,we presented the hydrothermal synthesis of Bi2MoO6/BiPO4[19],Bi2MoO6/SiO2[20],and Bi2MoO6/BiVO4[21].The as-synthesized composites showed superior photocatalytic activities than that of pure Bi2MoO6.Motivated by the above efforts,we further research the synthesis of ternary heterostructured Ag-Bi2MoO6/BiPO4composite.In addition,to the best of our knowledge,there are no reports on the synthesis and photocatalytic activity of this material.

    Recent years,BiPO4has been paid much attention,which has been proven to show much higher photocatalytic activity than TiO2(P25)for the degradation of organic contaminants under UV light[22]. Many studies revealed that BiPO4based photocatalysts displayed excellent photocatalytic performances under visible light irradiation,such as Ag3PO4/BiPO4, Ag/Ag3PO4/BiPO4etc.[23,24].

    In this work,the composite photocatalysts of ternaryheterostructured Ag-Bi2MoO6/BiPO4were successfully synthesized for the first time. The phenol red was used as a mode compound to investigate the photocatalytic performances of the ternary heterostructured composites under visible-light irradiation(λ>420 nm). The results demonstrated that compared with pure Bi2MoO6,BiPO4,and Bi2MoO6/BiPO4composite,the ternary heterostructured Ag-Bi2MoO6/BiPO4composite photocatalysts had a remarkably enhanced phenol red photodegradation activity under visible-light irradiation.The 1.27%Ag-Bi2MoO6/BiPO4catalyst performed the best in the degradation of phenol red.Moreover,the possible photocatalytic mechanism of the Ag-Bi2MoO6/BiPO4heterostructure related to the band positions of the semiconductors was also discussed in detail.

    ?Authors to whom correspondence should be addressed.E-mail: jlsdlinxue@126.com,Tel.: +86-15694349717,FAX:+86-434-3291890

    II.EXPERIMENTS

    A.Preparation of photocatalysts

    1.Preparation of Bi2MoO6/BiPO4photocatalyst

    All chemicals were analytic grade and used without further purification.More details about the preparation of Bi2MoO6/BiPO4,can be found in our previous work [19].In a typical procedure,Bi(NO3)3·5H2O(2 mmol) was firstly dissolved with Na2MoO4·2H2O(1 mmol)or Na3PO4·12H2O(2 mmol)in 15 mL of distilled water.

    For synthesis of Bi2MoO6,the pH value of solution was adjusted to 6 by adding concentrated ammonia. The mixture was then transferred into a 20 mL Teflonlined stainless steel autoclave,and heated to 160°C for 24 h.After reaction,the obtained solid was washed with ethanol and distilled water several times,and dried at 80°C for 10 h.For synthesis of BiPO4,the pH value of solution was adjusted to 1 by adding 1 mol/L HNO3. The mixture was then transferred into a 20 mL Teflonlined stainless steel autoclave.The autoclave was kept at 160°C for 24 h,and work-up of the products was described above.For synthesis of Bi2MoO6/BiPO4composite,Bi(NO3)3·5H2O(3 mmol)and total 2 mmol Na2MoO4+NaPO4(molar ratio of Mo:P was 1:1)were dissolved in 15 mL of distilled water.The pH value of the mixture was adjusted to 1 by adding 1 mol/L HNO3. The mixture was then transferred into a 20 mL Teflonlined stainless steel autoclave.The autoclave was kept at 160°C for 24 h,and work-up of the products was described above.The obtained products were denoted as Bi2MoO6,BiPO4,Bi2MoO6/BiPO4,respectively.

    2.Preparation of Ag-Bi2MoO6/BiPO4photocatalyst

    The synthesized Bi2MoO6/BiPO4composite(0.1 g) were mixed with 200 mL of deionized water followed by ultrasonication for 30 min.Then,1.0 mL of 5% polyethylene glycol(PEG)2000 solution was added and the dispersion was stirred for another 30 min.For deposition of silver on the surface of the composite,a photodeposition method was used as follows:A certain amount of AgNO3solution(2.7 mg/mL)was added to the dispersion.Then the suspension was transferred to a water-cooled reactor(250 mL)and irradiated under a Xe lamp with 300 mW/cm2illumination intensity for 60 min.The precipitates were washed with deionized water and ethanol twice,respectively.The final products were dried at 80°C for 6 h in a vacuum box, denoted as 0.65%Ag-Bi2MoO6/BiPO4,and 1.27%Ag-Bi2MoO6/BiPO4.

    B.Characterization of photocatalysts

    The crystal structures of the samples were characterized by X-ray diffraction(XRD)on a Rigaku (Japan)D/max 2500 X-ray diffractometer(Cu Kα radiation,λ=0.15418 nm).The morphologies and structure details of the as-synthesized samples were detected by using field emission scanning microscopy (FESEM,JSM-6700F)and transmission electron microscopy(TEM,JEM-2100F).The chemical compositions of the as-fabricated compounds were determined by scanning electron microscope-X-ray energy dispersion spectra(SEM-EDX,JSM-6700F).X-ray photoelectron spectroscopy(XPS)analysis was performed with an ESCALa-b220i-XL electron spectrometer(VGScientific,England)using 300 W Al Kα radiation.The photoluminescence(PL)spectra of the photocatalysts were obtained by a F4500(Hitachi,Japan)photoluminescence detector with an excitation wavelength of 325 nm.The UV-Vis diffuse reflectance spectra(DRS) were recorded using a scan UV-Vis spectrophotometer (UV-2550).

    C.Photocatalytic activities studies

    The photocatalytic properties of the as-prepared samples were evaluated using phenol red as a model compound.The phenol red is a very stable compound, which has been used widely as a representative reaction for examining the performance of numerous visible light active catalysts.In experiments,the phenol red solution (0.01 mmol/L,100 mL)containing 0.05 g of photocatalyst were mixed in a pyrex reaction glass.A 300 W Xe lamp(with illumination intensity of 100 mW/cm2)was employed to provide visible light irradiation.The distance between the lamp and the sample was 10 cm.A 420 nm cut-off filter was inserted between the lamp and the sample to filter out UV light(λ<420 nm).Prior to visible light illumination,the suspension was strongly stirred in the dark for 60 min to ensure the establishment of adsorption-desorption equilibrium.Then the solution was exposed to visible light irradiation under magnetic stirring.At given time intervals,4 mL of the suspension was periodically collected and analyzed after centrifugation.The phenol red concentration wasanalyzed by a UV-2550 spectrometer to record intensity of the maximum band at 432 nm in the UV-Vis absorption spectra.

    D.Active species trapping experiments

    For detecting the active species during photocatalytic reactivity,some sacrificial agents,such as 2-propanol(IPA),ammonium oxalate(AO),and 1,4-benzoquinone(BQ)were used as the hydroxyl radical (·OH)scavenger,hole(h+)scavenger and superoxide radical(O2·?)scavenger,respectively.The method was similar to the former photocatalytic activity test with the addition of 1 mmol of quencher in the presence of phenol red.

    III.RESULTS AND DISCUSSION

    Figure1showstheXRD patternsoftheassynthesized Bi2MoO6,BiPO4,Bi2MoO6/BiPO4,and Ag-Bi2MoO6/BiPO4composites.The diffraction peaks of Bi2MoO6and BiPO4can be exactly indexed as JCPDS No.15-0767 and No.21-0121.When coupling the two semiconductors,the main characteristic diffraction peaks of Bi2MoO6and BiPO4did not change obviously.The Ag-Bi2MoO6/BiPO4composites showed a coexistence of Bi2MoO6phase(JCPDS No.15-0767) and BiPO4phase(JCPDS No.21-0121),showing that the mixture of Bi2MoO6and BiPO4is the main existing form of the composite samples. In addition, there is no any diffraction peaks of silver species(38.1°, 44.2°,64.4°,and 77.4°for Ag)can be observed for the Ag-Bi2MoO6/BiPO4samples,suggesting that all the as-synthesized composites possess the same crystal structure.This may be due to the low concentration (0.65wt%?1.27wt%)or small crystal size of Ag.Furthermore,the changes of all diffractions and lattice parameters were not detectable,which indicates that Ag related species resided in the lattice sites and have no separate phase.

    FIG.1 XRD patterns of the as-synthesized samples.

    FIG.2 SEM images of(a)as-synthesized Bi2MoO6, (b) BiPO4, (c) Bi2MoO6/BiPO4, (d) 1.27%Ag-Bi2MoO6/BiPO4,(e)TEM,and(f)HRTEMimages of 1.27%Ag-Bi2MoO6/BiPO4.

    The Ag-Bi2MoO6/BiPO4samples were synthesized through two main processes. The first step was taken to prepare Bi2MoO6/BiPO4composite. On this basis,the second step was taken to load Ag on the surface of Bi2MoO6/BiPO4sample. Figure 2(a)?(d)shows the SEM images of the as-prepared Bi2MoO6,BiPO4,Bi2MoO6/BiPO4,and 1.27%Ag-Bi2MoO6/BiPO4samples.For the pure Bi2MoO6sample(Fig.2(a)),the morphology is nanosheet.And the pure BiPO4product is irregularly shaped flaky crystals with sizes between 200 and 800 nm(Fig.2(b)).As for the Bi2MoO6/BiPO4composite(Fig.2(c)),it can be observed that there are sheet-like crystals with average size of around 500 nm.It can be observed that the Ag-Bi2MoO6/BiPO4sample display a sheet-like morphology(Fig.2(d)),indicating that low amount Ag loading didn't have significant influence on the morphology of Bi2MoO6/BiPO4crystals.It also can be seen that the as-fabricated Ag-Bi2MoO6/BiPO4composite include Ag nanoparticles assembling uniformly on the surface of Bi2MoO6/BiPO4nanosheets(Fig.2(e)). HRTEM image further confirm the formation of a novel ternary heterostructure(Fig.2(f)).By measuring the lattice fringes,the resolved interplanar distances are about 0.204,0.275,and 0.171 nm,which correspondsto the(200)plane of Ag,the(200)plane of Bi2MoO6, and the(302)plane of BiPO4,respectively.EDX elemental microanalysis confirms Bi,Mo,P,Ag,and O as major elements in the ternary heterostructured Bi2MoO6/BiPO4composite(Fig.3(a)). In addition, the EDS analysis indicates that the loading percentage of Ag was 0.65%and 1.27%,respectively(as shown in Table I).The formation of the Ag-Bi2MoO6/BiPO4heterostructure was also confirmed by the elemental mapping of the as-prepared 1.27%Ag-Bi2MoO6/BiPO4sample(Fig.3(b)?(g)).Maps of Bi M,Mo L,P K,O K,and Ag L have the same shape and location,demonstrating the existence of Bi2MoO6,BiPO4,and Ag in the Ag-Bi2MoO6/BiPO4composite.This gives solid evidence of the formation of Ag-Bi2MoO6/BiPO4heterostructure.

    FIG.3 EDX spectrum (a)and the corresponding EDSelementalmappingimages(b-g)of1.27%Ag-Bi2MoO6/BiPO4sample.The bars in figures are 5μm.

    XPS spectra for 1.27%Ag-Bi2MoO6/BiPO4composite are presented to determine the oxidation state and elemental composition for each member of the heterostructure,as shown in Fig.4.The Bi 4f fine XPS spectrum of the sample is shown in Fig.4(a).XPS signals of Bi 4f are observed at binding energies at about 163.63 eV(Bi 4f7/2)and 158.32 eV(Bi 4f5/2),ascribed to Bi3+[25].The Mo 3d peaks are detected at 261.59 and 234.75 eV(Fig.4(b)),indicating a six-valent oxidation state for Mo6+[26].P 2p fine XPS spectrum of the sample is shown in Fig.4(c).XPS signals of P 2p were detected at binding energies around 132.37 eV(P 2p), attributed to P of PO43?[25].The wide and asymmetric peak of the O 1s spectrum indicated that there might be more than one chemical state according to the binding energy(Fig.4(d)).The peaks at 530.25 and 529.18 eV related to P?O(lattice O)[25]and Mo?O (lattice O)[26],respectively.As illustrated in Fig.4(e), typical peaks of Ag 3d can be observed,in which the peaks at 367.08 and 373.21 eV are ascribed to Ag 3d3/2(Ag0)and Ag 3d5/2(Ag0)[27,28].

    TABLE I The EDS ofthe as-prepared x%Ag-Bi2MoO6/BiPO4sample.

    Figure 5(a)shows the UV-Vis diffuse reflectance spectra(DRS)of as-fabricated Bi2MoO6,BiPO4, Bi2MoO6/BiPO4and Ag-Bi2MoO6/BiPO4samples. All the absorbance edges of Ag-Bi2MoO6/BiPO4composites showed marked red shifts,which can be attributed to the surface plasmon resonance(SPR)of the loading Ag,further confirming the existence of Ag particles.The band gap energies of the pure Bi2MoO6and BiPO4can be calculated by the following formula:

    where α,ν,Egand A are absorption coefficient,light frequency,the band-gap energy,and a constant,respectively.n is determined by the type of optical transition of a semiconductor(n=1 for a direct transition and n=4 for an indirect transition).For BiPO4and Bi2MoO6, the values of n are 4 and 1 for the indirect transition and direct transition[22,23],respectively.According to Eq.(1),the band-gap energy(Eg)of Bi2MoO6can be estimated from a plot of(αhν)2versus energy(hν), and the Egof BiPO4can be estimated from a plot of(αhν)1/2versus energy(hν).Thus,the band gaps of the as-prepared BiPO4and Bi2MoO6are estimated to be 3.40 and 2.56 eV,respectively(as illustrated in Fig.5(b)).

    In order to clearly understand the formation of Ag/Bi2MoO6/BiPO4heterojunction,the initial energy band structures of Bi2MoO6and BiPO4were provided. The band positions of Bi2MoO6and BiPO4were obtained by the following empirical formulas:

    FIG.4 XPS spectra of 1.27%Ag-Bi2MoO6/BiPO4sample.(a)Bi 4f spectrum,(b)Mo 3d spectrum,(c)P 2p spectrum,(d) O 1s spectrum,(e)Ag 3d spectrum.

    FIG.5(a)UV-Vis DRS of the as-prepared samples.(b)The plots of(αhν)n/2versus photon energy(hν)for the band-gap energies of Bi2MoO6and BiPO4.

    where EVBis the valence band edge potential,ECBis the conduction band edge potential,X is the electronegativity of the semiconductor,which is the geometric mean of the electronegativity of the constituent atoms,and the value of X for Bi2MoO6and BiPO4is ca.5.50 and 6.49 eV,respectively.Eeis the energy of free electrons on the hydrogen scale(about 4.5 eV),Egis the band gap energy of the semiconductor.Based on the band gap positions,the CB and VB edge potentials of Bi2MoO6are determined to be?0.28 and 2.28 eV, respectively.The CB and VB edge potentials of BiPO4are determined to be 0.30 and 3.70 eV,respectively. The energy band structure diagram of Bi2MoO6and BiPO4is thus schematically illustrated,as displayed in Fig.6.Since the CB potential of Bi2MoO6is more negative than that of BiPO4(Fig.6),the electrons will diffusion from Bi2MoO6to BiPO4,resulting in accumulation of negative charges in BiPO4close to the junction.In addition,Ag nanoparticles on the surface of the composites capture electrons effectively,which is also beneficial to electrons transmission from BiPO4or Bi2MoO6to Ag nanoparticles.These charge transfer would reduce the electron-hole pair recombination and prolong the life-time of charges,thus improving the photocatalytic efficiency.

    FIG.6 Schematic diagram of the separation and transfer of photogenerated charges in the heterostructured composite under visible light irradiation.

    FIG.7(a)Photodegradation efficiencies of phenol red as a function of irradiation time for different photocatalysts.(b) UV-visible spectral changes of phenol red in an aqueous 1.27%Ag-Bi2MoO6/BiPO4dispersion as a function of irradiation time under visible light illumination.

    The photocatalytic performances of as-synthesized samples were studied by comparing degradation rates of phenol red under visible light irradiation(Fig.7(a)). The blank test demonstrates that the degradation of phenol red was extremely slow without any photocatalyst under visible light illumination.From the catalytic experiments,Ag-Bi2MoO6/BiPO4samples were detected to be more photoactive towards phenol red solution than pure Bi2MoO6,BiPO4,and Bi2MoO6/BiPO4composite.Additionally,it can be seen that the photocatalytic efficiency are significantly affected by the content of Ag loading.With the Ag content increasing,the phenol red degradation rate increase.Furthermore,the highest degradation rate was obtained from 1.27%Ag-Bi2MoO6/BiPO4sample with almost 100%of phenol red removal.This increase may be attributed to the capturing of electrons by the deposited Ag to hinder the recombination of hole-electron pairs[25,26].Visible light irradiation of an aqueous phenol red by 1.27%Ag-Bi2MoO6/BiPO4sample led to an apparent decrease in absorption(Fig.7(b)).The comparison of PL spectra of the as-prepared photocatalysts under the excitation wavelength of 325 nm is shown in Fig.8.Compared with pure Bi2MoO6,and Bi2MoO6/BiPO4sample,the PL peak intensity of Ag-Bi2MoO6/BiPO4sample decreased obviously.These results reveal that the heterojunction effect contributes to the effective electron-hole pair separation,which could be a reason for the heterostructured Ag-Bi2MoO6/BiPO4composites showing superior photocatalytic performances under visible light illumination.

    For detecting the main oxidative species in the photocatalytic process,the trapping experiments of radicals and holes in the presence of various scavengers were operated(Fig.S1 in supplementary materials).Under the visible-light irradiation of the as-prepared 1.27%Ag-Bi2MoO6/BiPO4composite,the photodegradation rate of phenol red slightly decreased after the addition of hole scavenger AO,which shows that holes are not the main active species that are responsible for the degradation of phenol red in current photocatalytic systems. However,the photodegradation rate of phenol red was decelerated significantly after the addition of superoxide radical scavenger BQ as well as IPA(hydroxyl radical scavenger).It shows that the active species including O2·?and·OH played the major role in the degrada-tion of phenol red over the 1.27%Ag-Bi2MoO6/BiPO4composite under visible light illumination.

    FIG.8 Room temperature PL spectra of the as-synthesized photocatalysts.

    IV.CONCLUSION

    Ternary heterostructured Ag-Bi2MoO6/BiPO4composite photocatalyst was successfully synthesized,and the composite sample showed excellent visible-light induced photocatalytic activity. And the as-prepared 1.27%Ag-Bi2MoO6/BiPO4composite had very obviously enhanced visible light photocatalytic activity for the degradation of phenol red in solution.The photocatalytic activity enhancement of the ternary heterostructured composite could be attributed to its strong absorption in the visible region due to the surface plasmon resonance resulting from Ag nanoparticles loading and low recombination rate of the electron-hole pairs because of formation of the ternary heterostructure.This work indicated that the composite effect created among semiconductors is of great importance in determining the photocatalytic performances.

    Supplementary materials:Figure S1 shows trapping experiments of active species during the photocatalytic degradation of phenol red over 1.27%Ag-Bi2MoO6/BiPO4sample under visible light irradiation.

    V.ACKNOWLEDGMENTS

    This work is supported by the National Natural Science Fundation of China(No.21407059,No.21576112), and the Science and Technology Research Project of the Department of Education of Jilin Province (No.2015220).

    [1]S.Fukuzumi,T.Kobayashi,and T.Suenobu,Angew. Chem.Int.Edit.50,728(2011).

    [2]Y.F.Hu,Y.X.Li,S.Q.Peng,G.X.Lv,and S.B.Li, Acta Phys.-Chim.Sin.24,2071(2008).

    [3]D.Xu,A.M.Gao,and W.L.Deng,Acta Phys.-Chim. Sin.24,1219(2008).

    [4]B.X.Li,Y.F.Wang,and T.X.Liu,Acta Phys.-Chim. Sin.27,2946(2011).

    [5]J.Y.He,W.M.Wang,F.Long,Z.G.Zou,Z.Y.Fu, and Z.Xu,Mater.Sci.Eng.B 177,967(2012).

    [6]G.H.Tian,Y.J.Chen,X.Y.Meng,J.Zhou,W. Zhou,K.Pan,C.G.Tian,Z.Y.Ren,and H.G.Fu, ChemPlusChem 78,117(2013).

    [7]Y.Yan,S.F.Sun,Y.Song,X.Yan,W.S.Guan,X.L. Liu,and W.D.Shi,J.Hazard.Mater.250/251,106 (2013).

    [8]Y.Wang,H.X.Dai,J.G.Deng,Y.X.Liu,Z.X.Zhao, X.W.Li,and H.Arandiyan,Chem.Eng.J.226,87 (2013).

    [9]W.Z.Yin,W.Z.Wang,and S.M.Sun,Catal.Commun.11,647(2010).

    [10]H.G.Yu,Z.F.Zhu,J.H.Zhou,J.Wang,J.Q.Li,and Y.L.Zhang,Appl.Surf.Sci.265,424(2013).

    [11]M.Y.Zhang,C.L.Shao,P.Zhang,C.Y.Su,X.Zhang, P.P.Liang,Y.Y.Sun,and Y.C.Liu,J.Hazard.Mater. 225/226,155(2012).

    [12]L.W.Zhang,T.G.Xu,X.Zhao,and Y.F.Zhu,Appl. Catal.B 98,138(2010).

    [13]F.J.Zhang,S.F.Zhu,F.Z.Xie,J.Zhang,and Z.D. Meng,Sep.Purif.Technol.113,1(2013).

    [14]D.L.Jiang,L.L.Chen,and J.J.Zhu,M.Chen,W. D.Shi,and J.M.Xie,Dalton Trans.42,15726(2013).

    [15]M.Y.Zhang,C.L.Shao,J.B.Mu,Z.Y.Zhang,Z.C. Guo,P.Zhang,and Y.C.Liu,CrystEngComm 14,605 (2012).

    [16]M.Y.Zhang,C.L.Shao,J.B.Mu,X.M.Huang,Z.Y. Zhang,Z.C.Guo,P.Zhang,and Y.C.Liu,J.Mater. Chem.22,577(2012).

    [17]Y.S.Xu,Z.J.Zhang,and W.D.Zhang,Mater.Res. Bull.48,1420(2013).

    [18]B.Yuan,C.H.Wang,Y.Qi,X.L.Song,K.Mu,P. Guo,L.T.Meng,and H.M.Xi,Colloids Surf.A 425, 99(2013).

    [19]X.Lin,D.Liu,X.Y.Guo,N.Sun,S.Zhao,L.M. Chang,H.J.Zhai,and Q.W.Wang,J.Phys.Chem. Solids 76,170(2015).

    [20]X.Lin,X.Y.Guo,D.Liu,Q.W.Wang,H.J.Zhai, and L.M.Chang,Mater.Res.Bull.63,72(2015).

    [21]X.Lin,X.Y.Guo,Q.W.Wang,L.M.Chang,and H. J.Zhai,Acta Phys.-Chim.Sin.30,2113(2014).

    [22]C.S.Pan and Y.F.Zhu,Environ.Sci.Technol.44, 5570(2010).

    [23]H.L.Lin,H.F.Ye,B.Y.Xu,J.Cao,and S.F.Chen, Catal.Comm.37,55(2013).

    [24]T.Y.Huang,Y.J.Chen,C.Y.Lai,and Y.W.Lin, RSC Adv.5,43854(2015).

    [25]S.Y.Wu,H.Zheng,Y.W.Lian,and Y.Y.Wu,Mater. Res.Bull.48,2901(2013).

    [26]P.Zhang,C.L.Shao,M.Y.Zhang,Z.C.Guo,J.B. Mu,Z.Y.Zhang,X.Zhang,and Y.C.Liu,J.Hazard. Mater.217/218,422(2012).

    [27]Y.F.Chen,W.X.Huang,D.L.He,Y.Situ,and H. Huang,ACS Appl.Mater.Inter.6,14405(2014).

    [28]B.Yuan,C.H.Wang,Y.Qi,X.L.Song,K.Mu,P. Guo,L.T.Meng,and H.M.Xi,Colloid.Surface.A 425,99(2013).

    (Dated:Received on February 29,2016;Accepted on May 26,2016)

    亚洲七黄色美女视频| www.熟女人妻精品国产| 在线观看www视频免费| 一本久久中文字幕| 亚洲 欧美一区二区三区| 69精品国产乱码久久久| 亚洲国产精品成人综合色| 色综合站精品国产| 久久婷婷人人爽人人干人人爱 | 国产精品影院久久| 亚洲国产高清在线一区二区三 | av福利片在线| 亚洲国产欧美一区二区综合| 免费高清在线观看日韩| 国产高清激情床上av| 国产精品香港三级国产av潘金莲| 啦啦啦免费观看视频1| 两个人免费观看高清视频| 巨乳人妻的诱惑在线观看| 极品人妻少妇av视频| 成人18禁高潮啪啪吃奶动态图| 9热在线视频观看99| 此物有八面人人有两片| 亚洲av电影在线进入| 精品欧美国产一区二区三| 九色国产91popny在线| 午夜福利影视在线免费观看| 国产野战对白在线观看| 精品国产乱码久久久久久男人| 制服诱惑二区| 人妻丰满熟妇av一区二区三区| 9热在线视频观看99| 亚洲全国av大片| 99在线人妻在线中文字幕| 成年人黄色毛片网站| 亚洲欧洲精品一区二区精品久久久| 欧美激情久久久久久爽电影 | 美女扒开内裤让男人捅视频| 国产精品99久久99久久久不卡| 国产又爽黄色视频| 1024视频免费在线观看| 9色porny在线观看| 纯流量卡能插随身wifi吗| 午夜免费成人在线视频| 国产亚洲欧美在线一区二区| 久久九九热精品免费| bbb黄色大片| 国产99久久九九免费精品| 亚洲 欧美 日韩 在线 免费| 长腿黑丝高跟| 国产精品秋霞免费鲁丝片| 久久 成人 亚洲| 每晚都被弄得嗷嗷叫到高潮| 亚洲狠狠婷婷综合久久图片| 久久久久久亚洲精品国产蜜桃av| 亚洲av五月六月丁香网| 国产一卡二卡三卡精品| 麻豆国产av国片精品| 久久人人爽av亚洲精品天堂| 18禁观看日本| 欧美日韩乱码在线| 夜夜夜夜夜久久久久| 精品国产国语对白av| av天堂在线播放| 淫秽高清视频在线观看| www国产在线视频色| 久久精品亚洲精品国产色婷小说| 国产精品香港三级国产av潘金莲| 禁无遮挡网站| 热re99久久国产66热| 国产精品久久久久久亚洲av鲁大| 黄频高清免费视频| 色尼玛亚洲综合影院| 九色亚洲精品在线播放| 在线观看免费视频网站a站| 精品免费久久久久久久清纯| 国内久久婷婷六月综合欲色啪| 老司机在亚洲福利影院| 午夜福利,免费看| 男人的好看免费观看在线视频 | 老司机福利观看| 少妇熟女aⅴ在线视频| 中文字幕人成人乱码亚洲影| 国产精品久久视频播放| 国内精品久久久久精免费| 欧美亚洲日本最大视频资源| 精品久久久久久久毛片微露脸| aaaaa片日本免费| 好看av亚洲va欧美ⅴa在| 亚洲成人精品中文字幕电影| 一级片免费观看大全| 亚洲欧洲精品一区二区精品久久久| 亚洲人成网站在线播放欧美日韩| 女性生殖器流出的白浆| 中文字幕色久视频| 亚洲 欧美 日韩 在线 免费| 嫩草影院精品99| 女人精品久久久久毛片| 欧美成人午夜精品| 成人亚洲精品一区在线观看| 精品日产1卡2卡| 老司机在亚洲福利影院| 国产黄a三级三级三级人| 国产麻豆成人av免费视频| 国产亚洲精品综合一区在线观看 | 国产高清视频在线播放一区| 香蕉丝袜av| 色综合欧美亚洲国产小说| 又黄又爽又免费观看的视频| 岛国视频午夜一区免费看| 中文字幕人妻熟女乱码| 不卡av一区二区三区| 中文字幕人成人乱码亚洲影| 好男人在线观看高清免费视频 | 亚洲av成人不卡在线观看播放网| av在线天堂中文字幕| 久久久精品国产亚洲av高清涩受| 国语自产精品视频在线第100页| 久久精品国产亚洲av香蕉五月| 中国美女看黄片| 久久人妻av系列| 久久婷婷成人综合色麻豆| 国产一区二区在线av高清观看| 国产麻豆成人av免费视频| 好看av亚洲va欧美ⅴa在| 午夜福利欧美成人| 中文字幕人妻熟女乱码| 日韩精品中文字幕看吧| 99精品欧美一区二区三区四区| 69精品国产乱码久久久| 天天一区二区日本电影三级 | 欧美最黄视频在线播放免费| av中文乱码字幕在线| 大型av网站在线播放| 欧美中文综合在线视频| 一本综合久久免费| 国产成人精品无人区| 黄频高清免费视频| 午夜福利视频1000在线观看 | 伦理电影免费视频| 手机成人av网站| 91麻豆精品激情在线观看国产| a在线观看视频网站| 怎么达到女性高潮| 丁香欧美五月| 亚洲五月婷婷丁香| 成人18禁高潮啪啪吃奶动态图| 国产欧美日韩一区二区三区在线| av视频在线观看入口| 中文字幕高清在线视频| 神马国产精品三级电影在线观看 | 国产一区二区在线av高清观看| 夜夜夜夜夜久久久久| 亚洲色图av天堂| 国产精品久久久久久精品电影 | 脱女人内裤的视频| 黑人巨大精品欧美一区二区蜜桃| 中文字幕另类日韩欧美亚洲嫩草| 久久人妻av系列| 日韩精品青青久久久久久| 搡老妇女老女人老熟妇| 亚洲欧美日韩高清在线视频| 国产在线观看jvid| 久久久国产成人免费| 9191精品国产免费久久| 久久天堂一区二区三区四区| 桃色一区二区三区在线观看| 妹子高潮喷水视频| 亚洲欧美一区二区三区黑人| 亚洲 欧美一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 午夜免费激情av| 看片在线看免费视频| 亚洲国产精品sss在线观看| 久久天躁狠狠躁夜夜2o2o| 啦啦啦观看免费观看视频高清 | 亚洲人成电影免费在线| 亚洲av片天天在线观看| 两个人免费观看高清视频| 久久久水蜜桃国产精品网| 美女 人体艺术 gogo| 少妇熟女aⅴ在线视频| 深夜精品福利| 久久精品国产99精品国产亚洲性色 | 黑人巨大精品欧美一区二区mp4| av有码第一页| 黄色丝袜av网址大全| 成人国产一区最新在线观看| 18美女黄网站色大片免费观看| 日日夜夜操网爽| 成人三级黄色视频| 亚洲人成电影免费在线| 久久国产精品影院| 国产亚洲精品久久久久5区| 在线播放国产精品三级| 18禁观看日本| 大香蕉久久成人网| 日韩国内少妇激情av| 亚洲成人国产一区在线观看| 精品日产1卡2卡| 久久婷婷成人综合色麻豆| 中文字幕另类日韩欧美亚洲嫩草| 亚洲色图综合在线观看| 国产欧美日韩一区二区三| 精品国产一区二区久久| 夜夜看夜夜爽夜夜摸| 天天添夜夜摸| 精品一区二区三区av网在线观看| 一区二区日韩欧美中文字幕| 少妇的丰满在线观看| 精品一区二区三区视频在线观看免费| 制服丝袜大香蕉在线| 成人18禁高潮啪啪吃奶动态图| 人人妻人人澡欧美一区二区 | 神马国产精品三级电影在线观看 | 亚洲精品中文字幕一二三四区| 久久人妻av系列| 波多野结衣av一区二区av| 亚洲人成电影观看| 欧美精品啪啪一区二区三区| 黑丝袜美女国产一区| 亚洲第一电影网av| 亚洲国产毛片av蜜桃av| 极品人妻少妇av视频| 亚洲五月色婷婷综合| 99国产综合亚洲精品| 亚洲天堂国产精品一区在线| 久久国产乱子伦精品免费另类| 高清毛片免费观看视频网站| 不卡av一区二区三区| 欧美日本中文国产一区发布| 中文字幕最新亚洲高清| 巨乳人妻的诱惑在线观看| av福利片在线| 在线观看www视频免费| 51午夜福利影视在线观看| 亚洲欧美日韩高清在线视频| 91麻豆精品激情在线观看国产| 国产97色在线日韩免费| 亚洲成人久久性| 大型av网站在线播放| 一级毛片高清免费大全| 黄色女人牲交| 欧美另类亚洲清纯唯美| 久久国产乱子伦精品免费另类| 男人操女人黄网站| 亚洲欧美激情在线| 久久久久久久久久久久大奶| 亚洲自偷自拍图片 自拍| 国产精品二区激情视频| 国产精品一区二区在线不卡| 午夜a级毛片| 极品人妻少妇av视频| 亚洲精品在线美女| 亚洲五月天丁香| 在线观看舔阴道视频| 午夜福利,免费看| 人妻久久中文字幕网| 日韩免费av在线播放| 亚洲精华国产精华精| 搡老熟女国产l中国老女人| 在线免费观看的www视频| 可以免费在线观看a视频的电影网站| 国产一级毛片七仙女欲春2 | 最近最新中文字幕大全电影3 | 黄片小视频在线播放| 亚洲成国产人片在线观看| 欧美日韩黄片免| 欧美在线一区亚洲| 一本综合久久免费| 亚洲无线在线观看| 精品国内亚洲2022精品成人| 国产精品免费一区二区三区在线| 日韩欧美在线二视频| av中文乱码字幕在线| 99在线视频只有这里精品首页| 亚洲欧美精品综合一区二区三区| 亚洲av第一区精品v没综合| 真人做人爱边吃奶动态| 亚洲精品粉嫩美女一区| 亚洲欧美日韩高清在线视频| 在线免费观看的www视频| 欧美另类亚洲清纯唯美| 免费少妇av软件| 黄色片一级片一级黄色片| 妹子高潮喷水视频| 久久性视频一级片| 亚洲欧美激情在线| 日韩大码丰满熟妇| 黄色成人免费大全| 色精品久久人妻99蜜桃| 日韩精品中文字幕看吧| 最近最新中文字幕大全免费视频| 日韩国内少妇激情av| 露出奶头的视频| 久久人人爽av亚洲精品天堂| 精品乱码久久久久久99久播| www.精华液| 亚洲国产精品sss在线观看| 精品国产一区二区久久| 嫩草影视91久久| 国产色视频综合| 曰老女人黄片| 两个人视频免费观看高清| 久久久久久久久中文| 国产欧美日韩精品亚洲av| 国产精品精品国产色婷婷| 91老司机精品| 岛国视频午夜一区免费看| 成人18禁在线播放| 丰满的人妻完整版| 高清在线国产一区| avwww免费| 久久久久久亚洲精品国产蜜桃av| 欧美+亚洲+日韩+国产| 成人手机av| 国产视频一区二区在线看| 香蕉丝袜av| 亚洲av成人一区二区三| 国产亚洲欧美在线一区二区| 精品久久久久久久人妻蜜臀av | 色av中文字幕| 成人三级黄色视频| 国产成人欧美在线观看| 午夜福利18| 久99久视频精品免费| 国产精品1区2区在线观看.| av有码第一页| 精品熟女少妇八av免费久了| 男男h啪啪无遮挡| 久久久国产欧美日韩av| 一夜夜www| 欧美中文综合在线视频| 黑人巨大精品欧美一区二区mp4| 19禁男女啪啪无遮挡网站| av片东京热男人的天堂| 亚洲av五月六月丁香网| 亚洲av成人av| 欧美黄色淫秽网站| 国产乱人伦免费视频| 十八禁网站免费在线| 操美女的视频在线观看| 色老头精品视频在线观看| 99在线人妻在线中文字幕| www国产在线视频色| 精品福利观看| 亚洲,欧美精品.| 精品熟女少妇八av免费久了| 久久精品亚洲熟妇少妇任你| 欧美日韩乱码在线| www日本在线高清视频| 亚洲av日韩精品久久久久久密| 国产成人av激情在线播放| 在线观看免费视频网站a站| 欧美成人免费av一区二区三区| 人人妻,人人澡人人爽秒播| 午夜老司机福利片| 亚洲一区二区三区色噜噜| 母亲3免费完整高清在线观看| 欧美日韩瑟瑟在线播放| 淫秽高清视频在线观看| 久久国产亚洲av麻豆专区| 亚洲精品粉嫩美女一区| 午夜免费鲁丝| 在线免费观看的www视频| 91大片在线观看| 国产一卡二卡三卡精品| 九色国产91popny在线| 宅男免费午夜| 人人澡人人妻人| 91麻豆精品激情在线观看国产| 黄色丝袜av网址大全| 色综合亚洲欧美另类图片| 国产精品久久电影中文字幕| 一进一出好大好爽视频| 精品久久久久久久久久免费视频| 亚洲男人天堂网一区| 正在播放国产对白刺激| 亚洲,欧美精品.| 国产精品一区二区在线不卡| 日本精品一区二区三区蜜桃| 精品国产乱子伦一区二区三区| 1024香蕉在线观看| 久久热在线av| 国产欧美日韩精品亚洲av| 黄色a级毛片大全视频| 欧美黑人欧美精品刺激| 亚洲情色 制服丝袜| 99热只有精品国产| 日韩大尺度精品在线看网址 | 波多野结衣巨乳人妻| 亚洲熟妇熟女久久| 午夜日韩欧美国产| 一夜夜www| 欧美性长视频在线观看| 亚洲五月天丁香| 麻豆成人av在线观看| 老鸭窝网址在线观看| 亚洲五月色婷婷综合| a在线观看视频网站| 国产视频一区二区在线看| 日韩大码丰满熟妇| 老司机靠b影院| 99精品久久久久人妻精品| 亚洲专区中文字幕在线| 日本撒尿小便嘘嘘汇集6| 神马国产精品三级电影在线观看 | 国产av又大| 国产一区二区三区视频了| 欧美人与性动交α欧美精品济南到| 在线观看www视频免费| 一区在线观看完整版| 亚洲国产欧美日韩在线播放| 99香蕉大伊视频| 97碰自拍视频| 久久草成人影院| 亚洲自拍偷在线| 久久这里只有精品19| 国产野战对白在线观看| 婷婷丁香在线五月| 两个人免费观看高清视频| 欧美大码av| 午夜福利,免费看| 50天的宝宝边吃奶边哭怎么回事| 91成年电影在线观看| netflix在线观看网站| 亚洲狠狠婷婷综合久久图片| 欧美精品啪啪一区二区三区| 色精品久久人妻99蜜桃| 老汉色∧v一级毛片| 男人的好看免费观看在线视频 | 97人妻天天添夜夜摸| 母亲3免费完整高清在线观看| 一级a爱视频在线免费观看| 麻豆av在线久日| 亚洲三区欧美一区| 好男人在线观看高清免费视频 | 欧美日韩中文字幕国产精品一区二区三区 | 亚洲一区二区三区色噜噜| 在线观看免费午夜福利视频| 女人高潮潮喷娇喘18禁视频| 欧美日韩亚洲综合一区二区三区_| 精品卡一卡二卡四卡免费| 国产精品自产拍在线观看55亚洲| 欧美 亚洲 国产 日韩一| 久久久久久久精品吃奶| 亚洲五月色婷婷综合| 桃红色精品国产亚洲av| 男人舔女人的私密视频| www国产在线视频色| 欧美在线黄色| 亚洲欧洲精品一区二区精品久久久| 日本精品一区二区三区蜜桃| 91精品国产国语对白视频| 国内毛片毛片毛片毛片毛片| 亚洲av五月六月丁香网| 久久九九热精品免费| 嫩草影视91久久| www国产在线视频色| 一a级毛片在线观看| 久久影院123| 国产免费av片在线观看野外av| 亚洲第一电影网av| 国产午夜精品久久久久久| 91在线观看av| av视频在线观看入口| 亚洲欧美日韩另类电影网站| 久久九九热精品免费| 国产午夜福利久久久久久| 国产精品秋霞免费鲁丝片| 亚洲自拍偷在线| 多毛熟女@视频| 长腿黑丝高跟| 国产亚洲精品av在线| 亚洲一码二码三码区别大吗| 一级黄色大片毛片| 午夜精品久久久久久毛片777| av天堂在线播放| 免费久久久久久久精品成人欧美视频| 亚洲成av片中文字幕在线观看| 男男h啪啪无遮挡| 黄频高清免费视频| 中文亚洲av片在线观看爽| 欧美日韩一级在线毛片| 最好的美女福利视频网| 伦理电影免费视频| 亚洲熟妇熟女久久| 国产免费男女视频| 1024视频免费在线观看| 少妇粗大呻吟视频| 久久久国产成人精品二区| 国产免费av片在线观看野外av| 夜夜躁狠狠躁天天躁| 亚洲人成77777在线视频| 欧美精品啪啪一区二区三区| 男人的好看免费观看在线视频 | 在线十欧美十亚洲十日本专区| 日韩视频一区二区在线观看| 窝窝影院91人妻| 日韩欧美三级三区| 精品日产1卡2卡| 在线视频色国产色| 国产成人av教育| 精品国产亚洲在线| 久久久久国内视频| 国产精品1区2区在线观看.| 在线观看免费日韩欧美大片| 日韩欧美国产一区二区入口| 可以免费在线观看a视频的电影网站| 国产免费av片在线观看野外av| 国内精品久久久久精免费| 免费看美女性在线毛片视频| 国产亚洲av高清不卡| 日韩有码中文字幕| 99re在线观看精品视频| 脱女人内裤的视频| av视频在线观看入口| 动漫黄色视频在线观看| 国产精品秋霞免费鲁丝片| 日韩精品免费视频一区二区三区| 一级毛片女人18水好多| 日韩欧美免费精品| 亚洲国产高清在线一区二区三 | 人妻久久中文字幕网| 美女高潮喷水抽搐中文字幕| 在线观看舔阴道视频| 一边摸一边抽搐一进一小说| 久久欧美精品欧美久久欧美| 日本三级黄在线观看| 99在线人妻在线中文字幕| www日本在线高清视频| 国产精华一区二区三区| 欧美av亚洲av综合av国产av| 国产高清videossex| 成人免费观看视频高清| 国产精品1区2区在线观看.| 热99re8久久精品国产| 午夜福利欧美成人| 看片在线看免费视频| 亚洲国产欧美一区二区综合| 欧美+亚洲+日韩+国产| 亚洲avbb在线观看| av有码第一页| 黄色成人免费大全| aaaaa片日本免费| 18禁国产床啪视频网站| 国产伦一二天堂av在线观看| 午夜精品在线福利| 国产一区在线观看成人免费| 日日爽夜夜爽网站| cao死你这个sao货| 自线自在国产av| 国产高清videossex| 日韩视频一区二区在线观看| 亚洲国产高清在线一区二区三 | 国产精品一区二区在线不卡| 黄色视频,在线免费观看| 亚洲成人免费电影在线观看| www国产在线视频色| 十八禁网站免费在线| 美女国产高潮福利片在线看| 一进一出抽搐动态| 丰满的人妻完整版| av电影中文网址| 成年人黄色毛片网站| 日韩 欧美 亚洲 中文字幕| 一级毛片精品| 夜夜爽天天搞| 久久人人97超碰香蕉20202| 亚洲精品国产一区二区精华液| 亚洲无线在线观看| 午夜两性在线视频| 99久久综合精品五月天人人| 女生性感内裤真人,穿戴方法视频| 色老头精品视频在线观看| 国产极品粉嫩免费观看在线| 精品一品国产午夜福利视频| 久久国产亚洲av麻豆专区| 午夜福利在线观看吧| 99国产极品粉嫩在线观看| 国产精品永久免费网站| 欧美日韩亚洲综合一区二区三区_| 精品一区二区三区视频在线观看免费| 成年女人毛片免费观看观看9| 国产欧美日韩精品亚洲av| 色在线成人网| 99久久精品国产亚洲精品| 成人18禁在线播放| 一进一出好大好爽视频| 自拍欧美九色日韩亚洲蝌蚪91| 男人舔女人下体高潮全视频| 老司机福利观看| 一区二区日韩欧美中文字幕| 亚洲精品国产一区二区精华液| 丰满的人妻完整版| 啦啦啦观看免费观看视频高清 | 欧美日韩福利视频一区二区| 久久人人97超碰香蕉20202| 久久久久久亚洲精品国产蜜桃av| 岛国视频午夜一区免费看| 超碰成人久久| 在线观看免费午夜福利视频| 两个人免费观看高清视频| 国产亚洲精品一区二区www| tocl精华| 午夜a级毛片| 国产熟女xx| 国产av又大| 日韩欧美一区二区三区在线观看| 欧美日本视频| 亚洲色图 男人天堂 中文字幕| 精品国产一区二区三区四区第35| 麻豆一二三区av精品| 1024视频免费在线观看| 久久人人精品亚洲av|