李創(chuàng)第,華逢忠,葛新廣
(廣西科技大學(xué)土木建筑工程學(xué)院,廣西柳州545006)
Maxwell阻尼耗能多層結(jié)構(gòu)在有界噪聲激勵(lì)下的隨機(jī)響應(yīng)解析分析
李創(chuàng)第,華逢忠,葛新廣
(廣西科技大學(xué)土木建筑工程學(xué)院,廣西柳州545006)
為研究Maxwell阻尼器耗能多層結(jié)構(gòu)在有界噪聲激勵(lì)下的隨機(jī)響應(yīng)問(wèn)題,首先,建立了耗能結(jié)構(gòu)時(shí)域非擴(kuò)階微分積分動(dòng)力方程;然后,用傳遞函數(shù)法,獲得了結(jié)構(gòu)以第一振型表示的時(shí)域瞬態(tài)位移和速度響應(yīng)非擴(kuò)階解析解;最后,基于此解析解,獲得耗能結(jié)構(gòu)在有界噪聲激勵(lì)下位移和速度隨機(jī)響應(yīng)方差解析解,并給出算例,從而建立此種耗能結(jié)構(gòu)在有界噪聲激勵(lì)下隨機(jī)響應(yīng)解析分析的一整套方法.
Maxwell阻尼器;傳遞函數(shù)法;有界噪聲激勵(lì);平穩(wěn)響應(yīng);解析解
粘彈性阻尼器耗能性能優(yōu)良,已廣泛應(yīng)用于各種結(jié)構(gòu)的被動(dòng)減振控制[1-3].Maxwell阻尼[1-9]本構(gòu)方程簡(jiǎn)單,模型計(jì)算參數(shù)易于從試驗(yàn)中擬合[10-11],且一般流體阻尼器比較符合Maxwell模型,粘彈性阻尼器也可以用Maxwell模型近似表示,故對(duì)Maxwell模型的應(yīng)用研究受到日益重視[1-5,7-8].目前,分析Maxwell阻尼器耗能結(jié)構(gòu)的精確法只有擴(kuò)階復(fù)模態(tài)法[4-5,7-8,12],但該法因擴(kuò)階方程組物理意義不明確,變量個(gè)數(shù)激增,計(jì)算效率低使該方法的實(shí)際應(yīng)用受到限制.
有界噪聲隨機(jī)激勵(lì)模型[13-15]不僅可以模擬寬帶隨機(jī)激勵(lì),而且可以模擬窄帶隨機(jī)激勵(lì);不僅可以模擬地震激勵(lì)[16-17]、脈動(dòng)風(fēng)激勵(lì)[18-20],而且還可以模擬軌道和路面隨機(jī)起伏激勵(lì)[21],因而受到國(guó)內(nèi)外較廣泛的應(yīng)用[22-24].
本文采用非擴(kuò)階微分積分方程精確建模,運(yùn)用傳遞函數(shù)法,獲得Maxwell阻尼耗能多層結(jié)構(gòu)在任意激勵(lì)下非擴(kuò)階時(shí)域瞬態(tài)響應(yīng)解析解和有界噪聲激勵(lì)下平穩(wěn)隨機(jī)響應(yīng)解析解.
設(shè)n層結(jié)構(gòu)質(zhì)量、剛度和粘滯阻尼矩陣分別為:M,K和C;層間質(zhì)量、剛度和阻尼分別為:mi,ki和ci,(i=1,…,n);各層間均設(shè)置Maxwell阻尼器,阻尼器剛度系數(shù)和阻尼系數(shù)為k0i和c0i,阻尼力為pi(t),(i=1,…,n);x(t)為結(jié)構(gòu)相對(duì)于地面的位移向量,F(xiàn)(t)為激勵(lì)向量;結(jié)構(gòu)計(jì)算簡(jiǎn)圖如圖1所示,由D’Alembert原理[25],結(jié)構(gòu)的運(yùn)動(dòng)力程為:
式中:αi=k0i/c0i,i=1,…,n;
圖1 多層耗能結(jié)構(gòu)計(jì)算簡(jiǎn)圖Fig.1 Calculation diagram of the multistorey energy dissipation structure
特別地,對(duì)地震激勵(lì),F(xiàn)i=mi,(i=1,…,n);f(t)=-x¨g(t),x¨g(t)為地震地面加速度.
式(2)的分量形式為:
對(duì)于方程:
式中:δ(t)為Dirac delta函數(shù).
方程(6)兩邊同時(shí)乘以eαit,即:
也即:
2.1結(jié)構(gòu)特征值分析
設(shè)結(jié)構(gòu)的廣義初始位移y(t=0)和速度y˙(t=0)均為0,對(duì)式(14)進(jìn)行拉譜拉斯變換,得:
3.1有界噪聲激勵(lì)的相關(guān)函數(shù)和譜密度
有界噪聲激勵(lì)f(t)的相關(guān)函數(shù)Cf(τ)和譜密度Sf(ω)分別為[16-20]:
式中:E[·]表示取數(shù)學(xué)期望;τ和ω分別為f(t)的時(shí)差和頻率變量;D,α和β分別為激勵(lì)的方差、相關(guān)因子和卓越頻率因子.
特別地,對(duì)于地震激勵(lì)x¨g(t),可取為[16-17,26]:
3.2耗能結(jié)構(gòu)平穩(wěn)隨機(jī)響應(yīng)解析分析
由式(32)得結(jié)構(gòu)平穩(wěn)響應(yīng)方協(xié)方差為:
式中:
將式(45)代入式(40),并令τ=0,得有界噪聲激勵(lì)下耗能結(jié)構(gòu)隨機(jī)響應(yīng)方差解析解:
特別地,對(duì)于地震激勵(lì),F(xiàn)i=mi,f(t)=-x¨g;在表達(dá)式(45)中,令D=Dg;q=-αg+iβg;Fi=mi,式(49)即可表示為耗能結(jié)構(gòu)隨機(jī)地震響應(yīng)方差解析解.
軟土場(chǎng)地條件下,3層框架結(jié)構(gòu)各層的質(zhì)量m1,m2和m3分別為:16 t,16 t和8 t;各層剛度k1,k2和k3分別為:1.0×105kN/m,1.0×105kN/m和1.0×105kN/m;取第一振型阻尼比ξ1=5%;結(jié)構(gòu)第一振型φ1=[0.500,0.866,1.000]T,第一振型頻率ω1為12.941 rad/s.Maxwell阻尼器參數(shù)如表1所示.8度抗震設(shè)防:I=8;ξg=0.96,ωg=10.9 rad/s.可以由式(20),解得結(jié)構(gòu)各特征值sj;再利用式(22),得到系數(shù)ηj;最后各參數(shù)代入式(49),得到結(jié)構(gòu)各層間位移和速度響應(yīng)的方差.結(jié)構(gòu)各層間位移和速度響應(yīng)的標(biāo)準(zhǔn)差列于表2和表3.
表1 Maxwell阻尼器參數(shù)Tab.1 Calculation parameters of Maxwell dampers
表2 位移響應(yīng)標(biāo)準(zhǔn)差Tab.2 Standard deviations of displacement responses m
表3 速度響應(yīng)標(biāo)準(zhǔn)差Tab.3 Standard deviations of velocity responses m/s
表2和表3分別列出了表1中各工況對(duì)應(yīng)的位移響應(yīng)均方差和速度響應(yīng)均方差.工況1是不設(shè)置Maxwell阻尼器的情況;工況2和工況3是同比例放大Maxwell阻尼器參數(shù)的情況,即工況2和工況3的Maxwell阻尼器具有相同的松弛時(shí)間;工況3與工況4的Maxwell阻尼器具有相同的阻尼系數(shù)但松弛時(shí)間不相同.計(jì)算結(jié)果表明:在松弛時(shí)間相同的情況下,Maxwell阻尼器參數(shù)越大,結(jié)構(gòu)減震效果越明顯;在阻尼系數(shù)相同的情況下,Maxwell阻尼器的松弛時(shí)間越小,結(jié)構(gòu)減震效果越明顯.
對(duì)設(shè)置Maxwell阻尼器耗能多層結(jié)構(gòu)在有界噪聲激勵(lì)下的平穩(wěn)響應(yīng)進(jìn)行了研究.獲得了結(jié)構(gòu)以第一振型表示的時(shí)域瞬態(tài)位移和速度響應(yīng)解析解,并根據(jù)所得的解析解,獲得了耗能結(jié)構(gòu)在有界噪聲激勵(lì)下位移和速度隨機(jī)響應(yīng)方差解析解,從而建立此種耗能結(jié)構(gòu)在有界噪聲激勵(lì)下隨機(jī)響應(yīng)解析分析的一整套方法.由于有界噪聲激勵(lì)模型可以模擬多種工程隨機(jī)激勵(lì),故所獲得的解析解具有較好的工程應(yīng)用意義.
[1]周云.粘彈性阻尼減震結(jié)構(gòu)設(shè)計(jì)[M].武漢:武漢理工大學(xué)出版社,2006.
[2]SOONGTT,DARGUSH GF.Passive Engrgy Dissipation Systems in Structural Engineering[M].England:John Wiley and Ltd,1997.
[3]CHRISTOPOULOS C,F(xiàn)ILIATRAULT A.Principle of Passive Supplemental Damping and Seismic Isolation[M].Pavia:IUSS Press,2006.
[4]YAMADA K.Dynamic Characteristics of SDOF Structure with Maxwell Element[J].Journal of Engineering Mechanics,2014,134(5):396-404.
[5]PALMERI A,RICCIARDELLI F,DELUCA A,et al.State Space Formulation for Linear Viscoelastic Dynamic Systems with Memory[J].Journal of Engineering Mechanics,2003,129(7):715-724.
[6]張義同.粘彈性理論[M].天津:天津大學(xué)出版社,2002.
[7]PALMERI A.Correlation Coefficients for Structures with Viscoelastic Dampers[J].Engineering Structures,2006,28(8):1197-1208.
[8]SINGH M P,VERMA N P,MORESCHIL M.Seismic Analysis and Design with Maxwell Dampers[J].Journal of Engineering Mechanics,2003,129(3):273–282.
[9]葛新廣,李創(chuàng)第,鄒萬(wàn)杰.Maxwell阻尼減震結(jié)構(gòu)的最大非平穩(wěn)響應(yīng)[J].廣西工學(xué)院學(xué)報(bào),2012,23(4):1-7.
[10]CHANG T S,SINGH M P.Mechanical Model Parameters for Viscoelastic Dampers[J].Journal of Engineering Mechanics,2009,135(6):581-584.
[11]PARK SW.Analytical Modeling of Viscoelastic Dampers for Structural and Vibration Control[J].International Journal of Solids and Structures,2001,38(S44-45):8065-8092.
[12]ZHANG R H,SOONG T T.Seismic Design of Viscoelastic Dampers for Structural Application[J].Journal of Structural Engineering,1992,118(5):1375-1392.
[13]HUANG Z L,ZHU W Q,NI Y Q,et al.Stochastic Averaging of Strongly Non-Linear Oscillators under Bounded Noise Excitation[ J].Journal of Sound and Vibration,2002,254(2):245-267.
[14]LIU W Y,ZHU W Q,HUANG Z L.Effect of Bounded Noise on Chaotic Motion of Duffing Oscillator under Parametric Excitation[J].Chaos,Solitons and Fractals,2001,12(3):527–537.
[15]ZHU W Q,HUANG Z L,YANG Y Q.Stochastic Averaging of Quasi-Integrable Hamiltonian Systems[J].Journal of Applied Mechanics,1997,64(4):975–984.
[16]胡聿賢.地震工程學(xué)[M].2版.北京:地震出版社,2006.
[17]李桂青.抗震結(jié)構(gòu)計(jì)算理論和方法[M].北京:地震出版社,1985.
[18]LIN Y K,LIQ C.Stochastic Stability of Wind Excited Structures[J].Journal of Wind Engineering and Industrial Aerodynamics,1995,54(94):75-82.
[19]LIN Y K.Stochastic Stability of Wind-Excited Long-S pan Bridges[J].Probabilistic Engineering Mechanics,1996,11(4):257-261.
[20]LIN Y K,LI Q C.New Stochastic Theory for Bridge Stability in Turbulent Flow[J].Journal of Engineering Mechanics,1993,119(1):113–127.
[21]DIMENTBERG M F.Stability and Subcritical Dynamics of Structures with Spatially Disordered Travelling Parametric Excitation[J]. Probabilistic Engineering Mechanics,1992,7(3):131–134.
[22]劉雯彥,陳忠漢,朱位秋.有界噪聲激勵(lì)下單擺—諧振子系統(tǒng)的混沌運(yùn)動(dòng)[J].力學(xué)學(xué)報(bào),2003,35(5):634-639.
[23]XIE W C.Moment Lyapunov Exponents of a Two-Dimensional System under Bounded Noise Parametric Excitation[J].Journal of Sound and Vibration,2003,263(3):593-616.
[24]ZHU J,XIE W C,SO R M,et al.Parametric Resonance of Two Degrees of Freedom System Induced by Bounded Noise[J].Journal of Applied Mechanics,2009,76(4):041007-1~13.
[25]劉晶波,杜修力.結(jié)構(gòu)動(dòng)力學(xué)[M].北京:機(jī)械工業(yè)出版社,2005.
[26]李桂青,曹宏,李秋勝,等.結(jié)構(gòu)動(dòng)力可靠性理論及其應(yīng)用[M].北京:地震出版社,1993.
(學(xué)科編輯:黎婭)
Exact analysis of the random responses of multi-storey structure with Maxwell dampers under bounded noise excitation
LI Chuang-di,HU A Feng-zhong,GE Xin-guang
(School of Civil Engineering and Architecture,Guangxi University of Science and Technology,Liuzhou 545006,China)
The random responses of multi-storey structure with Maxwell dampers under bounded noise excitation are studied.Firstly,the structural non-extended order differential-integral dynamic response equations are established;Then,by using transfer function method,the exact solutions of structural transient displacement and velocity responses in time-domain are obtained by expanding the structure with respect to the first mode.Finally,by using above exact solutions,analytical solutions of the response variances of the displacement and velocity of energy dissipation structure under the bounded noise excitation are obtained.Therefore,a complete set of analytical method for the stochastic response of the energy dissipation structure under bounded noise excitation is established and a numerical example is given.
Maxwell dampers;transfer function method;bounded noise excitation;stationary response;exact solutions
TU311.3
A
2095-7335(2016)04-0001-06
10.16375/j.cnki.cn45-1395/t.2016.04.001
2016-03-30
國(guó)家自然科學(xué)基金項(xiàng)目(51468005,51368008);廣西自然科學(xué)基金項(xiàng)目(2014GXNSFAA118315);廣西科技大學(xué)創(chuàng)新團(tuán)隊(duì)支持計(jì)劃項(xiàng)目(2015年)資助.
李創(chuàng)第,博士,教授,研究方向:被動(dòng)控制結(jié)構(gòu)抗風(fēng)抗震,E-mail:lichuangdi1964@163.com.