祝凌妃 楊震 秦利
·綜述·
肌肉因子與代謝性疾病
祝凌妃 楊震 秦利
近來(lái)的研究發(fā)現(xiàn),骨骼肌不僅是人體重要的運(yùn)動(dòng)器官,也是活躍的內(nèi)分泌器官。肌肉因子(myokine)是指由骨骼肌合成、分泌的細(xì)胞因子和活性多肽。肌肉因子不僅可以作用于骨骼肌本身,還可通過(guò)血液循環(huán)到達(dá)外周,作用于肝臟、脂肪、心臟等器官,調(diào)節(jié)機(jī)體的代謝。研究表明,肌肉因子與肥胖、2型糖尿病、代謝綜合征等代謝相關(guān)性疾病的發(fā)生、發(fā)展密切相關(guān),可能是治療代謝性疾病的潛在靶點(diǎn)。
肌肉因子;骨骼?。淮x性疾病
骨骼肌占機(jī)體總重量的40%,是非肥胖人群體內(nèi)最大的器官,在人體姿勢(shì)的維持和生命運(yùn)動(dòng)中起重要作用。近年來(lái),大量研究表明,骨骼肌不僅是運(yùn)動(dòng)器官,更是內(nèi)分泌器官,具有強(qiáng)大的內(nèi)分泌功能[1]。骨骼肌合成、分泌的細(xì)胞因子和活性多肽被稱(chēng)為肌肉因子(myokine)。肌肉因子不僅能作用于骨骼肌本身,調(diào)節(jié)其糖、脂和蛋白質(zhì)的代謝,還可通過(guò)血液循環(huán)到達(dá)外周,擔(dān)當(dāng)骨骼肌與肝臟、脂肪組織、心臟、大腦及其他器官之間對(duì)話的信使,進(jìn)而調(diào)節(jié)機(jī)體代謝[2]。近年來(lái),肌肉因子與肥胖、2型糖尿病、代謝綜合征等代謝性疾病的相關(guān)性受到廣泛關(guān)注,研究認(rèn)為其可能是代謝性疾病治療的潛在靶點(diǎn)。
IL-6是一種多功能細(xì)胞因子,具有調(diào)節(jié)免疫應(yīng)答、調(diào)節(jié)造血系統(tǒng)、誘導(dǎo)急性期蛋白產(chǎn)生、調(diào)節(jié)腫瘤生長(zhǎng)、產(chǎn)生疲勞等多種生物學(xué)活性,在不同組織和器官中起不同作用。持續(xù)性運(yùn)動(dòng)時(shí),骨骼肌收縮,肌小管合成并釋放較高水平的IL-6。研究提示IL-6不僅是多功效的細(xì)胞因子,更是對(duì)機(jī)體代謝起重要作用的肌肉因子之一[3]。運(yùn)動(dòng)后血漿IL-6水平可增加至基線水平的100倍[4]。其主要的影響因素是運(yùn)動(dòng)的強(qiáng)度、持續(xù)時(shí)間以及肌肉的能量狀態(tài),而運(yùn)動(dòng)的類(lèi)型對(duì)其影響極微[5]。研究表明,肌源性IL-6的表達(dá)主要受c-Jun氨基末端激酶/激活蛋白1(JNK/AP1)信號(hào)通路的調(diào)控:肌肉收縮時(shí), JNK和AP1被激活,促進(jìn)肌小管中IL-6 mRNA的表達(dá),使IL-6的合成和釋放增多[6]。肌源性IL-6不僅作用于骨骼肌本身,還能在釋放進(jìn)入血后作用于其他組織,調(diào)節(jié)機(jī)體的糖、脂代謝和胰島素敏感性。
研究證實(shí),無(wú)論在體內(nèi)還是體外,肌源性IL-6均可促進(jìn)胰島素相關(guān)的葡萄糖吸收和葡萄糖轉(zhuǎn)運(yùn)蛋白-4(GLUT-4)的轉(zhuǎn)位,且在運(yùn)動(dòng)時(shí)能促進(jìn)肝糖原的合成[7]。一項(xiàng)在C2C12肌小管上進(jìn)行的研究表明,IL-6對(duì)胰島素敏感性的調(diào)節(jié)與暴露時(shí)間密切相關(guān):短期急性的IL-6暴露使C2C12肌小管中葡萄糖的吸收增加,而長(zhǎng)期暴露則能通過(guò)損害胰島素信號(hào)通路引起胰島素抵抗[8]。體外實(shí)驗(yàn)證明,IL-6可通過(guò)激活A(yù)MP活化蛋白激酶(AMPK)促進(jìn)肌小管的脂肪氧化和脂解作用,促進(jìn)糖原的合成及葡萄糖的吸收,但這一效應(yīng)在2型糖尿病患者的肌細(xì)胞中并不存在[9]。
另外,肌源性IL-6在胰島細(xì)胞代謝和胰島素的分泌中起重要作用。Ellingsgaard等[10]的最新研究發(fā)現(xiàn),IL-6能促進(jìn)胰島α、β細(xì)胞增殖,且能阻止代謝應(yīng)激引起的α細(xì)胞凋亡。IL-6還能促進(jìn)小腸L細(xì)胞和胰島α細(xì)胞合成和分泌胰高血糖素樣肽-1(GLP-1),從而促進(jìn)β細(xì)胞分泌胰島素,改善葡萄糖耐量。由于GLP-1促進(jìn)胰島素分泌依賴(lài)于葡萄糖的含量,故IL-6誘導(dǎo)GLP-1的合成主要發(fā)生在運(yùn)動(dòng)后進(jìn)食中。
FGF21是FGF家族的新成員,最早由Nishimura于小鼠胚胎中發(fā)現(xiàn),屬于FGF19亞族。人源FGF21由181個(gè)氨基酸組成,與鼠源FGF21具有75%的同源性。FGF21主要在肝臟合成,在其他參與糖、脂代謝的組織中如脂肪組織、胰腺中也有表達(dá)。Izumiya等[11]發(fā)現(xiàn),蛋白激酶B(Akt)1轉(zhuǎn)基因小鼠的骨骼肌中FGF21的表達(dá)增多,其循環(huán)中濃度升高,說(shuō)明FGF21不僅是重要的脂肪因子和肝因子,亦是重要的肌肉因子,且其在骨骼肌中的表達(dá)受磷脂酰肌醇3激酶(PI3K)/Akt1信號(hào)通路的調(diào)控。
作為肌肉因子,F(xiàn)GF21的表達(dá)受多種應(yīng)激的調(diào)節(jié),在機(jī)體代謝中起重要作用。Keipert等[12]研究發(fā)現(xiàn),解耦聯(lián)蛋白1轉(zhuǎn)基因小鼠骨骼肌和循環(huán)中FGF21水平均高于與其同源的野生型小鼠,證實(shí)FGF21可誘導(dǎo)白色脂肪組織(WAT)棕色化以促進(jìn)產(chǎn)熱、減少脂肪的堆積。另一項(xiàng)研究發(fā)現(xiàn),自噬缺陷和隨之出現(xiàn)的線粒體功能失調(diào)可通過(guò)誘導(dǎo)肌源性FGF21的表達(dá)來(lái)對(duì)抗飲食誘發(fā)的肥胖,增強(qiáng)胰島素敏感性,并改善胰島素抵抗[13]。但FGF21改善胰島素抵抗的機(jī)制并不明確,可能是通過(guò)增加骨骼肌中葡萄糖的吸收來(lái)實(shí)現(xiàn)的。
Irisin是最新發(fā)現(xiàn)的肌肉因子,是Ⅲ型纖連蛋白組件包含蛋白5(FNDC5)被蛋白水解酶剪切后形成的一段含110個(gè)氨基酸的可分泌多肽片段。運(yùn)動(dòng)能通過(guò)促進(jìn)過(guò)氧化物酶體增殖物活化受體γ協(xié)同刺激因子-1α(PGC-1 α)誘導(dǎo)FNDC5基因的表達(dá),進(jìn)而促進(jìn)irisin的分泌[17]。FNDC5 mRNA不僅存在于骨骼肌中,在其他的組織如心(包括心包)、直腸、脂肪、腦脊液等均有不同程度的表達(dá)[18-19]。年齡、骨骼肌重量等是影響循環(huán)中irisin水平的重要因素,運(yùn)動(dòng)和寒冷,可刺激irisin產(chǎn)生,但其調(diào)節(jié)機(jī)制并不明確[17,20-21]。有研究推測(cè),激活p38絲裂原活化蛋白激酶(p38MAPK)信號(hào)通路是irisin分泌的主要調(diào)節(jié)機(jī)制[22]。
Irisin能誘導(dǎo)WAT棕色化,導(dǎo)致能量消耗增多,減輕體質(zhì)量,改善胰島素抵抗和糖耐量。Irisin通過(guò)刺激WAT中解耦聯(lián)蛋白1的表達(dá),促進(jìn)其向棕色脂肪組織轉(zhuǎn)變,從而增加機(jī)體的產(chǎn)熱和消耗多余能量以維持機(jī)體的能量平衡,但也有研究認(rèn)為其僅在鍛煉后短期內(nèi)有調(diào)節(jié)產(chǎn)熱、代謝作用,并無(wú)長(zhǎng)期效應(yīng)[17,23]。動(dòng)物實(shí)驗(yàn)證實(shí)irisin可以改善高脂飲食小鼠的糖耐量,并且降低空腹胰島素水平,表明irisin可以改善胰島素抵抗。最新研究發(fā)現(xiàn),irisin可通過(guò)p38 MAPK-PGC-1α-irisin-betatrophin軸調(diào)節(jié)胰島β細(xì)胞的功能,從而改善胰島素抵抗[22]。
Irisin mRNA的表達(dá)和(或)其在循環(huán)中的水平與人體某些可測(cè)量代謝參數(shù)和生化指標(biāo)密切相關(guān)。Bostr?m等[17]首先通過(guò)小鼠實(shí)驗(yàn)研究證實(shí),irisin可以改善高脂飲食小鼠的糖耐量,并且降低空腹胰島素和餐后血糖水平。Liu等[24]觀察到在非糖尿病人群中,循環(huán)中irisin水平與空腹血糖、膽固醇、甘油三酯、低密度脂蛋白-膽固醇均呈正相關(guān)。
另外,irisin與肥胖及其相關(guān)性疾病如糖尿病、心血管疾病等的發(fā)生風(fēng)險(xiǎn)密切相關(guān),這意味著irisin可能成為治療肥胖、2型糖尿病等代謝性疾病的新靶點(diǎn)[17,24-25]。但相關(guān)研究得出的結(jié)論并不一致,還存在很多爭(zhēng)議和分歧,需要大量的研究進(jìn)一步探索,以期為臨床治療肥胖、糖尿病等代謝性疾病提供新方向。
FSTL1又名轉(zhuǎn)化生長(zhǎng)因子 β1誘導(dǎo)蛋白36(TSC-36),屬于卵泡抑素家族,是一種分泌型糖蛋白,參與多種生物學(xué)過(guò)程,包括細(xì)胞增殖、分化、凋亡和機(jī)體的新陳代謝、免疫反應(yīng)及內(nèi)分泌等。FSTL1存在于大部分哺乳動(dòng)物中,可由多種細(xì)胞分泌,其分布沒(méi)有器官特異性,與多器官、多系統(tǒng)均有密切聯(lián)系。骨骼肌是FSTL1合成和分泌的場(chǎng)所之一,且其合成受肌肉收縮的調(diào)節(jié),運(yùn)動(dòng)后FSTL1在骨骼肌中的表達(dá)增加,循環(huán)中濃度也隨之升高[26]。Norheim等[27]分離提取肌力訓(xùn)練前、后的人骨骼肌組織,并進(jìn)行蛋白質(zhì)組學(xué)鑒定,發(fā)現(xiàn)訓(xùn)練后股外側(cè)肌和斜方肌中FSLT1的濃度分別是訓(xùn)練前的1.7倍和2.6倍,進(jìn)一步證實(shí)了FSTL1是受收縮調(diào)節(jié)的肌肉因子之一。Ouchi等[28]發(fā)現(xiàn),在小鼠骨骼肌中,F(xiàn)STL1的表達(dá)受Akt信號(hào)通路的調(diào)節(jié),Akt的過(guò)表達(dá)和肌肉組織缺血均可誘導(dǎo)FSTL1的分泌增加。這與G?rgens等[26]的結(jié)論相悖。G?rgens等[26]認(rèn)為,F(xiàn)STL1在骨骼肌中的合成、分泌主要與肌細(xì)胞的分化程度相關(guān),部分炎性細(xì)胞因子如干擾素-γ、IL-1β的刺激也能促進(jìn)其表達(dá)及分泌,而與Akt信號(hào)通路并不存在明顯相關(guān)性。
動(dòng)物實(shí)驗(yàn)發(fā)現(xiàn),肌組織局部缺血時(shí)FSTL1的表達(dá)增強(qiáng),同時(shí)合成的FSTL1又能促進(jìn)局部缺血組織的血管重建[28]。FSTL1還能減少內(nèi)皮細(xì)胞的凋亡,并促進(jìn)其向血管樣結(jié)構(gòu)分化。在潛伏期的缺血-再灌注動(dòng)物模型中,F(xiàn)STL1可通過(guò)激活A(yù)MPK、抑制細(xì)胞凋亡和炎性反應(yīng)保護(hù)心肌,避免發(fā)生缺血-再灌注損傷[29]。因此,F(xiàn)STL1又被稱(chēng)為心肌保護(hù)因子,可能是參與心血管應(yīng)激的臨床相關(guān)因子。目前,F(xiàn)STL1在機(jī)體代謝中的作用并不十分明確,其與肥胖、糖尿病等疾病的相關(guān)性需要進(jìn)一步的研究。
BDNF是神經(jīng)營(yíng)養(yǎng)因子家族中重要成員之一。BDNF分子單體是由119個(gè)氨基酸組成的分泌型多肽,成熟BDNF的氨基酸序列高度保守,且在人和豬、小鼠等動(dòng)物中具有高度同源性。BDNF主要由腦組織合成、分泌,其主要功能是調(diào)節(jié)神經(jīng)元的生長(zhǎng)、分化并維持神經(jīng)元的存活,同時(shí)可影響人中樞神經(jīng)的可塑性、介導(dǎo)學(xué)習(xí)和記憶。動(dòng)物實(shí)驗(yàn)發(fā)現(xiàn),BDNF還可通過(guò)影響能量代謝、抑制食欲、胰島素增敏等效應(yīng)來(lái)調(diào)節(jié)機(jī)體代謝,具有良好的降血糖作用[30]。
很早之前就有研究發(fā)現(xiàn),骨骼肌收縮時(shí)BDNF mRNA的表達(dá)增強(qiáng),但有人認(rèn)為其來(lái)源是肌肉組織中的神經(jīng)細(xì)胞并非肌細(xì)胞本身[31]。然而近年來(lái)有研究證實(shí),BDNF mRNA在人類(lèi)骨骼肌和C2C12細(xì)胞中均有表達(dá),運(yùn)動(dòng)時(shí)骨骼肌中BDNF mRNA的表達(dá)增加,血清BDNF水平也相應(yīng)升高[32]。近期一項(xiàng)薈萃分析也證實(shí),運(yùn)動(dòng)可誘導(dǎo)BDNF的合成和分泌,且與運(yùn)動(dòng)的強(qiáng)度和持續(xù)時(shí)間密切相關(guān)[33]。體外實(shí)驗(yàn)發(fā)現(xiàn),肌細(xì)胞合成的BDNF可通過(guò)促進(jìn)AMPK及其下游信號(hào)分子乙酰輔酶A羧化酶β的磷酸化,激活A(yù)MPK信號(hào)通路,從而促進(jìn)脂肪酸的氧化[32]。人體研究發(fā)現(xiàn),2型糖尿病及其并發(fā)癥患者血清中BDNF水平顯著下降,推測(cè)BDNF可能是治療糖尿病的新方向[34]。但由于循環(huán)中70%~80%的BDNF均來(lái)源于大腦,其作為肌肉因子對(duì)機(jī)體全身糖、脂代謝的作用并不明確,需要大量研究進(jìn)一步證實(shí)。
綜上所述,骨骼肌是非肥胖人群體內(nèi)最大的器官,是消耗利用葡萄糖的重要外周組織,也是胰島素的主要效應(yīng)器官。骨骼肌分泌合成的肌肉因子如IL-6、FGF21、irisin等可通過(guò)內(nèi)分泌、自分泌和旁分泌的方式發(fā)揮作用,調(diào)節(jié)機(jī)體全身的能量、糖、脂代謝,與肥胖、糖尿病、代謝綜合征等代謝性疾病的發(fā)生密切相關(guān),可能是相關(guān)疾病潛在的治療靶點(diǎn)。但目前對(duì)于肌肉因子調(diào)節(jié)代謝機(jī)制的了解仍然非常有限,需要進(jìn)一步研究,以期為代謝性疾病的治療提供新方向。
[1] Febbraio MA, Pedersen BK. Contraction-induced myokine production and release: is skeletal muscle an endocrine organ?[J]. Exerc Sport Sci Rev,2005,33(3):114-119.
[2] Raschke S, Eckardt K, Bj?rklund Holven K, et al. Identification and validation of novel contraction-regulated myokines released from primary human skeletal muscle cells[J]. PLoS One,2013,8(4):e62008.DOI: 10.1371/journal.pone.0062008.
[3] Steensberg A, van Hall G, Osada T,et al. Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase in plasma interleukin-6[J]. J Physiol,2000,529 Pt 1:237-242.
[4] Pedersen BK, Fischer CP. Beneficial health effects of exercise-the role of IL-6 as a myokine[J]. Trends Pharmacol Sci,2007,28(4):152-156.
[5] Fischer CP. Interleukin-6 in acute exercise and training: what is the biological relevance?[J]. Exerc Immunol Rev,2006,12:6-33.
[6] Whitham M, Chan MH, Pal M,et al. Contraction-induced interleukin-6 gene transcription in skeletal muscle is regulated by c-Jun terminal kinase/activator protein-1[J]. J Biol Chem,2012,287(14):10771-10779. DOI: 10.1074/jbc.M111.310581.
[7] Carey AL, Steinberg GR, Macaulay SL, et al. Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidationinvitrovia AMP-activated protein kinase[J].Diabetes,2006,55(10):2688-2697.
[8] Nieto-Vazquez I, Fernández-Veledo S, de Alvaro C,et al. Dual role of interleukin-6 in regulating insulin sensitivity in murine skeletal muscle[J].Diabetes,2008,57(12):3211-3221.DOI: 10.2337/db07-1062.
[9] Jiang LQ, Duque-Guimaraes DE, Machado UF, et al. Altered response of skeletal muscle to IL-6 in type 2 diabetic patients[J].Diabetes,2013,62(2):355-361. DOI: 10.2337/db11-1790.
[10] Ellingsgaard H, Hauselmann I, Schuler B,et al. Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells[J].Nat Med,2011,17(11):1481-1489. DOI: 10.1038/nm.2513.
[11] Izumiya Y, Bina HA, Ouchi N,et al. FGF21 is an Akt-regulated myokine[J].FEBS Lett,2008,582(27):3805-3810. DOI: 10.1016/j.febslet.2008.10.021.
[12] Keipert S, Ost M, Johann K, et al. Skeletal muscle mitochondrial uncoupling drives endocrine cross-talk through the induction of FGF21 as a myokine[J].Am J Physiol Endocrinol Metab, 2014,306(5):E469-E482. DOI: 10.1152/ajpendo.00330.2013.
[13] Kim KH, Jeong YT, Oh H, et al. Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine[J].Nat Med,2013,19(1):83-92. DOI: 10.1038/nm.3014.
[14] Bobbert T, Schwarz F, Fischer-Rosinsky A, et al. Fibroblast growth factor 21 predicts the metabolic syndrome and type 2 diabetes in Caucasians[J].Diabetes Care,2013,36(1):145-149. DOI: 10.2337/dc12-0703.
[15] Lenart-Lipińska M, Matyjaszek-Matuszek B, Gernand W,et al. Serum fibroblast growth factor 21 is predictive of combined cardiovascular morbidity and mortality in patients with type 2 diabetes at a relatively short-term follow-up[J].Diabetes Res Clin Pract,2013,101(2):194-200. DOI: 10.1016/j.diabres.2013.04.010.
[16] Li H, Dong K, Fang Q,et al. High serum level of fibroblast growth factor 21 is an independent predictor of non-alcoholic fatty liver disease: a 3-year prospective study in China[J].J Hepatol, 2013,58(3):557-563. DOI: 10.1016/j.jhep.2012.10.029.
[17] Bostr?m P, Wu J, Jedrychowski MP,et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis[J].Nature,2012,481(7382):463-468. DOI: 10.1038/nature10777.
[18] Huh JY, Panagiotou G, Mougios V,et al. FNDC5 and irisin in humans: Ⅰ. Predictors of circulating concentrations in serum and plasma and Ⅱ. mRNA expression and circulating concentrations in response to weight loss and exercise[J].Metabolism,2012,61(12):1725-1738. DOI: 10.1016/j.metabol.2012.09.002.
[19] Piya MK, Harte AL, Sivakumar K, et al. The identification of irisin in human cerebrospinal fluid: influence of adiposity, metabolic markers, and gestational diabetes[J].Am J Physiol Endocrinol Metab,2014,306(5):E512-E518. DOI: 10.1152/ajpendo.00308.2013.
[20] Moreno-Navarrete JM, Ortega F, Serrano M,et al. Irisin is expressed and produced by human muscle and adipose tissue in association with obesity and insulinresistance[J].J Clin Endocrinol Metab,2013,98(4):E769-E778. DOI: 10.1210/jc.2012-2749.
[21] Lee P, Linderman JD, Smith S,et al. Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans[J].Cell Metab,2014,19(2):302-309.DOI:10.1016/j.cmet.2013.12.017.
[22] Sanchis-Gomar F, Perez-Quilis C. The p38-PGC-1α-irisin-betatrophin axis: exploring new pathways in insulin resistance[J].Adipocyte,2014,3(1):67-68. DOI: 10.4161/adip.27370.
[23] Pedersen BK, Febbraio MA. Muscle as an endocrine organ: focus on muscle-derived interleukin-6[J].Physiol Rev,2008,88(4):1379-1406. DOI: 10.1152/physrev.90100.2007.
[24] Liu JJ, Wong MD, Toy WC, et al. Lower circulating irisin is associated with type 2 diabetes mellitus[J].J Diabetes Complications,2013,27(4):365-369. DOI: 10.1016/j.jdiacomp.2013.03.002.
[25] Park KH, Zaichenko L, Brinkoetter M, et al. Circulating irisin in relation to insulin resistance and the metabolic syndrome[J].J Clin Endocrinol Metab,2013,98(12):4899-4907. DOI: 10.1210/jc.2013-2373.
[26] G?rgens SW, Raschke S, Holven KB,et al. Regulation of follistatin-like protein 1 expression and secretion in primary human skeletal muscle cells[J].Arch Physiol Biochem,2013,119(2):75-80. DOI: 10.3109/13813455.2013.768270.
[27] Norheim F, Raastad T, Thiede B,et al. Proteomic identification of secreted proteins from human skeletal muscle cells and expression in response to strength training[J].Am J Physiol Endocrinol Metab,2011,301(5):E1013-E1021. DOI: 10.1152/ajpendo.00326.2011.
[28] Ouchi N, Oshima Y, Ohashi K,et al. Follistatin-like 1, a secreted muscle protein, promotes endothelial cell function and revascularization in ischemic tissue through a nitric-oxide synthase-dependent mechanism[J].J Biol Chem,2008,283(47):32802-32811. DOI: 10.1074/jbc.M803440200.
[29] Ogura Y, Ouchi N, Ohashi K, et al. Therapeutic impact of follistatin-like 1 on myocardial ischemic injury in preclinical models[J].Circulation,2012,126(14):1728-1738. DOI:10.1161/CIRCULATIONAHA.112.115089.
[30] Rothman SM, Griffioen KJ, Wan R,et al. Brain-derived neurotrophic factor as a regulator of systemic and brain energy metabolism and cardiovascular health[J].Ann N Y Acad Sci,2012,1264:49-63. DOI: 10.1111/j.1749-6632.2012.06525.x.
[31] Dupont-Versteegden EE, Houlé JD, Dennis RA, et al. Exercise-induced gene expression in soleus muscle is dependent on time after spinal cord injury in rats[J].Muscle Nerve,2004,29(1):73-81.
[32] Matthews VB, Astr?m MB, Chan MH, et al. Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase[J].Diabetologia,2009,52(7):1409-1418. DOI: 10.1007/s00125-009-1364-1.
[33] Szuhany KL, Bugatti M, Otto MW. A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor[J].J Psychiatr Res,2015,60:56-64. DOI: 10.1016/j.jpsychires.2014.10.003.
[34] Ola MS, Nawaz MI, El-Asrar AA,et al. Reduced levels of brain derived neurotrophic factor (BDNF) in the serum of diabetic retinopathy patients and in the retina of diabetic rats[J].Cell Mol Neurobiol,2013,33(3):359-367. DOI: 10.1007/s10571-012-9901-8.
Myokinesandmetabolicdisease
ZhuLingfei,YangZhen,Qinli.
DepartmentofEndocrinology,XinhuaHospitalAffiliatedtoShanghaiJiaotongUniversitySchoolofMedicine,toShanghai200092,China
Correspondingauthor:QinLi,Email:qinli@medmail.com.cn
Skeletal muscle represents the largest organ of the body in non-obese individuals and is now considered to be an active endocrine organ. Those cytokines and peptides expressed by and released from skeletal muscle have been termed myokines. Myokines have been shown to affect muscle physiology and additionally exert systemic effects on the liver, adipose tissue, brain and other organs. Recent data suggest that myokines may play a key role in the initiation and progression of obesity, type 2 diabetes, metabolic syndrome and other metabolic diseases.
Myokine; Skeletal muscle; Metabolic disease
國(guó)家自然科學(xué)基金資助項(xiàng)目(81370953);上海市衛(wèi)生系統(tǒng)培養(yǎng)計(jì)劃(XYQ2013098);上海市科學(xué)技術(shù)委員會(huì)科研計(jì)劃項(xiàng)目(14ZR1427400)
10.3760/cma.j.issn.1673-4157.2016.05.19
200092 上海交通大學(xué)醫(yī)學(xué)院附屬新華醫(yī)院內(nèi)分泌科
秦利,Email:qinli@medmail.com.cn
FundprogramNational Natural Science Foundation of China(81370953);Shanghai Health System Excellent Talent Training Plan (XYQ2013098); Shanghai Science and Technology Committee Scientific Program(14ZR142740)
2015-09-26)