符 川
(北方工業(yè)大學(xué) 土木工程學(xué)院,北京 100144)
?
TTLCD-偏心結(jié)構(gòu)轉(zhuǎn)化為T(mén)TMD-偏心結(jié)構(gòu)的減振控制研究
符 川
(北方工業(yè)大學(xué) 土木工程學(xué)院,北京 100144)
針對(duì)偏心結(jié)構(gòu),研究在地震激勵(lì)下,扭轉(zhuǎn)調(diào)頻液柱阻尼器(TTLCD)系統(tǒng)優(yōu)化參數(shù)和對(duì)結(jié)構(gòu)減振控制的模擬。首先通過(guò)比較TTLCD-結(jié)構(gòu)體系和TTMD-結(jié)構(gòu)體系的耦聯(lián)微分方程,可將TTLCD-結(jié)構(gòu)體系轉(zhuǎn)化為T(mén)TMD-結(jié)構(gòu)體系,從而得到TTLCD-主結(jié)構(gòu)與TTMD-主結(jié)構(gòu)質(zhì)量比、頻率比、主結(jié)構(gòu)自振頻率和主結(jié)構(gòu)阻尼等,利用Ikeda公式對(duì)TTLCD阻尼比和頻率比參數(shù)優(yōu)化,并用有限元軟件來(lái)對(duì)復(fù)雜結(jié)構(gòu)減振控制進(jìn)行數(shù)值計(jì)算。通過(guò)單層偏心結(jié)構(gòu)和4層偏心放置單個(gè)或多個(gè)TTLCDs為例,用Ikeda公式求得TTLCDs參數(shù),并用SAP2000進(jìn)行結(jié)構(gòu)分析,同時(shí)與MATLAB結(jié)果進(jìn)行對(duì)比,驗(yàn)證了該方法的合理性和可行性。
TTLCD;TTMD;參數(shù)優(yōu)化;數(shù)值模擬;動(dòng)力反應(yīng);減振控制
隨著我國(guó)國(guó)民經(jīng)濟(jì)的飛速發(fā)展及對(duì)建筑的功能要求越來(lái)越高,在地震區(qū)的偏心建筑結(jié)構(gòu)日益增多。由于地震本身的扭轉(zhuǎn)分量和結(jié)構(gòu)偏心所產(chǎn)生的平移-扭轉(zhuǎn)耦聯(lián)的空間振動(dòng),因此此類建筑的抗震問(wèn)題已得到極大重視。李春祥等[1-2]研究了偏心結(jié)構(gòu)扭轉(zhuǎn)振動(dòng)多重調(diào)頻質(zhì)量阻尼器(MTMD)控制的最優(yōu)位置,研究了基于地震模型土-不規(guī)則建筑-AMTMD相互作用系統(tǒng)的最優(yōu)性能。何皓祥等[3]研究了雙向水平及扭轉(zhuǎn)調(diào)頻質(zhì)量阻尼器對(duì)偏心結(jié)構(gòu)水平及扭轉(zhuǎn)振動(dòng)控制。調(diào)頻質(zhì)量阻尼器原理簡(jiǎn)單,已有優(yōu)化參數(shù)的經(jīng)驗(yàn)公式[4-5],同時(shí)動(dòng)力反應(yīng)分析也可通過(guò)大型有限元程序進(jìn)行數(shù)值模擬即彈簧與阻尼并聯(lián)后再與質(zhì)量點(diǎn)連接[6]。但該裝置系統(tǒng)的設(shè)計(jì)制作較為復(fù)雜,投入使用后需要經(jīng)常性維護(hù)。調(diào)頻液柱阻尼器(TLCD)則是通過(guò)U/V型管中晃動(dòng)的液體來(lái)增加結(jié)構(gòu)的阻尼器,以此來(lái)達(dá)到減小結(jié)構(gòu)振動(dòng)的目的。由于TLCD具有易于安裝和維護(hù)、造價(jià)低、可以與建筑中的供水裝置相結(jié)合等優(yōu)點(diǎn),引起了研究者的廣泛關(guān)注[7]。李宏男等[8-9]利用在結(jié)構(gòu)水平雙向設(shè)置TLCD 被動(dòng)、半主動(dòng)控制裝置來(lái)減小結(jié)構(gòu)扭轉(zhuǎn)耦聯(lián)振動(dòng)。環(huán)形調(diào)頻液柱阻尼器(CTLCD)是在調(diào)頻液柱阻尼器基礎(chǔ)上發(fā)展起來(lái)的一種控制結(jié)構(gòu)扭轉(zhuǎn)反應(yīng)的阻尼器。梁樞果[10]進(jìn)行了環(huán)形調(diào)頻液柱阻尼器的自由運(yùn)動(dòng)和強(qiáng)迫振動(dòng)臺(tái)實(shí)驗(yàn),結(jié)果表明環(huán)形調(diào)頻液柱阻尼器對(duì)結(jié)構(gòu)扭轉(zhuǎn)振動(dòng)控制是非常有效的?;袅稚萚11]通過(guò)振動(dòng)臺(tái)實(shí)驗(yàn)驗(yàn)證了TLCD和CTLCD對(duì)偏心結(jié)構(gòu)扭轉(zhuǎn)耦聯(lián)振動(dòng)反應(yīng)的減振效果及理論分析的正確性。
CTLCD對(duì)建筑物減震效果的好壞取決于自身的參數(shù),但利用隨機(jī)振動(dòng)理論和現(xiàn)代控制理論等進(jìn)行參數(shù)設(shè)計(jì)的方法并沒(méi)有給出類似于TMD的最優(yōu)參數(shù)設(shè)計(jì)表達(dá)式,這給實(shí)際的CTLCD設(shè)計(jì)帶來(lái)了很多不便之處。 CTLCD減振效果的數(shù)值模擬主要采用MATLAB 編程,對(duì)于復(fù)雜的結(jié)構(gòu)數(shù)值模擬比較復(fù)雜[12]。 本文提出扭轉(zhuǎn)調(diào)頻液柱阻尼器(TTLCD)-偏心結(jié)構(gòu)體系轉(zhuǎn)化為調(diào)頻質(zhì)量阻尼器(TTMD)-偏心結(jié)構(gòu)體系來(lái)進(jìn)行參數(shù)優(yōu)化和數(shù)值計(jì)算的簡(jiǎn)易方法,首先針對(duì)單個(gè)TTLCD控制結(jié)構(gòu)的某個(gè)振型,采用廣義坐標(biāo)方程,比較TTLCD-結(jié)構(gòu)和TTMD-結(jié)構(gòu)兩系統(tǒng)的耦聯(lián)方程,利用Ikeda方法得到阻尼器的最優(yōu)參數(shù)。同時(shí)得到TTLCD與受控結(jié)構(gòu)模態(tài)質(zhì)量比和TTMD與受控結(jié)構(gòu)模態(tài)質(zhì)量比,將TTLCD-結(jié)構(gòu)體系等效為T(mén)TMD-結(jié)構(gòu)體系,用SAP2000軟件對(duì)結(jié)構(gòu)減震效果進(jìn)行模擬。
扭轉(zhuǎn)調(diào)頻液柱阻尼器的構(gòu)造如圖1所示。由裝有液體的剛性管柱組成,管柱的截面可以為方形、圓形或其他形狀。B和H為液柱 (一段水平管道和兩段斜向管道) 的長(zhǎng)度,其對(duì)應(yīng)的截面面積為AB和AH。β為傾斜角,u為T(mén)TLCD中液體沿管壁運(yùn)動(dòng)時(shí)的相對(duì)位移。該阻尼器的水平部分設(shè)計(jì)成封閉管道,所包含的面積Ap雙向?qū)ΨQ于質(zhì)量中心CM,具體形狀可適應(yīng)建筑平面。
圖1 扭轉(zhuǎn)調(diào)頻液柱阻尼器構(gòu)造圖Fig.1 Schematic representation of torsional TLCD
剛性管道系統(tǒng)中理想液體在地震作用下的運(yùn)動(dòng)方程由廣義Bernoulli方程建立[13],
(1)
(2)
TTLCD與偏心結(jié)構(gòu)在振動(dòng)過(guò)程中發(fā)生的相互作用力和力矩利用動(dòng)量和角動(dòng)量守恒得出。
(3)
當(dāng)傾斜角β為π/4<β<π/2時(shí),扭轉(zhuǎn)調(diào)頻液柱阻尼器的運(yùn)動(dòng)方程和對(duì)建筑結(jié)構(gòu)的控制力參照文獻(xiàn)[15]。
圖2 安裝于偏心結(jié)構(gòu)的TTMDFig.2 Asymmetric structure with TTMD
TTMD運(yùn)動(dòng)方程為
控制力和力矩為
(4)
本文采用偏心框架結(jié)構(gòu),并假定其計(jì)算模型為空間桿系-層間模型,考慮樓板平面內(nèi)無(wú)限剛,即每層有兩個(gè)位移分量和一個(gè)轉(zhuǎn)角。假設(shè)在主結(jié)構(gòu)第i層Ai(yAi,zAi,0)放置一TTLCD控制第j振型,β=π/2。其主結(jié)構(gòu)的動(dòng)力平衡方程為
M=diag[M1…Mi…MN]=3N×3N,
(5)
LTjz=(mS+mfj)φj(3i-1)
(6)
同樣在主結(jié)構(gòu)第i層設(shè)置一TTMD控制第j振型,其主結(jié)構(gòu)的動(dòng)力平衡方程為
(7)
合并式(4)和(7)得到TTMD-偏心結(jié)構(gòu)體系的耦聯(lián)方程。
(8)
(9)
比較式(6)、式(8)從而得到TTLCD-結(jié)構(gòu)體系與TTMD-結(jié)構(gòu)體系質(zhì)量比、頻率比和阻尼比的關(guān)系式:
(10)
TTLCD的最佳頻率比δjopt與TTMD相比減小,然而最佳阻尼比ζjopt不變。 當(dāng)傾斜角β為π/4<β<π/2時(shí),TTLCD-偏心結(jié)構(gòu)體系轉(zhuǎn)化為T(mén)TMD-偏心結(jié)構(gòu)體系的公式參照文獻(xiàn)[15]。
Ikeda給出了有阻尼結(jié)構(gòu)在正荷載作用下TMD優(yōu)化參數(shù)的經(jīng)驗(yàn)公式[4]。當(dāng)以位移最小化為優(yōu)化目標(biāo)時(shí),TMD的最優(yōu)頻率比與最優(yōu)阻尼比為:,
(11)
當(dāng)以加速度最小為優(yōu)化目標(biāo)時(shí):
(12)
柳國(guó)環(huán)等[16]提出調(diào)諧液體阻尼器(TLD)轉(zhuǎn)化為T(mén)MD對(duì)結(jié)構(gòu)減振控制的計(jì)算方法,通過(guò)ANASYS軟件對(duì)TLD-結(jié)構(gòu)體系進(jìn)行數(shù)值仿真證明了該方法的可行性與合理性。SAP2000是一個(gè)集荷載計(jì)算、靜力與動(dòng)力分析、線性與非線性于一體的通用三維有限元分析軟件,并且一些減振裝置在SAP2000中很容易模擬,本文采用SAP2000有限元軟件建立偏心結(jié)構(gòu)模型及扭轉(zhuǎn)調(diào)頻質(zhì)量阻尼器的模擬,最終實(shí)現(xiàn)扭轉(zhuǎn)調(diào)頻液柱阻尼器對(duì)結(jié)構(gòu)的減振控制分析。TMD系統(tǒng)包括質(zhì)量系統(tǒng)、阻尼系統(tǒng)和彈簧系統(tǒng),在SAP2000中使用點(diǎn)/線質(zhì)量或直接采用實(shí)體質(zhì)量進(jìn)行模擬,彈簧系統(tǒng)可用link單元進(jìn)行連接,并選擇Damper單元,輸入阻尼器的剛度K和阻尼C。
6.1 單層偏心框架結(jié)構(gòu)
表1 TTLCD 參數(shù)
圖3 單層偏心框架結(jié)構(gòu)模態(tài)振型圖Fig.3 Mode shapes of eccentric single-storey space frame
圖4x方向相對(duì)扭轉(zhuǎn)位移時(shí)程反應(yīng)(0.1 g的El Centro波,α=3π/4)
Fig.4 Relative floor torsional displacement response inx-direction (0.1 g El Centro wave,α=3π/4)
圖5x方向絕對(duì)扭轉(zhuǎn)加速度時(shí)程反應(yīng)(0.1 g的El Centro波,α=3π/4)
Fig.5 Absolute floor torsional acceleration response inx-direction(0.1 g El Centro wave,α=3π/4)
圖6x方向相對(duì)扭轉(zhuǎn)位移時(shí)程反應(yīng)(0.1 g的天津波,α=3π/4)
Fig.6 Relative floor torsional displacement response inx-direction (0.1 g Tianjin wave,α=3π/4)
圖7x方向絕對(duì)扭轉(zhuǎn)加速度時(shí)程反應(yīng)(0.1 g的天津波,α=3π/4)
Fig.7 Absolute floor torsional acceleration response inx-direction (0.1 g Tianjin wave,α=3π/4)
圖8x方向相對(duì)扭轉(zhuǎn)位移時(shí)程反應(yīng)(0.1 g的唐山波,α=3π/4)
Fig.8 Relative floor torsional displacement response inx-direction (0.1 g Tangshan wave,α=3π/4)
圖9x方向絕對(duì)扭轉(zhuǎn)加速度時(shí)程反應(yīng)(0.1 g的唐山波,α=3π/4)
Fig.9 Absolute floor torsional acceleration response inx-direction(0.1 g Tangshan wave,α=3π/4)
6.2 四層偏心框架結(jié)構(gòu)
圖10 4層偏心結(jié)構(gòu)x方向RMS扭轉(zhuǎn)位移和加速度(0.1 g的El-Centro波)Fig.10 RMS floor torsional displacement and acceleration of the four-storey structure iabout x-axis(0.1 g El-Centro wave,α=3π/4)
根據(jù)2個(gè)實(shí)例可以證明,對(duì)于設(shè)置TTLCD的結(jié)構(gòu)體系可通過(guò)轉(zhuǎn)化為T(mén)TMD結(jié)構(gòu)體系來(lái)進(jìn)行參數(shù)優(yōu)化并可直接采用有限元軟件進(jìn)行數(shù)值分析。
扭轉(zhuǎn)調(diào)頻液柱阻尼器能有效抑制偏心結(jié)構(gòu)純扭轉(zhuǎn)或平移-扭轉(zhuǎn)耦聯(lián)振動(dòng),但參數(shù)的選取很大程度上影響TTLCD的減振效果,并且MATLAB軟件對(duì)復(fù)雜結(jié)構(gòu)的數(shù)值模擬存在一定難度。由于TMD已有最優(yōu)參數(shù)設(shè)計(jì)的表達(dá)式,并且采用有限元程序容易對(duì)TTMD減振器進(jìn)行模擬,所以本文針對(duì)偏心框架結(jié)構(gòu),建立TTLCD-結(jié)構(gòu)體系和TTMD-結(jié)構(gòu)體系的動(dòng)力平衡方程,并通過(guò)振型分解為獨(dú)立的單自由度體系的振動(dòng)平衡方程,對(duì)比TTLCD-結(jié)構(gòu)體系耦聯(lián)方程和TTMD-結(jié)構(gòu)體系耦聯(lián)方程,提出了將TTLCD轉(zhuǎn)化為T(mén)MD對(duì)結(jié)構(gòu)減振控制的計(jì)算方法,并對(duì)安裝有TTLCD結(jié)構(gòu)的抗震性能進(jìn)行數(shù)值模擬研究,研究結(jié)果表明:
(1) TTLCD的最佳頻率比δjopt與TTMD相比減小,然而最佳阻尼比ζjopt不變,TTLCD最優(yōu)阻尼比和最優(yōu)頻率比可從式(10)得到。
(2) 運(yùn)用SAP2000將TTLCD等效轉(zhuǎn)化為T(mén)TMD 進(jìn)行數(shù)值模擬,并與MATLAB仿真結(jié)果對(duì)比,得到的結(jié)構(gòu)在地震作用下時(shí)程響應(yīng)幾乎完全吻合,從而證明該方法理論推導(dǎo)準(zhǔn)確、合理可行,為結(jié)構(gòu)工程師直接利用有限元軟件對(duì)TTLCD-偏心結(jié)構(gòu)體系進(jìn)行數(shù)值計(jì)算提供了方便。
[1] 李春祥,韓傳峰.非對(duì)稱結(jié)構(gòu)扭轉(zhuǎn)振動(dòng)多重調(diào)頻質(zhì)量阻尼器(MTMD)控制的最優(yōu)位置[J]. 地震工程與工程振動(dòng), 2003, 23(6): 149-155.
LI Chunxiang, HAN Chuanfeng. Optimum placements of multiple tuned mass dampers(MTMD) for suppressing torsional vibration of asymmetric structures [J]. Earthquake Engineering and Engineering Vibration, 2003, 23(6):149-155.
[2] 李春祥,鐘秋云,王超. 基于地震模型土-不規(guī)則建筑-AMTMD相互作用系統(tǒng)的最優(yōu)性能[J].振動(dòng)與沖擊,2010,29(4):69-72.
LI Chunxiang, ZHONG Qiuyun, WANG Chao. Optimum properties of soil-asymmetric building-active multiple tuned mass damper interaction system based on ground motion model[J]. Journal of Vibration and Shock, 2010, 29(4):69-72.
[3] 何浩祥,葛騰飛,閆維明. 雙向水平及扭轉(zhuǎn)調(diào)頻質(zhì)量阻尼器及其減震控制研究[J]. 振動(dòng)與沖擊,2012, 31(18): 143-147.
HE Haoxiang, GE Tengfei, YAN Weiming. Vibration reduction control of a structure with a two-directional horizontal and torsional tuned mass damper [J]. Journal of Vibration and Shock, 2012, 31(18): 143-147.
[4] DEN HARTOG J P. Mechanical vibrations[M]. 4th ed. New York: McGraw-Hill, 1956: 215-220.
[5] IKEDA T. Fundamentals of Piezoelectricity[M]. New York: Oxford University Press, 1990.
[6] 徐趙東. 土木工程常用軟件分析與應(yīng)用(MATLAB-SAP2000-ANSYS)[M]. 北京:中國(guó)建筑工業(yè)出版社,2010.
[7] 霍林生,李宏男. 半主動(dòng)變剛度TLCD減振控制的研究[J]. 振動(dòng)與沖擊, 2012, 31(10): 157-164.
HUO Linsheng, LI Hongnan. Structural vibration control using semi-active variable stiffness tuned liquid column damper[J]. Journal of Vibration and Shock, 2012, 31(10): 157-164.
[8] 李宏男,霍林生. 調(diào)液阻尼器對(duì)結(jié)構(gòu)扭轉(zhuǎn)耦聯(lián)振動(dòng)控制的優(yōu)化設(shè)計(jì)[J]. 計(jì)算力學(xué)學(xué)報(bào), 2005, 22(2): 129-134.
LI Hongnan, HUO Linsheng. Optimal design of liquid dampers for structural torsion coupled vibration[J].Chinese Journal of Computational Mechanics, 2005, 22(2): 129-134.
[9] 李宏男,霍林生,閻石. 神經(jīng)網(wǎng)絡(luò)半主動(dòng)TLCD對(duì)偏心結(jié)構(gòu)的減震控制[J]. 地震工程與工程振動(dòng), 2001, 21(4): 135-141.
LI Hongnan,HUO Linsheng,YAN Shi. TLCD semi-active control for irregular building using neural networks[J]. Earthquake Engineering and Engineering Vibration,2001,21(4):135-141.
[10] 梁樞果. 環(huán)形可調(diào)液體阻尼器對(duì)扭轉(zhuǎn)振動(dòng)控制的實(shí)驗(yàn)研究[J]. 特種結(jié)構(gòu), 1996, 13(3): 33-35.
LIANG Shuguo. Experimental study of torsional vibration control using circular tuned liquid dampers[J]. Special Structure, 1996, 13(3): 33-35.
[11] 霍林生,李宏男,劉猛. 調(diào)液阻尼器對(duì)偏心結(jié)構(gòu)扭轉(zhuǎn)耦聯(lián)振動(dòng)控制的試驗(yàn)研究[J]. 振動(dòng)與沖擊, 2011, 30(11): 198-202.
HUO Linsheng,LI Hongnan,LIU Meng. Experimental study on torsionally coupled structural vibration control of eccentric buildings using tuned liquid dampers[J]. Journal of Vibration and Shock, 2011, 30(11):198-202.
[12] 劉保柱,蘇彥華,張宏林.MATLAB 7.0 從入門(mén)到精髓[M].北京:人民郵電出版社,2010.
[13] ZIEGLER F. Mechanics of solids and fluids[M]. New York: Springer, 1998.
[14] LINDNER-SILVESTER T, SCHNEIDER W. The moving contact line with weak viscosity effects—an application and evaluation of Shikhmurzaev’s model [J]. Acta Mechanica, 2005, 176(3): 245-258.
[15] FU C. Passive vibration control of plan-asymmetric buildings using tuned liquid column gas dampers [J]. Structural Engineering and Mechanics, 2009, 33(3): 339-355.
[16] 柳國(guó)環(huán),李宏男,國(guó)巍. TLD-結(jié)構(gòu)體系轉(zhuǎn)化為T(mén)MD-結(jié)構(gòu)體系的減振計(jì)算方法[J]. 工程力學(xué), 2011, 28(5): 31-34.
LIU Guohuan, LI Hongnan, GUO Wei. An equivalent calculation method for analysis of structural vibration control of transforming TLD-structure to TMD-structure system[J].Engineering Mechanics, 2011, 28(5): 31-34.
Vibration control of transforming a TTLCD-eccentric structure to a TTMD-eccentric structure
FU Chuan
(College of Civil Engineering, North China University of Technology, Beijing 100144,China)
The optimal parameters of torsional tuned liquid column damper (TTLCD) and numerical simulation on vibration control of an eccentric structure under earthquake load were investigated. By comparing the coupled differential equations of a TTLCD-structure and a TTMD (torsional tuned mass damper)-structure, the TTLCD-structure system could be transformed to a TTMD-structure system. The mass ratio, the optimal frequency ratio, the natural frequency, and damping of the main structure were obtained. Modal tuning of the TTLCD (frequency ratio and damping) was classically done by applying the Ikeda optimization criterion. The analysis of structural vibration control using finite element software was presented. A single-storey eccentric structure and a four-storey eccentric structure with single TTLCD or TTLCDs were numerically simulated. Based on the TTLCD parameters using Ikeda formula, the structural analysis by SAP 2000 software compared with the results from MATLAB show that the method of transforming a TTLCD-structure to a TTMD-structure system is reasonable and feasible.
torsional tuned liquid column damper (TTLCD); torsional tuned mass damper (TTMD); optimal parameter; numerical simulation; dynamical response; vibration control
國(guó)家自然科學(xué)基金(51608010);北京市優(yōu)秀人才培養(yǎng)資助青年骨干個(gè)人項(xiàng)目(2014000020124G007)
2015-09-29 修改稿收到日期:2016-02-23
TU352.11
A
10.13465/j.cnki.jvs.2016.20.030
作 者 符川 女,博士,講師,1979年9月生