• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于硅過渡層納米金剛石膜/GaN復(fù)合膜系的制備

    2016-11-22 07:41:12劉金龍田寒梅陳良賢魏俊俊黑立富李成明
    新型炭材料 2016年5期
    關(guān)鍵詞:北京科技大學(xué)寒梅結(jié)合力

    劉金龍, 田寒梅, 陳良賢, 魏俊俊, 黑立富, 李成明

    (北京科技大學(xué) 新材料技術(shù)研究院,北京100083)

    ?

    基于硅過渡層納米金剛石膜/GaN復(fù)合膜系的制備

    劉金龍, 田寒梅, 陳良賢, 魏俊俊, 黑立富, 李成明

    (北京科技大學(xué) 新材料技術(shù)研究院,北京100083)

    本文研發(fā)了一種簡(jiǎn)便有效的在GaN半導(dǎo)體襯底上直接生長(zhǎng)納米金剛石膜的方法。研究發(fā)現(xiàn),直接將GaN襯底暴露于氫等離子體中5 min即發(fā)生分解,且隨著溫度從560 ℃升高至680 ℃,這種分解反應(yīng)愈加劇烈,很難在GaN襯底上直接形成結(jié)合力良好的納米金剛石膜。通過在GaN襯底上鍍制幾納米厚的硅過渡層,在富氫金剛石生長(zhǎng)環(huán)境下,抑制了GaN襯底的分解,同時(shí)在GaN襯底上沉積了約2 μm厚的納米金剛石膜。硅過渡層厚度是決定納米金剛石與GaN襯底結(jié)合力的主要因素。當(dāng)硅過渡層厚度為10 nm時(shí),納米金剛石膜與GaN襯底呈現(xiàn)出大于10 N的結(jié)合力,可能與硅過渡層在金剛石生長(zhǎng)過程中向SiC過渡層轉(zhuǎn)變有關(guān)。

    氮化鎵;硅過渡層;納米金剛石膜;直接生長(zhǎng);分解

    1 Introduction

    Gallium nitride (GaN) has been widely applied in electronic and optoelectronic devices, owing to their unique electrical properties such as large bandgap (3.4 eV), high breakdown electrical field (3×106V·cm-1) and extremely high saturation velocity (1.5×107cm·s-1), and high electron mobility in AlGaN/GaN heterostructures (2 019 cm2/V·s)[1-3]. However, the low thermal conductivity of GaN and the high thermal boundary resistances (TBRs) at interfaces between GaN and substrates such as Si and Al2O3in composites impede efficient heat dissipation from the heated regions in device[4,5]. It has been reported that the working temperature of AlGaN/GaN heterostructure field-effect transistors (HFETs) is currently on the order of 180 ℃, which may increase with growing current densities[6]. This self-heating severely limits the further development of GaN based high power devices. SiC is one of the most suitable heat sink materials for these devices with a high thermal conductivity of 400 W/m·K and a small lattice mismatch of 3%. Currently, a maximum output power density of 30 W/mm for AlGaN/GaN high electron mobility transistor (HEMT) on SiC was achieved[7,8].

    Diamond, with the highest thermal conductivity of 2 200 W/m·K, has been speculated to be the optimal substrate for GaN based devices[9-11]. It has been obtained that the maximum channel current of AlGaN/GaN HEMT on diamond is nearly twice as high as that on SiC, and the corresponding channel temperature is 100 ℃ lower based on the simulation than that on SiC[12]. However, whether GaN on the diamond, or diamond on GaN is hard to prepare, because there is a large thermal expansion coefficient difference and lattice mismatch between them. For the former, the GaN heteroepitaxy growth on a single crystalline or polycrystalline diamond is difficult to control[2,13], although GaN based devices on silicon-on-diamond (SOD) has been reported by SP3 company[14]. While for the latter, a high substrate temperature for the diamond film deposition (≈800 ℃) and H-rich environment may lead to a GaN degradation due to the hydrogen plasma etching and GaN decomposition[15,16]. Thus, some approaches have been explored to integrate diamond with GaN through some interlayers such as AlN and Si3N4dielectric adhesive layers[15,17,18]. However, the thick interlayer may become a thermal barrier to impede the heat dissipation.

    In this paper, we presented an approach to achieve a direct deposition of the nano-diamond film on GaN by incorporating a thin Si buffer layer. The buffer layer thickness was just several nanometers, which prevented the GaN substrate from hydrogen etching. The thickness of nano-diamond films deposited could be varied from several hundred nanometers to several micrometers, which will effectively improve the thermal conductivity of GaN based devices.

    2 Experimental

    A commercial GaN/sapphire composite with a GaN thickness of about 25 μm was used as the substrate. Before nano-diamond film deposition, the substrate was overgrown with a Si buffer layer with several nanometers-thick using the RF magnetron sputtering. In order to improve the adhesion of the Si layer on GaN, the GaN/sapphire composite was firstly bombarded by the Ar+ion with 1 250 eV energy for 15 min. And then the Si buffer layers with thickness of 5, 10, 20 and 40 nm were deposited on the GaN/sapphire substrates by controlling the deposition time. After the seeding treatment using a suspension of absolute alcohol mixed with 5 nm diamond powders, hydrogen rich plasma environment consisting of CH4/H2(6/94) was used to prepare the nano-diamond films in a 5 kW microwave (MW) reactor chamber. The deposition parameters are listed in Table 1. The substrate temperature was kept at 680 ℃ through adjusting the microwave power and pressure. At this temperature, it is considered that loss of nitrogen (N) from GaN won’t happen and hydrogen rich environment can’t result in the poor-quality of diamond. The nano-diamond films on GaN/sapphire composites were prepared after deposition for 3 h. The surface morphology of the GaN/sapphire with and without Si buffer layers after nano-diamond film deposition was observed by SEM (QUANTA FEG 450). The surface and cross section of diamond/GaN/sapphire composite was characterized by Raman spectroscopy using an excitation wavelength of 514 nm. The adhesion force between nano-diamond and GaN/sapphire substrate was evaluated by a micro scratch tester (WS-2005).

    Table 1 Deposition parameters of nano-diamond films on GaN by MWCVD.

    3 Results and discussion

    3.1 Surface morphology of GaN exposed to hydrogen plasma and after direct growth of diamond film

    Before nano-diamond growth on the GaN/sapphire composite, the surface morphology of GaN exposed to the hydrogen plasma for 5 min is firstly observed and shown in Fig.1. It can be seen that some pin holes appear on the GaN surface, which spread and connect with each other in the plane direction. Finally, the whole GaN film decomposes with a substrate temperature increase from 560 to 680 ℃. According to the model reported by Yeh et al[19], the etching reaction on GaN in the hydrogen-rich environment started from the dislocation sites, and at high temperature a formation of Ga droplet would accelerate the GaN decomposition, which can be obviously found in Fig.1(d) in our situation. It can be also seen that the GaN surface is almost unchanged after the exposure to hydrogen plasma at 560 ℃ in Fig.1(a). We have tried to deposit the nano-diamond films on the GaN/sapphire composites directly without the Si buffer layer at 560 and 680 ℃. However, it is hard to form diamond film at 560 ℃, while it shows a weak adhesion between nano-diamond film and the GaN/sapphire composite at 680 ℃, although the dense nano-diamond film can be formed in the latter case as shown in Fig.2. That’s because that GaN will decompose at 680 ℃ by hydrogen plasma etching due to the high deposition temperature at the early stage of nano-diamond film deposition, as shown in Fig.2(a).

    Fig. 1 Morphologies of GaN exposed to hydrogen plasma at (a) 560 ℃, (b) 600 ℃,(c) 640 ℃ and (d) 680 ℃ for 5 min.

    Fig. 2 Surface morphologies of (a) GaN and (b) nano-diamond film after diamond film deposition at 680 ℃.

    As the carbon source is added and chemical species containing carbon reaches the GaN surface, some amorphous carbon will form preferentially due to lack of favorable nucleation condition for the diamond, and diamond film is formed and grown by transformation of amorphous carbon layer, which is indicated in Fig.2(b). The loose amorphous carbon layer results in a weak adhesion between nano-diamond film and GaN substrate.

    3.2 Characterization of GaN with nano-diamond film by using the Si buffer layer

    Morphology of nano-diamond films on the GaN/sapphire substrates with different thicknesses of Si buffer layers is shown in Fig.3. It can be seen that the diamond films are composed of many clusters on the GaN substrate, which shows the typical feature of nano-diamond films. The sample with a 40 nm-thick Si layer is not shown here because the diamond film was peeled off immediately when the microwave generator was shut down. Correspondingly, Raman spectra of nano-diamond films on the GaN/sapphire substrates with different thicknesses of Si buffer layers are shown in Fig.3(d). For the sample with the 5 nm Si layer, it consists of peaks at 1 177, 1 334, 1 477 and 1 580 cm-1. As it is known that the peaks at 1 177 and 1 477 cm-1can be attributed to nano-diamond, which are contributed by the tans-polyacetylene on grain boundary or disordered sp3carbon. The peak at 1 334 cm-1is typical of diamond while that at 1 580 cm-1peak is excited by the G-mode vibration of sp2amorphous carbon. As the thickness of the Si buffer layer increases, the peak at 1 477 cm-1disappears and the intensity of the peak at 1 334 cm-1increases, which indicates that the diamond content with a sp3structure increases. We can’t find the obvious characteristic peaks of GaN for all three samples. This is because the diamond film is thick enough to exceed the detect limit in the depth direction (generally about 1 μm) for Raman spectroscopy.

    Fig. 3 Morphologies and Raman spectra of nano-diamond films on the GaN/sapphire substrates with different thicknesses of Si buffer layers. (a-c) Surface morphologies and (d) Raman spectra of samples with 5, 10 and 20 nm thick Si layers.

    In order to determine whether the GaN substrate was decomposed directly, the cross sectional morphology of nano-diamond films on the GaN/sapphire substrate with a 5 nm Si buffer layer was characterized, which is shown in Fig. 4. The GaN film with a thickness of 24.28 μm can be observed clearly, on top which there is a thin nano-diamond film with a thickness of about 2 μm. The edge of the top surface is neat, which suggests that the GaN doesn’t almost decompose under the H-rich plasma environment with a Si buffer layer. Further, the components of the cross section of GaN were detected by energy dispersive spectrum (EDS), as shown in Fig.4(b). It can be found that no other impurities can be observed besides the N and Ga elements. The atom ratio of Ga and N is near 1, which indicates that the GaN is intact under the shield of a thin Si layer during the H-rich plasma etching in the diamond growth process.

    Fig. 4 (a, b) Cross sectional morphology and (c) EDS of nano-diamond films on the GaN/sapphire substrate with the 5 nm Si buffer layer.

    3.3 Adhesion evaluation between nano-diamond film and the GaN substrate In order to evaluate the adhesion of nano-diamond film on GaN, micro scratch test was conducted. Fig.5 shows the typical scratch appearance of nano-diamond film on the GaN.

    As the pressure of diamond intender increases, just the trace rubbed between nano-diamond film and diamond intender is left on the nano-diamond film surface at the early stage, as shown in Fig.5(a), then the nano-diamond film is ground and peeled off as shown in Fig.5(b) and Fig.5(c), and finally the GaN is exposed as shown in Fig.5(d). It is noticed that it doesn’t show the GaN substrate directly in Fig.5(c) after the diamond film starts to spall, indicating that there is a transition layer between the nano-diamond film and the GaN substrate. We can evaluate the adhesion from the sound signal change for the brittle nano-diamond film on the GaN substrate as shown in Fig.6. From the sound signal, it can be found that nano-diamond film on the GaN has a low adhesion for the samples with the 5 and 20 nm thick Si buffer layers. While for the sample with the 10 nm-thick Si buffer layer, it shows a high adhesion beyond 10 N. It seems strange that a several nanometer thick difference of the Si interlayer leads to a large difference of adhesion. In fact, when the buffer layer thickness reaches 40 nm, the nano-diamond film is easy to be broken away from the GaN substrate. While for the sample with a thickness of 5 nm, no obvious zone of diamond grinding is observed.

    3.4 Discussion

    Decomposition of the GaN substrate during nano-diamond film growth has been effectively suppressed by using a thin Si layer as buffer deposited before the diamond growth. After nano-diamond film deposition, the thickness of GaN was almost unchangeable. More importantly, a good adhesive between the micrometer thick nano-diamond film and the GaN substrate was obtained. In general, nucleation of diamond only happens on carbide forming materials such as some refractory metals or Si (except for growth on Ir)[20], so there is no enough driving force for a direct nucleation of diamond films on the GaN substrate. A direct growth of diamond film on the GaN substrate is thermodynamically favorable by adding some carbide forming element material, such as W[11]or Si. However, due to a large mismatch stress (about 13%) and thermal expansion coefficient difference between diamond film (1.0×10-6/℃) and GaN (5.59×10-6/℃), a direct bonding between them seems impossible, especially as the thickness of diamond film increases, the mismatch stress becomes large enough to separate the diamond film from the GaN substrate. In our situation, the thin Si buffer layer several-nanometer thick may convert to SiC during the diamond nucleation although the lattice constant of Si is larger than diamond and GaN. It is known that there is a small lattice mismatch of 3% between SiC and GaN. Meanwhile, SiC and diamond film can form strong chemical bonding. Therefore, a tight adhesion is expected to be achieved between diamond film and the GaN substrate. It is worth noting that the thickness of Si buffer layer is an important factor that determines the adhesion between diamond film and the GaN substrate. If it is thicker than 20 nm, the Si layer can’t transform to SiC completely and the interface bonding between GaN and the Si buffer layer becomes weak. While if it is too thin like 5 nm, it may not relax the large stress between diamond film and the GaN substrate. Hence, a 10 nm-thick Si buffer layer is considered to be optimum to improve the adhesion between nano-diamond film and the GaN substrate owing to their strong bond. Meanwhile it can be speculated that a 2 μm-thick nano-diamond film could provide large heat sinking capacity for high power GaN based electronic devices according to the results reported in Ref.[11].

    Fig. 5 The typical scratch appearance of nano-diamond film on the GaN/sapphire with Si buffer layers.(a) The trace rubbed between nano-diamond film and diamond intender at the early stage; (b) the nano-diamond film begins to peel off;(c) the transition layer between nano-diamond film and GaN and (d) the exposed GaN substrate.

    Fig. 6 The sound signal and the corresponding scratch morphology of nano-diamond film on the GaN/sapphire with different thicknesses of the Si buffer layers after the scratch test.

    4 Conclusions

    When exposed to the hydrogen plasma for 5 min, the GaN substrate decomposed apparently with a substrate temperature increase from 560 to 680 ℃ and nano-diamond film cannot be grown on the GaN substrate adhesively without the aid of a Si buffer layer. A 2 μm-thick nano-diamond film was directly grown on the GaN/sapphire substrate by using a several nanometer thick Si buffer layer. The cross-sectional morphology and EDS of nano-diamond film on the GaN/sapphire substrate demonstrate that decomposition of GaN was significantly suppressed during diamond growth under the H-rich plasma environment in the presence of a Si buffer layer. It is found that the adhesion force between nano-diamond film and the GaN/sapphire substrate is larger than 10 N when a 10 nm-thick Si layer is present, which is attributed to a complete conversion of the Si layer to a silicon carbide (SiC) transition layer.

    [1] Gelmont B, Kim K, Shur M. Monte carlo simulation of electron transport in gallium nitride[J]. Journal of Applied Physics, 1993, 74(3): 1818-1821.

    [2] Zhang D, Bian J M, Qin F W, et al. Highly c-axis oriented GaN films grown on free-standing diamond substrates for high-power devices[J]. Materials Research Bulletin, 2011, 46(10): 1582-1585.

    [3] Gaska R, Yang J W, Osinsky A, et al. Electron transport in AlGaN heterostructures grown on 6H-SiC substrates[J]. Applied Physics Letters, 1998, 72(6): 707-709.

    [4] Sadi T, Kelsal R W, Pilgrim N J. Investigation of self-heating effects in submicrometer GaN/AlGaN HEMTs using an electrothermal Monte Carlo method[J]. IEEE Transactions on Electron Devices, 2006, 53(12): 2892-2900.

    [5] Trew R J, Green D S, Shealy J B. AlGaN/GaN HFET reliability[J]. IEEE Microwave Magazine, 2009, 10(4): 116-127.

    [6] Kuball M, Hayes J M, Uren M J, et al. Measurement of temperature in active high-power AlGaN/GaN HFETs using Raman spectroscopy[J]. IEEE Eletron Device Letters, 2002, 23(1): 7-9.

    [7] Felbinger J G, Chandra M V S, Sun Y J, et al. Comparison of GaN HEMTs on diamond and SiC substrates[J]. IEEE Eletron Device Letters, 2007, 28(11): 948-950.

    [8] Wu Y F, Saxler A, Moore M, et al. 30W/mm GaN HEMTs by field plate optimization[J]. IEEE Electron Device Letters, 2004, 25(3): 117-119.

    [9] Govindaraju N, Singh R N. Processing of nanocrystalline diamond thin films for thermal manage-ment of wide-bandgap semiconductor power electronics[J]. Materials Science and Engineering: B, 2011, 176(14): 1058-1072.

    [10] Diduck Q, Felbinger J, Eastman L F, et al. Frequency performance enhancement of AlGaN/GaN HEMTs on diamond[J]. Electron Letters, 2009, 45(14): 758-759.

    [11] Goyal V, Sumant A V, Teweldebrhan D, et al. Direct low-temperature integration of nano- crystalline diamond with GaN substrates for improved thermal management of high-power electronics[J]. Advanced Functional Materials, 2012, 22(7): 1525-1530.

    [12] Joshi B C, Dhanavantri C, Kumar D. Sapphire, SiC, AlN, Si and diamond-substrate material for GaN HEMT and LED[J]. Journal of Optoelectronics and Advanced Materials, 2009, 11(8): 1111-1116.

    [13] Zhang D, Bai Y Z, Qin F W, et al. Preparation and characteristics of GaN films on freestanding CVD thick diamond films[J]. Chinese Physics Letters, 2010, 27(1): 018102-018102-4.

    [14] Zimmer J W, Chandler G. Advances in large diameter GaN on diamond substrates [C]. CS Mantech Conference, Chicago, USA, April 14-17, 2008.

    [15] Zou Y S, Yang Y, Chong Y M, et al. Chemical vapor deposition of diamond films on patterned GaN substrates via a thin silicon nitride protective layer[J]. Crystal Growth and Design, 2008, 8(5): 1770-1773.

    [16] May P W, Tsai H Y, Wang W N, et al. Deposition of CVD diamond onto GaN[J]. Diamond and Related Materials, 2006, 15(4-8): 526-530.

    [17] Francis D, Faili F, Babi D, et al. Formation and characterization of 4-inch GaN-on-diamond substrates[J]. Diamond and Related Materials, 2010, 19(2-3): 229-233.

    [18] Hageman P R, Schermer J J, Larsen P K. GaN growth on single-crystal diamond substrate by metalorganic chemical vapour deposition and hydride vapour deposition[J]. Thin Solid Film, 2003, 443(1-2): 9-13.

    [19] Yeh Y H, Chen K M, Wu Y H, et al. Hydrogen etching of GaN and its application to produce free-standing GaN thick films[J]. Journal of Crystal Growth, 2011, 333(1): 16-19.

    [20] Alomari M, Dipalo M, Rossi S, et al. Diamond overgrown InAlN/GaN HEMT [J]. Diamond and Related Materials, 2011, 20(4): 604-608.

    Preparation of nano-diamond films on GaN with a Si buffer layer

    LIU Jin-long, TIAN Han-mei, CHEN Liang-xian, WEI Jun-jun, HEI Li-fu, LI Cheng-ming

    (InstituteforAdvancedMaterialsandTechnology,UniversityofScienceandTechnologyBeijing,Beijing100083,China)

    Gallium nitride (GaN) has been widely used in electronic and optoelectronic devices because of its unique electrical properties. However, its low thermal conductivity and the high thermal boundary resistance at the interface between GaN and substrates such as Si and Al2O3prevent efficient heat dissipation from the heated regions, which limits the further development of GaN-based high power devices. Diamond, with the highest thermal conductivity, has been considered to be one of the most promising heat sink materials. However, it is hard to prepare a diamond film on a GaN substrate because there is a high thermal expansion coefficient difference and also a large lattice mismatch between them. An approach to prepare a nano-diamond film on a GaN substrate by incorporating a Si buffer layer has been proposed. A GaN substrate decomposes significantly from 560 to 680 ℃ when exposed to ahydrogen plasma for 5 min and no adhesive nano-diamond film can be directly grown on it. This decomposition is significantly suppressed by the presence of a Si buffer layer and a nano-diamond film about 2 μm thick can be deposited on a GaN substrate by microwave chemical vapor deposition using CH4as the carbon source. With an optimum Si layer of 10 nm, the adhesive force between the nano-diamond film and the GaN substrate reaches 10N, which is ascribed to the complete conversion of the Si layer to a silicon carbidetransition layer during the deposition.

    GaN; Si buffer layer; Nano-diamond film; Direct growth; Decomposition

    National Natural Science Foundation of China (51402013, 51272024); China Postdoctoral Science Foundation (2014M550022);Fundamental Research Funds for the Central Universities (FRF-TP-15-052A2).

    LI Cheng-ming, Professor. E-mail: chengmli@mater.ustb.edu.cn

    國(guó)家自然科學(xué)基金(51402013, 51272024); 中國(guó)博士后科學(xué)基金(2014M550022); 中央高?;究蒲袠I(yè)務(wù)經(jīng)費(fèi)(FRF-TP-15-052A2).

    李成明, 博士, 教授. E-mail: chengmli@mater.ustb.edu.cn

    劉金龍, 博士, 講師. E-mail: liujinlong@ustb.edu.cn.

    1007-8827(2016)05-0518-07

    TB333

    A

    Authorintroduction: LIU Jin-long, Lecturer. E-mail: liujinlong@ustb.edu.cn.

    10.1016/S1872-5805(16)60029-X

    Receiveddate: 2016-06-29;Reviseddate: 2016-10-12

    English edition available online ScienceDirect ( http:www.sciencedirect.comsciencejournal18725805 ).

    猜你喜歡
    北京科技大學(xué)寒梅結(jié)合力
    《北京科技大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)》
    理論縱橫(2024年1期)2024-01-11 07:56:12
    《北京科技大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)》
    理論縱橫(2022年6期)2022-12-06 04:27:50
    三種預(yù)處理工藝對(duì)汽輪發(fā)電機(jī)鋁合金部件表面結(jié)合力的影響
    《北京科技大學(xué)學(xué)報(bào)》(社會(huì)科學(xué)版)
    理論縱橫(2022年1期)2022-02-16 07:26:06
    藍(lán)莓采摘期結(jié)合力測(cè)試與變化趨勢(shì)的分析
    詠 松
    寒梅
    詩(shī)潮(2018年5期)2018-08-20 10:03:28
    如花綻放
    BOSS臻品(2017年5期)2017-09-12 04:06:17
    田永訴北京科技大學(xué)拒絕頒發(fā)畢業(yè)證、學(xué)位證案
    電鍍級(jí)ABS樹脂(Ⅱ)電鍍工藝對(duì)鍍層結(jié)合力的影響
    上海塑料(2015年3期)2015-02-28 14:52:08
    免费黄色在线免费观看| 国产精品.久久久| 边亲边吃奶的免费视频| 爱豆传媒免费全集在线观看| 亚洲婷婷狠狠爱综合网| 亚洲精品乱码久久久v下载方式| av视频免费观看在线观看| .国产精品久久| 亚洲精品日韩在线中文字幕| 国产精品一区二区在线不卡| 97精品久久久久久久久久精品| 久久久国产欧美日韩av| 免费观看在线日韩| 在线观看三级黄色| 99久久精品国产国产毛片| 99久久人妻综合| 久久鲁丝午夜福利片| 久久久久久久久久久久大奶| 九色成人免费人妻av| 最近手机中文字幕大全| 新久久久久国产一级毛片| 99国产精品免费福利视频| 国产精品国产三级专区第一集| 精品久久久久久久久av| 熟女人妻精品中文字幕| 久久精品熟女亚洲av麻豆精品| 精品熟女少妇av免费看| 黑人高潮一二区| av电影中文网址| 乱人伦中国视频| 日本黄色日本黄色录像| av免费观看日本| 成人18禁高潮啪啪吃奶动态图 | 久久av网站| 黄色配什么色好看| 岛国毛片在线播放| 制服丝袜香蕉在线| 色94色欧美一区二区| 麻豆乱淫一区二区| 丰满饥渴人妻一区二区三| 久久精品国产亚洲av天美| 精品亚洲成国产av| 高清在线视频一区二区三区| 欧美97在线视频| 人妻制服诱惑在线中文字幕| 午夜福利网站1000一区二区三区| 超色免费av| 97超视频在线观看视频| 你懂的网址亚洲精品在线观看| 久久人妻熟女aⅴ| 亚洲天堂av无毛| 国产精品欧美亚洲77777| 精品少妇内射三级| 国产日韩欧美视频二区| 久久国产精品男人的天堂亚洲 | 日韩成人伦理影院| 日韩欧美一区视频在线观看| h视频一区二区三区| 一边摸一边做爽爽视频免费| 国产黄色视频一区二区在线观看| 亚洲成人一二三区av| 国产亚洲av片在线观看秒播厂| 亚洲精华国产精华液的使用体验| 九九在线视频观看精品| 日本与韩国留学比较| 有码 亚洲区| 精品久久久精品久久久| 内地一区二区视频在线| 中国美白少妇内射xxxbb| 日本黄大片高清| 精品一区二区免费观看| 人人妻人人添人人爽欧美一区卜| 免费观看的影片在线观看| 丝袜在线中文字幕| 久久婷婷青草| 国产在线免费精品| 你懂的网址亚洲精品在线观看| 制服丝袜香蕉在线| 欧美精品人与动牲交sv欧美| 亚洲av中文av极速乱| 亚洲熟女精品中文字幕| 成人国产麻豆网| 亚州av有码| 男女高潮啪啪啪动态图| 亚洲av电影在线观看一区二区三区| 日日摸夜夜添夜夜爱| 亚洲av免费高清在线观看| 99热6这里只有精品| 国产爽快片一区二区三区| av有码第一页| 亚洲伊人久久精品综合| 插阴视频在线观看视频| 国产又色又爽无遮挡免| 日韩伦理黄色片| 美女福利国产在线| 久久婷婷青草| 亚洲av国产av综合av卡| 国产精品久久久久久av不卡| videos熟女内射| 国产精品一区二区在线观看99| 99热网站在线观看| 最近的中文字幕免费完整| a级片在线免费高清观看视频| 亚洲精品,欧美精品| 久久99热这里只频精品6学生| 国产欧美日韩一区二区三区在线 | 能在线免费看毛片的网站| 国产亚洲精品第一综合不卡 | 国产一区亚洲一区在线观看| 人妻系列 视频| 高清视频免费观看一区二区| 美女国产视频在线观看| 色婷婷久久久亚洲欧美| 日日摸夜夜添夜夜添av毛片| 国产精品秋霞免费鲁丝片| 国模一区二区三区四区视频| 青春草视频在线免费观看| 人妻夜夜爽99麻豆av| 欧美另类一区| 国产欧美日韩一区二区三区在线 | 欧美xxxx性猛交bbbb| 日日摸夜夜添夜夜添av毛片| 99热网站在线观看| 最近的中文字幕免费完整| 麻豆成人av视频| 国产欧美日韩综合在线一区二区| 亚洲国产最新在线播放| 精品一品国产午夜福利视频| 欧美日韩精品成人综合77777| 热re99久久国产66热| 国产亚洲av片在线观看秒播厂| 亚洲国产精品一区二区三区在线| 人人澡人人妻人| 精品99又大又爽又粗少妇毛片| 国产高清不卡午夜福利| 搡老乐熟女国产| 亚洲国产欧美日韩在线播放| 国产免费福利视频在线观看| 天堂8中文在线网| 久久久久久人妻| 九九在线视频观看精品| 国产男女内射视频| 国产爽快片一区二区三区| 欧美日韩一区二区视频在线观看视频在线| 国产视频首页在线观看| 高清在线视频一区二区三区| 国产黄色免费在线视频| 亚洲国产最新在线播放| 91精品一卡2卡3卡4卡| 一区在线观看完整版| 毛片一级片免费看久久久久| 99久久精品一区二区三区| 2022亚洲国产成人精品| 王馨瑶露胸无遮挡在线观看| 亚洲精品久久成人aⅴ小说 | 午夜激情福利司机影院| 性高湖久久久久久久久免费观看| 2018国产大陆天天弄谢| 亚洲av不卡在线观看| 99精国产麻豆久久婷婷| 成人18禁高潮啪啪吃奶动态图 | 欧美精品一区二区免费开放| 欧美 亚洲 国产 日韩一| 午夜免费观看性视频| 欧美日韩视频精品一区| 日本欧美国产在线视频| 久久鲁丝午夜福利片| 一本色道久久久久久精品综合| 少妇 在线观看| 日韩,欧美,国产一区二区三区| 日日撸夜夜添| 啦啦啦啦在线视频资源| 午夜福利在线观看免费完整高清在| 欧美另类一区| 国产亚洲精品第一综合不卡 | 久久久精品94久久精品| 99久久人妻综合| 男人操女人黄网站| 欧美 亚洲 国产 日韩一| 亚洲精品一二三| 99热国产这里只有精品6| 日韩免费高清中文字幕av| 赤兔流量卡办理| 欧美bdsm另类| 久久精品夜色国产| 日本免费在线观看一区| 久久99热这里只频精品6学生| 精品亚洲成国产av| 国产精品无大码| 夜夜骑夜夜射夜夜干| 蜜桃在线观看..| 国产极品粉嫩免费观看在线 | 99re6热这里在线精品视频| 亚洲欧洲国产日韩| 国产精品久久久久久精品电影小说| 麻豆成人av视频| 中国三级夫妇交换| 久久久久久久大尺度免费视频| 精品熟女少妇av免费看| 美女福利国产在线| 色5月婷婷丁香| 少妇人妻久久综合中文| 另类精品久久| 中文天堂在线官网| 亚洲综合精品二区| 麻豆成人av视频| 最近最新中文字幕免费大全7| 免费黄色在线免费观看| 国产高清不卡午夜福利| 亚洲色图综合在线观看| 亚洲人成网站在线观看播放| 五月玫瑰六月丁香| 高清毛片免费看| 美女大奶头黄色视频| 午夜福利视频精品| 日韩一区二区视频免费看| 欧美bdsm另类| 欧美丝袜亚洲另类| 伊人亚洲综合成人网| 一二三四中文在线观看免费高清| 91精品一卡2卡3卡4卡| 女人精品久久久久毛片| 欧美成人精品欧美一级黄| 两个人的视频大全免费| 一本久久精品| 女人久久www免费人成看片| 午夜久久久在线观看| 午夜精品国产一区二区电影| 日本与韩国留学比较| 美女cb高潮喷水在线观看| 午夜福利,免费看| 中国三级夫妇交换| 丝瓜视频免费看黄片| 91午夜精品亚洲一区二区三区| 精品卡一卡二卡四卡免费| 考比视频在线观看| 啦啦啦在线观看免费高清www| 欧美 日韩 精品 国产| 纵有疾风起免费观看全集完整版| 性色avwww在线观看| 麻豆成人av视频| 又粗又硬又长又爽又黄的视频| 三上悠亚av全集在线观看| 天天躁夜夜躁狠狠久久av| av卡一久久| 久久久欧美国产精品| 久久久久久久久大av| 国产无遮挡羞羞视频在线观看| 久久99一区二区三区| 卡戴珊不雅视频在线播放| 亚洲精品久久成人aⅴ小说 | 高清毛片免费看| 超色免费av| 一本一本综合久久| 全区人妻精品视频| 99九九在线精品视频| 亚洲,欧美,日韩| 午夜激情久久久久久久| 伊人久久国产一区二区| 国产极品粉嫩免费观看在线 | 纵有疾风起免费观看全集完整版| 婷婷色综合www| 成年人免费黄色播放视频| 国产精品免费大片| 一级爰片在线观看| 一区二区av电影网| 国产爽快片一区二区三区| 日产精品乱码卡一卡2卡三| 久久国内精品自在自线图片| 波野结衣二区三区在线| 亚洲精品av麻豆狂野| 热99久久久久精品小说推荐| 亚洲内射少妇av| 高清在线视频一区二区三区| 免费观看a级毛片全部| 午夜激情av网站| 国产有黄有色有爽视频| 美女内射精品一级片tv| av有码第一页| 久久精品久久精品一区二区三区| 熟女av电影| 少妇的逼好多水| 乱码一卡2卡4卡精品| 26uuu在线亚洲综合色| 久久久久国产精品人妻一区二区| 午夜福利网站1000一区二区三区| 国产精品熟女久久久久浪| 久久女婷五月综合色啪小说| xxxhd国产人妻xxx| 午夜福利,免费看| 国国产精品蜜臀av免费| 日日啪夜夜爽| 少妇丰满av| 日韩一区二区三区影片| 精品人妻偷拍中文字幕| 国内精品宾馆在线| 成年美女黄网站色视频大全免费 | 久久99一区二区三区| 99九九在线精品视频| 九草在线视频观看| 亚洲精品久久午夜乱码| 麻豆成人av视频| av一本久久久久| 欧美一级a爱片免费观看看| 精品一区二区免费观看| 久久精品国产鲁丝片午夜精品| 国产一区二区三区av在线| 亚洲欧美日韩另类电影网站| 国产永久视频网站| 亚洲欧美一区二区三区国产| 欧美xxⅹ黑人| 2021少妇久久久久久久久久久| 亚洲中文av在线| 丰满迷人的少妇在线观看| 久久这里有精品视频免费| 国产精品人妻久久久影院| 97在线人人人人妻| 七月丁香在线播放| av在线app专区| 免费播放大片免费观看视频在线观看| 纯流量卡能插随身wifi吗| 如日韩欧美国产精品一区二区三区 | 久久精品久久久久久久性| 成人毛片a级毛片在线播放| 春色校园在线视频观看| 亚洲第一区二区三区不卡| 99久久综合免费| av有码第一页| 免费观看无遮挡的男女| 日韩熟女老妇一区二区性免费视频| 亚洲精品久久午夜乱码| 免费大片黄手机在线观看| 黑人欧美特级aaaaaa片| 日日摸夜夜添夜夜添av毛片| 亚洲情色 制服丝袜| av视频免费观看在线观看| 一边亲一边摸免费视频| 日韩电影二区| 欧美另类一区| 亚洲欧美成人精品一区二区| 国产精品一区二区在线不卡| 国产毛片在线视频| 黄色怎么调成土黄色| 免费看不卡的av| 欧美国产精品一级二级三级| 在线观看免费视频网站a站| 成人国产av品久久久| 亚洲精品av麻豆狂野| 久久久久久久久久成人| 久久青草综合色| 国产成人一区二区在线| 精品少妇久久久久久888优播| 人妻一区二区av| 亚洲情色 制服丝袜| 亚洲欧美成人精品一区二区| 美女xxoo啪啪120秒动态图| 少妇被粗大的猛进出69影院 | 久久青草综合色| 十八禁网站网址无遮挡| 亚洲色图综合在线观看| 国产免费现黄频在线看| 18禁在线无遮挡免费观看视频| 欧美激情极品国产一区二区三区 | 免费黄网站久久成人精品| 26uuu在线亚洲综合色| 欧美日韩亚洲高清精品| 少妇丰满av| 99热这里只有精品一区| 精品一区二区免费观看| 少妇精品久久久久久久| 欧美精品国产亚洲| 久久婷婷青草| 亚洲精品国产色婷婷电影| 国产精品国产av在线观看| 国产亚洲午夜精品一区二区久久| 一级毛片aaaaaa免费看小| 国产国拍精品亚洲av在线观看| tube8黄色片| 国产精品一国产av| 国产黄色视频一区二区在线观看| 最新的欧美精品一区二区| av不卡在线播放| 成年人免费黄色播放视频| 久久综合国产亚洲精品| 国产探花极品一区二区| 黄色怎么调成土黄色| 欧美激情国产日韩精品一区| 91精品国产国语对白视频| 人人妻人人爽人人添夜夜欢视频| 久久青草综合色| 大香蕉久久网| 一区二区三区免费毛片| 制服丝袜香蕉在线| 欧美xxxx性猛交bbbb| 婷婷色麻豆天堂久久| 国产视频内射| 欧美日韩精品成人综合77777| 国产爽快片一区二区三区| 亚洲怡红院男人天堂| 狠狠精品人妻久久久久久综合| 少妇人妻 视频| 精品人妻一区二区三区麻豆| 又粗又硬又长又爽又黄的视频| 在线观看免费视频网站a站| 久久久精品94久久精品| 99re6热这里在线精品视频| 亚洲色图综合在线观看| 99精国产麻豆久久婷婷| 男人爽女人下面视频在线观看| 人妻夜夜爽99麻豆av| 国产 精品1| 亚洲精品自拍成人| 国产精品久久久久久久久免| 91aial.com中文字幕在线观看| 在线 av 中文字幕| 美女脱内裤让男人舔精品视频| 国产男女超爽视频在线观看| av免费在线看不卡| 久久久久久久国产电影| freevideosex欧美| 久久久久网色| 成人免费观看视频高清| 国产精品久久久久久久久免| 五月开心婷婷网| 狂野欧美激情性xxxx在线观看| 又黄又爽又刺激的免费视频.| 看非洲黑人一级黄片| 丝袜脚勾引网站| 久久久久久久久久久免费av| 青春草亚洲视频在线观看| 三上悠亚av全集在线观看| 2022亚洲国产成人精品| 日韩亚洲欧美综合| 少妇高潮的动态图| 狂野欧美激情性xxxx在线观看| 国产日韩欧美在线精品| 久久精品久久久久久噜噜老黄| 丰满饥渴人妻一区二区三| 22中文网久久字幕| 亚洲av免费高清在线观看| 日本免费在线观看一区| 免费观看无遮挡的男女| 免费看不卡的av| 国产一区二区在线观看av| 国产精品久久久久久久久免| 久久久午夜欧美精品| 成年人午夜在线观看视频| 人人妻人人澡人人爽人人夜夜| 制服人妻中文乱码| 另类亚洲欧美激情| 搡老乐熟女国产| 久久久精品免费免费高清| 日韩三级伦理在线观看| av线在线观看网站| 亚洲怡红院男人天堂| 高清在线视频一区二区三区| 国产精品一区二区三区四区免费观看| 久久久久视频综合| 99久久人妻综合| 国产一区二区在线观看日韩| 免费黄色在线免费观看| 中文天堂在线官网| 色婷婷久久久亚洲欧美| 九九在线视频观看精品| 热re99久久国产66热| 精品酒店卫生间| 国产高清有码在线观看视频| 日韩在线高清观看一区二区三区| 精品午夜福利在线看| 国产在线一区二区三区精| 精品久久久久久久久亚洲| 中文字幕制服av| 中国三级夫妇交换| 97超碰精品成人国产| 国产高清有码在线观看视频| 国产男女超爽视频在线观看| 水蜜桃什么品种好| 久久精品久久久久久噜噜老黄| 国产一区有黄有色的免费视频| 男女国产视频网站| videosex国产| 国产精品一区www在线观看| av播播在线观看一区| 黑人巨大精品欧美一区二区蜜桃 | 亚洲情色 制服丝袜| 人人妻人人澡人人爽人人夜夜| 成年人午夜在线观看视频| 欧美精品一区二区免费开放| videos熟女内射| 男女国产视频网站| 亚洲av二区三区四区| 亚洲精品日本国产第一区| 亚洲美女黄色视频免费看| 伊人久久国产一区二区| 国产片内射在线| 亚洲中文av在线| 在线 av 中文字幕| 国产午夜精品久久久久久一区二区三区| 亚洲av在线观看美女高潮| 国产亚洲欧美精品永久| 十八禁网站网址无遮挡| av不卡在线播放| 91国产中文字幕| 涩涩av久久男人的天堂| 亚洲欧洲精品一区二区精品久久久 | 蜜臀久久99精品久久宅男| 高清毛片免费看| 午夜久久久在线观看| 日韩,欧美,国产一区二区三区| 一本大道久久a久久精品| 这个男人来自地球电影免费观看 | 国产精品免费大片| 岛国毛片在线播放| 国产精品一区www在线观看| 3wmmmm亚洲av在线观看| av.在线天堂| 久久久久国产精品人妻一区二区| 少妇人妻 视频| 日韩欧美一区视频在线观看| 在线观看免费高清a一片| 一级毛片黄色毛片免费观看视频| 亚洲五月色婷婷综合| 26uuu在线亚洲综合色| 男女无遮挡免费网站观看| 久久精品久久精品一区二区三区| 亚洲av日韩在线播放| 欧美亚洲日本最大视频资源| 精品午夜福利在线看| 久久精品国产亚洲av涩爱| 一本久久精品| 国产午夜精品久久久久久一区二区三区| 在线观看人妻少妇| 成人18禁高潮啪啪吃奶动态图 | 免费观看性生交大片5| 99视频精品全部免费 在线| 黄色视频在线播放观看不卡| 国产熟女午夜一区二区三区 | 久久久久精品久久久久真实原创| 国产日韩欧美在线精品| 国产高清有码在线观看视频| 看十八女毛片水多多多| 最后的刺客免费高清国语| 狠狠婷婷综合久久久久久88av| 国产精品国产三级国产专区5o| 国产成人免费观看mmmm| 熟女av电影| 夜夜骑夜夜射夜夜干| 国产精品无大码| 亚洲第一av免费看| 黄色怎么调成土黄色| 久久99一区二区三区| 18禁动态无遮挡网站| 午夜激情久久久久久久| 少妇高潮的动态图| 少妇人妻精品综合一区二区| 国产成人91sexporn| 尾随美女入室| 亚洲av免费高清在线观看| 婷婷色综合大香蕉| 国产淫语在线视频| 国产成人a∨麻豆精品| 亚洲精品日韩在线中文字幕| 国产亚洲精品第一综合不卡 | 亚洲成人一二三区av| 国产男人的电影天堂91| 久久久久国产网址| 最近的中文字幕免费完整| 亚洲综合色惰| 高清视频免费观看一区二区| 五月天丁香电影| 久久精品久久久久久噜噜老黄| 欧美变态另类bdsm刘玥| 一级毛片我不卡| 日本与韩国留学比较| 精品久久久噜噜| 国精品久久久久久国模美| 日韩一本色道免费dvd| 涩涩av久久男人的天堂| 黄色怎么调成土黄色| 成人毛片a级毛片在线播放| 99久久人妻综合| 久久人人爽av亚洲精品天堂| 成人毛片60女人毛片免费| 黑人巨大精品欧美一区二区蜜桃 | 久久人人爽人人片av| 18禁裸乳无遮挡动漫免费视频| 欧美激情国产日韩精品一区| 简卡轻食公司| 久久久久久久久大av| 精品少妇黑人巨大在线播放| a级毛片黄视频| 亚洲伊人久久精品综合| 欧美激情国产日韩精品一区| 人妻少妇偷人精品九色| 久久久久久久久大av| 精品人妻熟女毛片av久久网站| 精品人妻熟女av久视频| www.色视频.com| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 美女国产视频在线观看| 99re6热这里在线精品视频| a 毛片基地| 桃花免费在线播放| 亚洲国产日韩一区二区| 免费黄色在线免费观看| 精品久久蜜臀av无| 亚洲经典国产精华液单| 日本黄色片子视频| 国产精品免费大片| 成人亚洲欧美一区二区av| 美女视频免费永久观看网站| 一级毛片电影观看| 成年美女黄网站色视频大全免费 | 有码 亚洲区| 在线天堂最新版资源|