• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Two different periods of high dust weather frequency in northern China

    2016-11-23 03:30:16FANKeXIEZhiMinganXUZhiQing
    關(guān)鍵詞:北大西洋經(jīng)向海溫

    FAN Ke, XIE Zhi-Mingan XU Zhi-Qing

    aNansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China;bCollaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing,China;cUniversity of the Chinese Academy of Sciences, Beijing, China;dClimate Change Research Center, Chinese Academy of Sciences, Beijing,China

    Two different periods of high dust weather frequency in northern China

    FAN Kea,b, XIE Zhi-Minga,cand XU Zhi-Qingd

    aNansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China;bCollaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing,China;cUniversity of the Chinese Academy of Sciences, Beijing, China;dClimate Change Research Center, Chinese Academy of Sciences, Beijing,China

    This study reveals that, during the period 1966-2014, dust weather frequency (DWF) in northern China (north of 30°N) features two high-DWF periods, in 1966-1979 (P1) and 2000-2014 (P2), when the linear trend of DWF is removed during the study period. Here, DWF denotes the number of days of dust weather events in the spring season (March-April-May), including dust haze, blowing dust,and dust storms, which occurred in northern China. The results show that the DWF is much higher in P1 than in P2, with increased DWF distributed over southern Xinjiang, the central part of northern China. The main cause is the SST diference in the Atlantic and Pacifc between the two periods. It is also found that a meridional teleconnection over East Asia in P1 and a zonal wave-like pattern over Eurasia in P2 at 200 hPa play a signifcant role in the interannual variability in the two periods,respectively. SST over the subtropical North Atlantic (extratropical SST between the Norwegian and Barents seas) may partly contribute to the upper-level meridional (zonal) teleconnection in P1 (P2).

    ARTICLE HISTORY

    Revised 17 March 2016

    Accepted 18 March 2016

    Dust weather frequency;

    northern China; meridional teleconnection; zonal wavelike pattern; North Atlantic SST

    近幾十年,我國北方春季沙塵的頻次的線性趨勢下降,但去掉線性趨勢后,發(fā)現(xiàn)我國北方春季沙塵頻次在1966-2014期間有兩段沙塵頻次的多發(fā)年,前一段是1966-1979(P1),后一段是2000-2014 (P2)。認(rèn)識(shí)這兩段高頻沙塵發(fā)生的主要特點(diǎn)和可能原因?qū)⑦M(jìn)一步理解不同年代際背景下沙塵年際變異機(jī)理,為沙塵的氣候預(yù)測提供依據(jù)。研究表明前一階段沙塵的強(qiáng)度是高于后一階段,沙塵中心分布在南疆和北方中部(華北、河套和內(nèi)蒙)。主要的原因是北大西洋和北太平洋海溫異常不同造成。前者主要受北大西洋副熱帶海溫異常的影響,后者受北大西洋高緯海溫異常的影響。前一階段200 hPa 高層環(huán)流出現(xiàn)經(jīng)向的大氣遙相關(guān),導(dǎo)致40-45°N東亞急流加強(qiáng)一方面有利于動(dòng)量下傳造成蒙古氣旋活躍,另一方面有利于新疆和蒙古的沙塵輸送到我國北方中部區(qū)域。后一階段從北大西洋高緯到東亞呈現(xiàn)緯向波列,導(dǎo)致蒙古氣旋南部西風(fēng)氣流加強(qiáng),沙塵從新疆輸送到我國北方。與后一階段比較,前一階段的兩極冷空氣更為活躍,沙塵發(fā)生動(dòng)力條件更強(qiáng),且春季蒙古和北方中部降水減少均有利于沙塵更強(qiáng)

    1. Introduction

    Dust weather in northern China, including dust haze,blowing dust, and dust storms, mainly occurs in spring(March-April-May), afecting human health, the environment, and climate change via its direct and indirect efects on radiation over the Asia-Pacifc region. Studies show that the long-term variation in dust weather frequency (DWF) in northern China features a decreasing trend during the past several decades, but increased after 1997, with a remarkable increase in DWF in 2000-2002(Qian, Quan, and Shi 2002; Zhang et al. 2002; Kurosaki and Mikami 2003; Fan and Wang 2004, 2006a; Zhou and Zhai 2004). The variability of DWF in northern China is infuenced by the surface wind and vegetation (Kurosaki and Mikami 2003; Zhou and Zhai 2004; Lee and Sohn 2009), northern cyclone frequency (Sun, Zhang, and Liu 2001; Qian, Quan, and Shi 2002), East Asian winter monsoon (Qian, Quan, and Shi 2002; Kang and Wang 2005; Fan and Wang 2006a, 2006b; Wu et al. 2010), and large-scale atmospheric teleconnection, including the Antarctic Oscillation (AAO) (Fan and Wang 2004, 2007),Arctic Oscillation (AO) (Kang and Wang 2005), and the Pacifc-North America pattern (Gong et al. 2007). Based on this knowledge, an efective dust climate prediction model containing the AAO, AO, and dust-related climate factors was developed to improve the ability to predict the dust climate in China (Lang 2008).

    In this study, considering the long-term decreasing trend of DWF in northern China is partly related to globalwarming (Zhu, Wang, and Qian 2008), we remove the linear trend of DWF during 1966-2014 and discover that the detrended-DWF in northern China exhibits two high-DWF periods, in 1966-1979 (P1) and 2000-2014 (P2). These features can be detected using the moving t-test and Lepage test statistical methods, with the statistical signifcance exceeding the 95% confdence level. We then present the characteristics of the two high-DWF periods and explore the underlying physical mechanisms involved. The overall purpose of this work is to further our understanding of DWF variability in northern China.

    Figure 1.(a) The frst spatial EOF mode of normalized DWF at 245 stations in northern China during 1966-2014 (dots denote stations).(b) The time series of the frst EOF mode of DWF, in which the red lines denote the average value of DWF for 1966-1979, 1980-1999,and 2000-2014. (c) The decadal change points of DWF variation as determined by a moving t-test, where the upper (lower) transverse lines denote signifcance at the 95% (90%) confdence level. (d) The diference in the spatial pattern of DWF between 1966-1979 and 2000-2014.

    2. Data and method

    The monthly data of the number of days of dust weather,including dust haze, blowing dust, and dust storms, at 245weather stations in China during 1966-2014 are from the National Climate Information Center, China. The DWF at a station in China denotes the number of days of dust haze,blowing dust, and dust storms in the spring (March-April-May) at that station. The monthly reanalysis data used, with a horizontal resolution of 2.5° × 2.5°, are from the NCPEPNCAR data-set (Kalnay et al. 1996). The monthly SST data used, with a horizontal resolution of 1.0° × 1.0°, are from the Characteristics of the Global Sea Surface Temperature data-set of the Japan Meteorological Agency, covering 1891-2015. EOF analysis is used to present the spatiotemporal structure of DWF in northern China. As the frst spatial EOF mode (EOF1) of DWF in northern China at 245 weather stations shows basically coherent change, accounting for 28.4% of the total variance of DWF, DWF PC1 is defned as the index of DWF in northern China (Figure 1(a)). All calculations are based on the detrended data.

    3. Results

    There are three decadal change points, 1970/1971, the mid-1980s, and 2000/2001, in the variation of PC1 DWF in northern China, all statistically signifcant at the 0.05 level (Figure 1(c)). This indicates that DWF in northern China increased both in 1966-1979 (P1) and in 2000-2014(P2), and decreased in 1980-1999. Moreover, the intensity of DWF in 1966-1979 (P1) is much larger than that in 2000-2014 (P2), accompanied by increased DWFs over the central part of northern China, including Inner Mongolia,the Hetao region, North China, and the southern part of Xinjiang (Figure 1(d)). But which climate factors likely infuenced the two high-DWF periods? To address this question, we investigate the decadal diferences in mean SLP and SST between them, as well as the dust-related interannual variation in these two periods.

    We begin by plotting the decadal diferences of mean SLP and SST between P1 and P2 (P1-P2). As shown in Figure 2(a), relative to P2 in March-April-May, negative phases of the North Atlantic Oscillation (NAO) and AAO are evident in P1, with increased SLP over the high latitudes of the North Atlantic and Antarctic and decreased SLP over the midlatitudes of the Eurasian continent and the SH. Previous research shows that the winter and spring NAO and AAO may impact upon the Siberian high and Aleutian low, upper-level polar jet, and subtropical east Asian jet via atmospheric teleconnection, further infuencing DWF variation in northern China (Wu and Wang 2002; Fan and Wang 2004, 2006a, 2006b, 2007; Kang and Wang 2005; Gong et al. 2007). Meanwhile, the Siberian high and Aleutian low are more robust in P1 compared with P2 and stronger northeasterly fow prevails along the eastern fank of the Siberian high and East Asian coast. These diferences of the above atmospheric circulation, particularly for the polar regions, show more active cold air over east Asia in P1, generating favorable dynamical conditions for increased DWF in northern China, which may explain why the intensity of DWF is stronger in P1 than in P2. As shown in Figure 2(b), while a greater portion of the SSTs (excluding those of the subtropical and tropical North Pacifc) are cooling in P1 than in P2 (Figure 2(b)),along with decreased surface air temperature over the Eurasian continent (fgure not shown), accordingly, the land-ocean thermal contrast over East Asia can increase,resulting in more robust northeasterly fow over East Asia in P1 than in P2 (Figure 2(c)). Therefore, the change in the SST pattern provides favorable dynamical conditions for a stronger intensity of DWF in P1. Additionally, compared with P2, spring precipitation over Mongolia and northern China decreases in P1, resulting in poorer vegetation coverage in these regions (Figure 2(d)) (Zhou and Zhai 2004;Kurosaki, Shinoda, and Mikami 2011).

    Next, we investigate the diferences in the interannual variability of DWF-related atmospheric circulation in the two periods. Figure 3 shows a regression of the spring wind feld at 200 and 850 hPa on the DWF index in northern China in P1 and P2, separately. Associated with the high DWF index in P1, a remarkable meridional atmospheric pattern at 200 hPa is apparent, consisting of an anomalous cyclone and an anomalous anticyclone over the north and south of 40°N over the area (15-60°N, 90-135°E), respectively. Accordingly, the upper westerly East Asian jet at 40°N can be strengthened, which facilitates not only lowlevel cyclogenesis but also the upper westerly momentum downward. Correspondingly, there is an anomalous cyclone centered over Northeast Asia (45°N, 135°E), causing strong northwesterly fow from its rear (Figures 3(a)and (b)). As a result, greater quantities of dust can be transported from Mongolia to the central part of northern China by the northwesterly, and that is why the increased DWFs are distributed over the central part of northern China (see Figures 3(a) and 1(c)). Note that cold air activity from the polar region can easily invade southward via a weakened polar jet over Eurasia. Therefore, the DWFs in P1 are stronger than in P2, with most dust transported via Mongolia (Figure 1(d)). Moreover, spring soil moisture decreases more over Mongolia and northern China in P1 than in P2, which is favorable for increased DWFs in the central part of northern China in P1 (fgure not shown).

    In contrast, a zonal wave-like atmospheric pattern at 200 hPa is prominent in P2, which is characterized by a diferent anomalous cyclone over the extratropical North Atlantic centered at 60°N, an anomalous anticyclone over the Caspian Sea at 40°N, and an anomalous cyclone spanning from Mongolia to northern China at 35°N where the Mongolian cyclogenesis occurs (Figures 3(c) and (d)). Consequently, greater quantities of dust from the desertsof Northwest China can be transported to northern China via the strong westerly fow of the southern part of the Mongolian cyclone. Therefore, a dust-related atmospheric pattern plays a key role in the northwesterly (westerly) dust pathways of P1 (P2).

    Figure 2.Diference in spring (a) SLP (units: millibars) and surface wind at 2 m (units: m s-1), (b) SST (units: °C), (c) surface air temperature(units: °C), and (d) precipitation (units: mm) between 1966-1979 and 2000-2014.

    Figure 3.Regression of spring wind on the DWF index in (a, c) 1966-1979, and (b, d) 2000-2014 at (a, b) 200 hPa and (c, d) 850 hPa.

    Figure 4.Regression of SST in (a) 1966-1979, and (b) 2000-2014.

    But what about the linkage between the interannual variation of SSTs and dust-related atmospheric circulation in the two periods? As shown in Figure 4, associated with the increased DWF in P1, a negative SST anomaly (SSTA)occurs in the subtropics of the North Atlantic, persisting from winter to spring, which is related to the negative phase of the NAO (e.g. Rodwell and Rowell 1999). A so-called ‘North Atlantic horseshoe pattern,' with warm SST southeast of Newfoundland and cold SST to the northeast and southeast, precedes a positive phase of the NAO. The predictability of the winter NAO partly derives from the SSTA over the subtropical North Atlantic (Fan, Tian, and Wang 2015; Tian and Fan 2015). Meanwhile, the SSTA pattern over the North Pacifc is characterized by a positive SSTA extending from the subtropical North Pacifc to the South China Sea and a negative SSTA surrounding the other regions, which favors a strengthened east Asian jet. However, the North Pacifc SSTA may mainly refect the results of atmospheric forcing (Yang, Lau, and Kim 2001). On the other hand, corresponding to increased DWF in P2, a positive SSTA over the Barents Sea and a negative SSTA over the Norwegian Sea are apparent. Thus, we next focus on how the SSTA over the North Atlantic and Barents-Norwegian Sea may infuence the DWF-related atmosphere in the two periods.

    We defne the NA1 index as the averaged SST in the subtropical North Atlantic (40-50°N, 25-45°W) in P1. NA2,meanwhile, is defned as the averaged SST over the Barents Sea (70-75°N, 30-40°E) minus the averaged SST over the Norwegian Sea (60-65°N, 0°-5°E) in P2, because an opposite change in SSTA between the two regions is prominentin the EOF SST between 50-80°N and 30°W-60°E (fgure not shown).

    Figure 5.Regression of spring wind at 200 hPa on the (a) - NA1 index in 1966-1979, and (b) NA2 in 2000-2014.

    In P1, the linear regression of the spring wind feld at 200 hPa on the - NA1 index shows a diferent anomalous anticyclone over Greenland and a cyclonic anomaly spanning from northern Russia to east of Lake Baikal (around 45-60°N, 0°-135°E), and the occurrence of a meridional wave-like pattern over East Asia (Figure 5(a)). When we calculate the linear regression of the spring 200-hPa geopotential height and wave activity fux (Plumb 1985) in the troposphere, it shows that anomalous adiabatic heating related to the subtropical North Atlantic excites a stationary Rossby wave propagating into Eurasia, forming the meridional teleconnection over East Asia (fgure not shown). In P2, by regression of the wind feld at 200 hPa on the NA2 index, a zonal wind pattern is seen to dominate from the high latitudes of Eurasia to East Asia, refecting the role of the extratropical ocean in the DWF in P2. However, the reasons for the change in the extratropical SST are highly complex, possibly being infuenced by the accelerated decrease in Arctic sea ice or sea-Arctic sea-ice interaction (Comiso et al. 2008; Liu et al. 2012; Li, Wang, and Gao 2015). Furthermore, according to the fndings of Liu et al. (2012), the atmospheric circulation related to the recent decline in Arctic sea ice shows much broader meridional meanders in the midlatitudes, possibly attributable to the occurrence of the meridional pattern in P2 and the zonal wave-like pattern in P2 (Figures 2(a), (b) and 3(a)).

    4. Summary

    This study reveals two high-DWF periods in northern China during the overall study period of 1966-2014, when the decreasing trend of DWF is removed; namely, 1966-1979(P1) and 2000-2014 (P2). Compared with P2, the intensity of DWF is much stronger in P1, together with the increased DWFs being mainly distributed in the central part of northern China and the south of Xinjiang. The results show a remarkable diference in mean atmospheric circulation and the global SST pattern between the two periods,including prominent changes in the polar regions. The magnitude of land-sea thermal contrast over East Asia can provide diferent dynamical conditions for the two high-DWF periods. Moreover, decreased spring precipitation over Mongolia and northern China in P1 may result in poor vegetation coverage over these regions. Actually,it was found that the sharp decrease of spring vegetation coverage over northern China in recent years was one of the major contributors to frequent spring dust storms over northern China during 2000 and 2001 (Zhou and Zhai 2004; Kurosaki, Shinoda, and Mikami 2011). In terms of the interannual variation of the two high-DWF periods, it is found that an upper-level meridional teleconnection in P1 is favorable for a strengthening of the East Asian westerly jet around 40-45°N, which can facilitate not only low-level cyclogenesis but also westerly momentum downward from the upper level (Uccellini 1986; Fan and Wang 2004). Thus, greater quantities of dust can be transported from Mongolia into northern China by the northwesterly fow. In P2, a zonal wave-like pattern at 200 hPa results in westerly fow from the southern part of the Mongolian cyclone,with most of the dust transported from the deserts of Xinjiang. The SSTA over the subtropical North Atlantic and extratropical ocean may induce, via sea-atmosphere interaction, the meridional and zonal wave-like patterns of P1 and P2, respectively, which is partly illustrated by the result of the regression of the wave activity fux in the troposphere on NA1 and NA2. However, the extratropical SST change in P2 might be the response of the rapidly declining Arctic Sea ice, and the atmospheric circulation related to the high-DWF in P2 might be related to change in the Pacifc Decadal Oscillation (Zhu et al. 2011). These questions will be explored in future work.

    Disclosure statement

    No potential confict of interest was reported by the authors.

    Funding

    This research was supported by the National Natural Science Foundation of China [grant numbers 41325018, 41575079,41421004].

    Notes on contributors

    FAN Ke is a professor at IAP, NZC. Her main research interests are climate dynamics, climate prediction. She has published over 70 scientifc papers, over 40 of which are SCI-indexed.

    XIE Zhi-Ming is a masters student at IAP, NZC. His main research interests are dust climate and climate variability.

    XU Zhi-Qing is a PH at IAP, NZC. His main research interests are climate variability.

    References

    Comiso, J. C., C. L. Parkinson, R. Gersten, and L. Stock. 2008. “Accelerated Decline in the Arctic Sea Ice Cover.”Geophysical Research Letters 35 (1): L01703. doi:http://dx.doi. org/10.1029/2007GL031972.

    Fan, K., and H. J. Wang. 2004. “Antarctic Oscillation and the Dust Weather Frequency in North China.” Geophysical Research Letters 31 (10): L10201. doi:http://dx.doi.org/10. 1029/2004GL019465.

    Fan, K., and H. J. Wang. 2006a. “The Interannual Variability of Dust Weather Frequency in Beijing and Its Global Atmospheric Circulation.” Chinese Journal of Geophysics 49: 890-897.

    Fan, K., and H. J. Wang. 2006b. “Interannual Variability of Antarctic Oscillation and Its Infuence on East Asian Climate during Boreal Winter and Spring.” Science in China Series D 49(5): 554-560.

    Fan, K., and H. J. Wang. 2007. “Dust Storms in North China in 2002: A Case Study of the Low Frequency Oscillation.”Advances in Atmospheric Sciences 24 (1): 15-23.

    Fan, K., B. Q. Tian, and H. J. Wang. 2016. “New Approaches for the Skillful Prediction of the Winter North Atlantic Oscillation Based on Coupled Dynamic Climate Models.” International Journal of Climatology 36 (1): 82-94. doi:http://dx.doi.org/10.1002/ joc.4330.

    Gong, D. Y., R. Mao, P. J. Shi, and Y. Fan. 2007. “Correlation between East Asian Dust Storm Frequency and PNA.”Geophysical Research Letters 34 (14): L14710. doi:http:// dx.doi.org/10.1029/2007GL029944.

    Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven,L. Gandin, M. Iredell et al. 1996. “The NCEP/NCAR 40-year Reanalysis Project.” Bulletin of the American Meteorological Society 77: 437-471.

    Kang, D. J., H. J. Wang, 2005: “Analysis on the Decadal Scale Variation of the Dust Storm in North China.” [In Chinese.]Science in China (Series D), 35 (11): 1096-1102.

    Kurosaki, Y., and M. Mikami. 2003. “Recent Frequent Dust Events and Their Relation to Surface Wind in East Asia.”Geophysical Research Letters 30 (14): 1736. doi:http://dx.doi. org/10.1029/2003GL017261.

    Kurosaki, Y., M. Shinoda, and M. Mikami. 2011. “What Caused a Recent Increase in Dust Outbreaks over East Asia?”Geophysical Research Letters 38 (11): L11702. doi:http:// dx.doi.org/10.1029/2011GL047494.

    Lang, X. M. 2008. “Prediction Model for Spring Dust Weather Frequency in North China.” Science in China Series D: Earth Sciences 51: 709-720.

    Lee, E. H., and B. J. Sohn. 2009.“Examining the Impact of Wind and Surface Vegetation on the Asian Dust Occurrence over Three Classifed Source Regions.” Journal of Geophysical Research 114(D6): D06205. doi:http://dx.doi.org/10.1029/2008JD010687.

    Li, F., H. J. Wang, and Y. G. Gao. 2015. “Extratropical Ocean Warming and Winter Arctic Sea Ice Cover since the 1990s.”Journal of Climate 28: 5510-5522.

    Liu, J. P., J. A. Curry, H. J. Wang, M. Song, and R. M. Horton. 2012.“Impact of Declining Arctic Sea Ice on Winter Snowfall.”Proceedings of the National Academy of Sciences 109: 4074-4079.

    Plumb, R. A. 1985. “On the Three-dimensional Propagation of Stationary Waves.” Journal of the Atmospheric Sciences 42: 217-229.

    Qian, W. H., L. S. Quan, and S. Y. Shi. 2002. “Variations of the Dust Storm in China and Its Climatic Control.” Journal of Climate 15: 1216-1229.

    Rodwell, M. J., and D. P. Rowell. 1999. “Oceanic Forcing of the Wintertime North Atlantic Oscillation and European Climate.”Nature 398: 320-323.

    Sun, J. M., M. Y. Zhang, and T. S. Liu. 2001. “Spatial and Temporal Characteristics of Dust Storms in China and Its Surrounding Regions, 1960-1999: Relations to Source Area and Climate.”Journal of Geophysical Research: Atmospheres 106: 10325-10333.

    Tian, B. Q., and K. Fan. 2015. “A Skillful Prediction Model for Winter NAO Based on Atlantic Sea Surface Temperature and Eurasian Snow Cover.” Weather and Forecasting 30 (1): 197-205. doi:http://dx.doi.org/10.1175/WAF-D-14-00100.1.

    Uccellini, L. W. 1986. “The Possible Infuence of Upstream Upperlevel Baroclinic Processes on the Development of the QE II Storm.” Monthly Weather Review 114: 1019-1027.

    Wu, B. Y., and J. Wang. 2002. “Winter Arctic Oscillation, Siberian High and East Asian Winter Monsoon.” Geophysical Research Letters 29(19): 1897. doi:http://dx.doi.org/10.1029/2002GL015373.

    Wu, Y. F., R. J. Zhang, Z. W. Han, and Z. M. Zeng. 2010. “Relationship between East Asian Monsoon and Dust Weather Frequency over Beijing.” Advances in Atmospheric Sciences 27: 1389-1398.

    Yang, S., and K.-M. Lau, K.-M. Kim. 2001. “Variation of the East Asian Jet Stream and Asian-Pacifc-American Winter Climate Anomalies.” Journal of Climate 15: 306-324.

    Zhang, R. J., Z. W. Han, M. X. Wang, and X. Y. Zhang. 2002. “Dust Storm Weather in China: New Characteristics and Origins.” [In Chinese.] Quaternary Sciences 22: 374-380.

    Zhou, X. K., and P. M. Zhai. 2004. “Relationship between Vegetation Coverage and Spring Dust Storms over Northern China.” Journal of Geophysical Research 109 (D3): D03104. doi:http://dx.doi.org/10.1029/2003JD003913.

    Zhu, C. W., B. Wang, and W. H. Qian. 2008. “Why Do Dust Storms Decrease in Northern China Concurrently with the Recent Global Warming?” Geophysical Research Letters 35 (18): L18702. doi:http://dx.doi.org/10.1029/2008GL034886.

    Zhu, Y., H. Wang, W. Zhou, and J. Ma. 2011. “Recent Changes in the Summer Precipitation Pattern in East China and the Background Circulation.” Climate Dynamics 36: 1463-1473.

    北方沙塵; 經(jīng)向遙相關(guān); 緯向波列; 北大西洋海溫

    29 February 2016

    CONTACT FAN Ke fanke@mail.iap.ac.cn

    ? 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,distribution, and reproduction in any medium, provided the original work is properly cited.

    猜你喜歡
    北大西洋經(jīng)向海溫
    浸膠帆布經(jīng)向剛度影響因素分析
    橡膠科技(2022年5期)2022-07-20 02:24:04
    基于深度學(xué)習(xí)的海溫觀測數(shù)據(jù)質(zhì)量控制應(yīng)用研究
    近60年華北春季干旱特征及其與北大西洋海表溫度的關(guān)系
    基于Argo、XBT數(shù)據(jù)的蘇拉威西海溫鹽特征分析
    與南亞高壓相聯(lián)的歐亞大陸-印度洋經(jīng)向環(huán)流
    2018年8月大氣環(huán)流中水汽經(jīng)向輸送特征
    南印度洋偶極型海溫與中國西南地區(qū)初秋降水的關(guān)系
    2016與1998年春季北大西洋海表溫度異常的差異及成因
    北大西洋海浪特征分析
    有關(guān)副熱帶太平洋對(duì)ENSO影響研究的綜述
    精品人妻一区二区三区麻豆 | 国产精华一区二区三区| 18禁裸乳无遮挡免费网站照片| 亚洲精品久久国产高清桃花| 国产欧美日韩一区二区精品| 亚洲人与动物交配视频| 国产日本99.免费观看| 国产中年淑女户外野战色| 国产麻豆成人av免费视频| 免费看日本二区| 女人被狂操c到高潮| 欧美国产日韩亚洲一区| 免费人成在线观看视频色| 欧美高清成人免费视频www| 午夜日韩欧美国产| 国产精品不卡视频一区二区 | 香蕉av资源在线| 亚洲熟妇熟女久久| 欧美一区二区国产精品久久精品| 欧美成人a在线观看| 超碰av人人做人人爽久久| 日日干狠狠操夜夜爽| 日韩欧美精品免费久久 | 嫁个100分男人电影在线观看| 嫁个100分男人电影在线观看| 国产成人啪精品午夜网站| 精品人妻一区二区三区麻豆 | 午夜a级毛片| 亚洲精品色激情综合| 少妇的逼好多水| 性色av乱码一区二区三区2| 国产亚洲精品久久久com| 一区二区三区四区激情视频 | 精品久久久久久久久久免费视频| 国产午夜精品论理片| 在线观看66精品国产| 日韩人妻高清精品专区| 亚洲国产精品999在线| 免费电影在线观看免费观看| 18禁在线播放成人免费| 一区二区三区免费毛片| 国产精品美女特级片免费视频播放器| 蜜桃亚洲精品一区二区三区| 国产av麻豆久久久久久久| 少妇熟女aⅴ在线视频| 免费无遮挡裸体视频| 国产精品综合久久久久久久免费| 村上凉子中文字幕在线| 亚洲av成人av| 免费人成视频x8x8入口观看| 亚洲五月婷婷丁香| 在线看三级毛片| 国产亚洲欧美98| 尤物成人国产欧美一区二区三区| 亚洲,欧美,日韩| 久久国产精品影院| 亚洲 国产 在线| 最新中文字幕久久久久| 亚洲熟妇中文字幕五十中出| 亚洲av熟女| 国产精品嫩草影院av在线观看 | 亚洲国产欧美人成| 久久6这里有精品| 午夜老司机福利剧场| 最近在线观看免费完整版| 成年人黄色毛片网站| 少妇人妻精品综合一区二区 | 最后的刺客免费高清国语| 18禁黄网站禁片午夜丰满| 亚洲av不卡在线观看| 亚洲三级黄色毛片| 搞女人的毛片| 精品不卡国产一区二区三区| 日韩欧美精品v在线| 一区福利在线观看| 精品久久久久久久久av| 亚洲自偷自拍三级| 国产三级黄色录像| 老鸭窝网址在线观看| 在线看三级毛片| 国产精品一区二区免费欧美| 国产亚洲精品久久久久久毛片| 日韩欧美精品v在线| 天堂动漫精品| 俺也久久电影网| 久久久国产成人精品二区| 黄色丝袜av网址大全| 国产色婷婷99| 伦理电影大哥的女人| 国产高潮美女av| 国产免费av片在线观看野外av| 成年女人永久免费观看视频| 久久性视频一级片| 国产精品伦人一区二区| 日日夜夜操网爽| 国产白丝娇喘喷水9色精品| 亚洲精品亚洲一区二区| 久久精品国产亚洲av香蕉五月| 国产精品爽爽va在线观看网站| 久久九九热精品免费| 男人的好看免费观看在线视频| 两人在一起打扑克的视频| 国内精品久久久久精免费| 国产乱人伦免费视频| 国产三级中文精品| 美女免费视频网站| 亚洲国产欧洲综合997久久,| 欧美激情在线99| 日韩有码中文字幕| 国产在视频线在精品| 老司机深夜福利视频在线观看| 亚洲色图av天堂| 国产爱豆传媒在线观看| 国产伦精品一区二区三区视频9| 丰满乱子伦码专区| 嫁个100分男人电影在线观看| 欧美国产日韩亚洲一区| 国产成+人综合+亚洲专区| 永久网站在线| 欧美黄色片欧美黄色片| 丝袜美腿在线中文| 99热6这里只有精品| 精品一区二区三区av网在线观看| 欧美激情久久久久久爽电影| 日韩欧美精品v在线| 国产精品三级大全| 亚洲精品影视一区二区三区av| 国产69精品久久久久777片| 99热精品在线国产| 欧美最新免费一区二区三区 | avwww免费| a级毛片a级免费在线| 男人和女人高潮做爰伦理| 久久久国产成人免费| 精品人妻一区二区三区麻豆 | 男人舔奶头视频| 一进一出好大好爽视频| 国产精品精品国产色婷婷| 毛片女人毛片| 别揉我奶头 嗯啊视频| 色5月婷婷丁香| 一区二区三区高清视频在线| 久久久成人免费电影| 最近视频中文字幕2019在线8| 久久久久国内视频| 欧美丝袜亚洲另类 | 黄色丝袜av网址大全| 中文资源天堂在线| 全区人妻精品视频| 久久亚洲精品不卡| 深爱激情五月婷婷| 一区二区三区免费毛片| 亚洲一区高清亚洲精品| 男女那种视频在线观看| 天天一区二区日本电影三级| 成人国产一区最新在线观看| 国产av不卡久久| 亚洲七黄色美女视频| 久99久视频精品免费| 国产高清三级在线| 国产黄片美女视频| 无遮挡黄片免费观看| 欧美精品国产亚洲| 18禁裸乳无遮挡免费网站照片| 校园春色视频在线观看| 色5月婷婷丁香| 日韩免费av在线播放| 国产av不卡久久| 99久久无色码亚洲精品果冻| 一级av片app| 中文字幕av在线有码专区| 全区人妻精品视频| 亚洲综合色惰| 亚洲黑人精品在线| 欧美黄色淫秽网站| 色综合婷婷激情| 亚洲专区中文字幕在线| 亚洲自偷自拍三级| 美女cb高潮喷水在线观看| 内地一区二区视频在线| 亚洲,欧美,日韩| 亚洲精品亚洲一区二区| 女生性感内裤真人,穿戴方法视频| 俺也久久电影网| 国产精品永久免费网站| 免费无遮挡裸体视频| 亚洲欧美日韩无卡精品| av在线天堂中文字幕| 男人的好看免费观看在线视频| 中文字幕人妻熟人妻熟丝袜美| 国产精品国产高清国产av| 12—13女人毛片做爰片一| 久久99热这里只有精品18| 国产精品女同一区二区软件 | 我要搜黄色片| 久久久久性生活片| 亚洲av中文字字幕乱码综合| 国产精品影院久久| 露出奶头的视频| 国产精品久久视频播放| 国产精品久久电影中文字幕| 国产乱人伦免费视频| 国产真实伦视频高清在线观看 | 男女下面进入的视频免费午夜| 一个人免费在线观看的高清视频| 国产中年淑女户外野战色| 99热精品在线国产| 成人av一区二区三区在线看| 精品午夜福利在线看| 日韩欧美精品免费久久 | 精品一区二区免费观看| 99国产精品一区二区蜜桃av| 国产成人啪精品午夜网站| 国产亚洲精品av在线| 婷婷精品国产亚洲av在线| 丰满乱子伦码专区| 97超级碰碰碰精品色视频在线观看| 成人美女网站在线观看视频| 1000部很黄的大片| 一二三四社区在线视频社区8| 日韩欧美精品免费久久 | 嫩草影视91久久| 噜噜噜噜噜久久久久久91| bbb黄色大片| av专区在线播放| 成人av一区二区三区在线看| 午夜免费激情av| netflix在线观看网站| 久久婷婷人人爽人人干人人爱| 可以在线观看的亚洲视频| 婷婷亚洲欧美| 久久久久久大精品| 亚洲天堂国产精品一区在线| 国产男靠女视频免费网站| 男人的好看免费观看在线视频| 一本综合久久免费| 97人妻精品一区二区三区麻豆| 最近中文字幕高清免费大全6 | 国产av在哪里看| 九九热线精品视视频播放| 别揉我奶头~嗯~啊~动态视频| 久久久久久久亚洲中文字幕 | 在线观看午夜福利视频| 丰满人妻熟妇乱又伦精品不卡| 欧美日韩综合久久久久久 | av天堂在线播放| 国产一区二区三区在线臀色熟女| 亚洲成a人片在线一区二区| 欧美+日韩+精品| 18禁黄网站禁片免费观看直播| 91在线精品国自产拍蜜月| 久久久国产成人精品二区| 成年版毛片免费区| 亚洲激情在线av| 好男人在线观看高清免费视频| 欧美乱色亚洲激情| eeuss影院久久| 老鸭窝网址在线观看| 欧美一级a爱片免费观看看| 不卡一级毛片| 十八禁网站免费在线| bbb黄色大片| 亚洲一区二区三区不卡视频| 欧美bdsm另类| 综合色av麻豆| 久久久久性生活片| 色5月婷婷丁香| 久久亚洲精品不卡| 一本一本综合久久| 真人做人爱边吃奶动态| 国产精品影院久久| 久久久久久久精品吃奶| 精品久久久久久久久久久久久| 欧美三级亚洲精品| 国产一区二区亚洲精品在线观看| 国产69精品久久久久777片| 99久久九九国产精品国产免费| 在线免费观看的www视频| 最近在线观看免费完整版| 成人精品一区二区免费| 国产野战对白在线观看| 狠狠狠狠99中文字幕| 精品午夜福利视频在线观看一区| 999久久久精品免费观看国产| 国产一区二区亚洲精品在线观看| 99热这里只有精品一区| 精品不卡国产一区二区三区| 欧美精品国产亚洲| 亚洲成a人片在线一区二区| 国产午夜福利久久久久久| 淫秽高清视频在线观看| 成年免费大片在线观看| h日本视频在线播放| 日韩欧美一区二区三区在线观看| 成人av在线播放网站| 在线播放无遮挡| 国产三级中文精品| 国产精品女同一区二区软件 | 一卡2卡三卡四卡精品乱码亚洲| .国产精品久久| 精品久久久久久久久av| 女人被狂操c到高潮| 麻豆成人av在线观看| 久久久久久国产a免费观看| 成人鲁丝片一二三区免费| 成年版毛片免费区| 哪里可以看免费的av片| 久久久国产成人精品二区| 一个人看的www免费观看视频| www.999成人在线观看| 桃色一区二区三区在线观看| 亚洲av二区三区四区| 十八禁网站免费在线| 国内精品久久久久久久电影| 精品福利观看| 亚洲精品粉嫩美女一区| 一级av片app| 在线天堂最新版资源| 日韩欧美免费精品| 国产成人a区在线观看| 最好的美女福利视频网| 日日干狠狠操夜夜爽| av黄色大香蕉| 欧美日本亚洲视频在线播放| 亚洲av熟女| 日本a在线网址| 中文字幕免费在线视频6| 精品人妻1区二区| 亚洲人与动物交配视频| 看十八女毛片水多多多| 国产欧美日韩一区二区三| 一本一本综合久久| 亚洲av电影不卡..在线观看| 在线a可以看的网站| 国产一区二区亚洲精品在线观看| 久久精品国产亚洲av天美| 日韩成人在线观看一区二区三区| 青草久久国产| 亚洲av二区三区四区| 日韩欧美一区二区三区在线观看| 午夜激情欧美在线| 熟妇人妻久久中文字幕3abv| 国产一区二区在线观看日韩| 久99久视频精品免费| 激情在线观看视频在线高清| 亚洲18禁久久av| 桃色一区二区三区在线观看| 国产精品亚洲一级av第二区| 国产黄色小视频在线观看| 精品久久久久久久久久久久久| 久久精品人妻少妇| 男女视频在线观看网站免费| 可以在线观看毛片的网站| 男人舔女人下体高潮全视频| 免费在线观看亚洲国产| 又黄又爽又免费观看的视频| 久久久成人免费电影| 国产成人av教育| 网址你懂的国产日韩在线| 天堂√8在线中文| 免费在线观看亚洲国产| 老熟妇乱子伦视频在线观看| 床上黄色一级片| 欧美成人免费av一区二区三区| 国产高潮美女av| 一区二区三区免费毛片| 久久久久免费精品人妻一区二区| 国产精品,欧美在线| xxxwww97欧美| 欧美三级亚洲精品| 亚洲欧美日韩卡通动漫| 真人做人爱边吃奶动态| 久久婷婷人人爽人人干人人爱| x7x7x7水蜜桃| 亚洲电影在线观看av| 最近视频中文字幕2019在线8| 老女人水多毛片| av天堂在线播放| 国产亚洲av嫩草精品影院| 在线十欧美十亚洲十日本专区| www.999成人在线观看| 亚洲avbb在线观看| 此物有八面人人有两片| 少妇裸体淫交视频免费看高清| 可以在线观看毛片的网站| 男女做爰动态图高潮gif福利片| 精品熟女少妇八av免费久了| 亚洲中文字幕日韩| 美女xxoo啪啪120秒动态图 | 亚洲精品亚洲一区二区| 欧美黑人巨大hd| 激情在线观看视频在线高清| 午夜老司机福利剧场| 成人特级黄色片久久久久久久| 亚洲五月婷婷丁香| 国产精品一区二区性色av| 99精品久久久久人妻精品| 亚洲专区中文字幕在线| 99久久精品国产亚洲精品| 日本五十路高清| 桃色一区二区三区在线观看| 美女大奶头视频| 老司机午夜十八禁免费视频| 亚洲国产精品sss在线观看| 亚洲av不卡在线观看| 日本 av在线| 中文字幕免费在线视频6| 搡女人真爽免费视频火全软件 | 国产精品久久久久久人妻精品电影| 少妇高潮的动态图| 亚洲精华国产精华精| 在线a可以看的网站| 久久性视频一级片| 午夜两性在线视频| 国产精品嫩草影院av在线观看 | 国产av在哪里看| 性欧美人与动物交配| 一a级毛片在线观看| 国产av一区在线观看免费| 日韩欧美三级三区| 99久久精品一区二区三区| 丰满乱子伦码专区| 欧美激情国产日韩精品一区| 亚洲五月天丁香| 亚洲 欧美 日韩 在线 免费| 欧美日韩福利视频一区二区| 日本五十路高清| 99久国产av精品| 最新中文字幕久久久久| 老司机福利观看| 91av网一区二区| 亚洲国产精品久久男人天堂| 97超视频在线观看视频| 看片在线看免费视频| 国内毛片毛片毛片毛片毛片| 国语自产精品视频在线第100页| 午夜福利在线观看吧| 欧美区成人在线视频| 午夜免费激情av| 一区二区三区高清视频在线| 国产69精品久久久久777片| 午夜福利欧美成人| 99久久成人亚洲精品观看| 欧美黑人欧美精品刺激| 午夜日韩欧美国产| av视频在线观看入口| 黄色日韩在线| 亚洲国产色片| 国产精品久久久久久亚洲av鲁大| 一卡2卡三卡四卡精品乱码亚洲| 高清日韩中文字幕在线| 99热精品在线国产| 我要搜黄色片| 麻豆成人av在线观看| 麻豆国产av国片精品| 精品人妻1区二区| 亚洲av不卡在线观看| 久久精品国产清高在天天线| 成人亚洲精品av一区二区| 国产主播在线观看一区二区| 男女那种视频在线观看| 亚洲av电影在线进入| 757午夜福利合集在线观看| 久久亚洲真实| 国产高潮美女av| 色视频www国产| 国产不卡一卡二| 国产精品一区二区免费欧美| 久久久精品欧美日韩精品| 日韩精品中文字幕看吧| 毛片女人毛片| 人人妻人人澡欧美一区二区| 免费黄网站久久成人精品 | 欧美高清成人免费视频www| 国产高清有码在线观看视频| 亚洲电影在线观看av| 午夜激情福利司机影院| 最新中文字幕久久久久| 脱女人内裤的视频| 深爱激情五月婷婷| 欧美区成人在线视频| 亚洲成人久久爱视频| 丁香欧美五月| 亚洲人成网站高清观看| or卡值多少钱| 免费av不卡在线播放| 日韩亚洲欧美综合| 深夜a级毛片| 国产综合懂色| 我要看日韩黄色一级片| 国产白丝娇喘喷水9色精品| 精品欧美国产一区二区三| 欧美又色又爽又黄视频| 99久国产av精品| 亚洲av免费在线观看| 国产亚洲精品av在线| 国产精品一区二区三区四区免费观看 | 国产精品一区二区三区四区免费观看 | 成人国产一区最新在线观看| 人妻久久中文字幕网| 黄片小视频在线播放| 在线播放无遮挡| 色精品久久人妻99蜜桃| 又粗又爽又猛毛片免费看| 色av中文字幕| 变态另类丝袜制服| 黄色配什么色好看| 欧美成狂野欧美在线观看| 日韩人妻高清精品专区| 精品久久久久久成人av| 国产一区二区在线av高清观看| 国产精品乱码一区二三区的特点| 男人和女人高潮做爰伦理| 亚洲美女黄片视频| 真实男女啪啪啪动态图| 嫩草影院精品99| 国产白丝娇喘喷水9色精品| 国产真实乱freesex| 婷婷色综合大香蕉| 看免费av毛片| 久久6这里有精品| 1000部很黄的大片| 精品日产1卡2卡| 五月玫瑰六月丁香| 国产伦一二天堂av在线观看| www.www免费av| 麻豆久久精品国产亚洲av| 美女高潮的动态| 免费av毛片视频| 中文字幕高清在线视频| 18美女黄网站色大片免费观看| 一进一出抽搐gif免费好疼| 成人亚洲精品av一区二区| 99在线人妻在线中文字幕| 人妻制服诱惑在线中文字幕| 亚洲av免费高清在线观看| 美女大奶头视频| 国内精品久久久久精免费| 91在线精品国自产拍蜜月| 国产免费一级a男人的天堂| 亚洲第一欧美日韩一区二区三区| 国产欧美日韩精品亚洲av| 搞女人的毛片| 麻豆成人午夜福利视频| av国产免费在线观看| 国产色爽女视频免费观看| 国产精品精品国产色婷婷| 国产精品久久久久久久电影| 欧美黄色淫秽网站| 精品午夜福利在线看| 欧美日本视频| 久久性视频一级片| 美女免费视频网站| 丁香六月欧美| 欧美成人一区二区免费高清观看| 12—13女人毛片做爰片一| 免费看日本二区| 久久久久久久久久黄片| 国产成+人综合+亚洲专区| 午夜精品在线福利| 少妇丰满av| 亚洲中文日韩欧美视频| 毛片一级片免费看久久久久 | 精品人妻视频免费看| 真实男女啪啪啪动态图| 一个人免费在线观看电影| 两个人的视频大全免费| 欧洲精品卡2卡3卡4卡5卡区| 国产一区二区三区在线臀色熟女| 在线观看免费视频日本深夜| 国产精品亚洲av一区麻豆| 88av欧美| 亚洲av五月六月丁香网| 国内精品久久久久久久电影| 久久久久久久久久黄片| 人妻制服诱惑在线中文字幕| 国产精品美女特级片免费视频播放器| 久久久成人免费电影| 欧美日韩国产亚洲二区| 亚洲最大成人手机在线| 亚洲欧美日韩无卡精品| 日日夜夜操网爽| 18美女黄网站色大片免费观看| 午夜影院日韩av| 看免费av毛片| 色精品久久人妻99蜜桃| 村上凉子中文字幕在线| 99精品在免费线老司机午夜| 一区二区三区免费毛片| 精品久久久久久,| 成人欧美大片| 最后的刺客免费高清国语| 久久国产乱子免费精品| a级一级毛片免费在线观看| 18美女黄网站色大片免费观看| 亚洲成人精品中文字幕电影| 国产色婷婷99| 最近最新免费中文字幕在线| 国产av在哪里看| 日韩大尺度精品在线看网址| 日韩av在线大香蕉| 波多野结衣高清无吗| 亚洲在线自拍视频| 老鸭窝网址在线观看| 午夜福利18| 日日夜夜操网爽| 最后的刺客免费高清国语| 美女免费视频网站| 看黄色毛片网站| 久久久色成人| 国产免费av片在线观看野外av| 搞女人的毛片| 国产成人av教育| 天堂动漫精品| 一级黄色大片毛片|