• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于Caco-2細(xì)胞單層與大鼠小腸模型的大豆皂苷Ⅰ和Ⅱ經(jīng)上皮傳遞的變化研究

    2016-11-12 06:21:05光翠娥王世強(qiáng)桑尚源張海玲楊紅飛程水源江南大學(xué)食品科學(xué)與技術(shù)國家重點(diǎn)實(shí)驗(yàn)室江蘇無錫黃岡師范學(xué)院經(jīng)濟(jì)林木種質(zhì)改良與資源綜合利用湖北省重點(diǎn)實(shí)驗(yàn)室湖北黃岡438000
    食品科學(xué) 2016年11期
    關(guān)鍵詞:黃岡單層皂苷

    光翠娥,王世強(qiáng),桑尚源,張海玲,楊紅飛,程水源(.江南大學(xué) 食品科學(xué)與技術(shù)國家重點(diǎn)實(shí)驗(yàn)室,江蘇 無錫 4;.黃岡師范學(xué)院 經(jīng)濟(jì)林木種質(zhì)改良與資源綜合利用湖北省重點(diǎn)實(shí)驗(yàn)室,湖北 黃岡 438000)

    基于Caco-2細(xì)胞單層與大鼠小腸模型的大豆皂苷Ⅰ和Ⅱ經(jīng)上皮傳遞的變化研究

    光翠娥1,王世強(qiáng)1,桑尚源1,張海玲1,楊紅飛1,程水源2
    (1.江南大學(xué) 食品科學(xué)與技術(shù)國家重點(diǎn)實(shí)驗(yàn)室,江蘇 無錫 214122;2.黃岡師范學(xué)院 經(jīng)濟(jì)林木種質(zhì)改良與資源綜合利用湖北省重點(diǎn)實(shí)驗(yàn)室,湖北 黃岡 438000)

    利用Caco-2細(xì)胞單層與大鼠小腸模型研究大豆皂苷Ⅰ和Ⅱ的吸收變化與機(jī)制。在Caco-2細(xì)胞單層中,大豆皂苷Ⅰ和Ⅱ從腸腔側(cè)到基底側(cè)的表觀滲透系數(shù)(apparent permeability coefficients,Papp)隨時(shí)間的延長(zhǎng)趨向平穩(wěn),前120 min近似線性,且隨濃度增大,斜率減小,Papp值分別為(1.02×10-6~3.41×10-6)cm/s和(0.9×10-6~3.05×10-6) cm/s;傳遞的飽和性、雙側(cè)Papp比率>1.5以及線粒體呼吸鏈抑制劑疊氮化鈉的抑制作用表明了兩者的主動(dòng)轉(zhuǎn)運(yùn)機(jī)制。抑制劑維拉帕米沒有提高大豆皂苷Ⅰ和Ⅱ的吸收,排除了p-糖蛋白介導(dǎo)的外排;吸收促進(jìn)劑按照冰片>脫氧膽酸鈉>卡波姆934P>聚山梨酯80的強(qiáng)弱提高兩者的吸收,殼聚糖則未能加強(qiáng)滲透。跨膜轉(zhuǎn)運(yùn)也表現(xiàn)出組織差異性:兩者在大鼠空腸的Papp是十二指腸和回腸的2倍多。因此,控制的傳遞應(yīng)能提高大豆皂苷Ⅰ和Ⅱ的小腸吸收以便兩者實(shí)施它們的生理功能。

    大豆皂苷;Caco-2;疊氮化鈉;p-糖蛋白;吸收促進(jìn)劑

    GUANG Cuie, WANG Shiqiang, SANG Shangyuan, et al. Variability of transepithelial transport of soyasaponins I and II using a Caco-2 cell monolayer and a rat intestinal model[J]. Food Science, 2016, 37(11): 174-179. (in English with Chinese abstract) DOI:10.7506/spkx1002-6630-201611030. http://www.spkx.net.cn

    Soyasaponins Ⅰ and Ⅱ are naturally occurring oleanane triterpenoid glycosides and primarily found in soybean (Glycine max). Their contents vary according to soybean variety, culture year, location grown and degree of maturity with an average of 0.24 and 0.1 mmol/g, respectively[1]. SoyasaponinⅠmainly exists in soybean germ whereas soybean cotyledon contains a higher content of soyasaponinⅡthan germ[2]. SoyasaponinsⅠandⅡare both amphiphilic molecules, with polar sugar moieties attached to a nonpolar pentacyclic ring (soyasapogenol B) at the C-3 position[3]. The structures of soyasaponins I and Ⅱ have been elucidated to be 3-O-[α-L-rhamnopyranosyl(1→2)-β-D-galactopyranosyl(1→2)-β-D- glucuronopyranosyl]-soyasapogenol B and 3-O-[α-L-rhamnopyranosyl(1→2)-α-L- arabinopyranosyl(1→2)-β-D-glucuronopyranosyl]-soyasapogenol B, respectively. Soyasaponin I has been reported to have anti-inflammatory[4], anti-carcinogenic[5], anti-microbial[6], antioxidative[4], adjuvant[7], hepato-[8], cardiovascular[9]and kidney[10]protective functions; soyasaponinⅡalso displays anti-viral[11], adjuvant[7], hepato-[8]and cardiovascular[9]protective effects[12].

    The human colonic carcinoma Caco-2 cells form monolayers that allow absorption to occur simultaneously with food digestion under conditions similar to those found along the surface of the intestinal tract. Preluding the human trials, the Caco-2 cell monolayer model is generally used to screen bioactives with high productivity and thereafter predict their permeation in human intestine[13]. Excellent correlation exists between in vivo absorption and in vitro apparent permeability coefficient (Papp) for compounds including transcellular, paracellular and carrier-mediated mechanisms[14]. An end-point mode of experiment showed the mucosal transfer of soyasaponinⅠacross the Caco-2 cell monolayer with an Pappvalue of (0.9 × 10-6-3.6 × 10-6) cm/s[15]. Herein a detailed experiment would be conducted to investigate the time- and concentration-dependent permeability of soyasaponinsⅠandⅡand therefore confirm their transport mechanism.

    Moreover, the absorption of bioactives in human intestine is influenced by diverse factors. Passive intestinal permeability depends on molecular size, lipophilicity, hydrogen bonding capacity and so on[16]; the active transport needs carriers and energy; efflux mechanisms, absorption enhancers and food matrix can retard or promote the permeability of bioactives. Therefore, the effects of inhibitors, including sodium azide and verapamil, and absorption enhancers, including borneol, sodium deoxycholate (SDC), polysorbate (Tween) 80, crosslinked poly(acrylate) derivative carbomer 934P and poly(2-deoxy-2-amino glucan) polymer chitosan on the permeability of soyasaponins Ⅰ and Ⅱ, would be predicted using the Caco-2 cell monolyer model. The uptake of bioactives also displays tissue difference. Herein the optimal intestine regions for absorption of soyasaponins Ⅰ and Ⅱ would be determined.

    1 Materials and Methods

    1.1 Materials and animals

    Human colon adenocarcinoma Caco-2 cell line Cell Bank of Chinese Academy of Sciences (Shanghai, China); alkaline phosphatase assay kit, penicillin and streptomycin Beyotime Institute of Biotechnology (Shanghai, China); carbomer 934P Xinhenglong Technology (Wuhan, China); soluble chitosan (50% deacetylation degree) Hecreat Biotech (Qingdao, China); Hank’s balanced salt solution (HBSS, pH 7.4), Dulbecco’s Modified Eagle’s Medium (DMEM), fetal bovine serum (FBS) and non-essential amino acids (NEAA) GibcoBRL (New York, USA); soyasaponins I and Ⅱ ChromaDex (Irvine, USA); TranswellTMplates of 6 wells (24 mm diameter, 3 mm pore size) Corning Costar (New York, USA); atenolol and propranolol Sigma (St. Louis, USA). Male Sprague-Dawley (SD) rats with a body mass of approximately 250 g Shanghai Super-B&K Laboratory Animal Corporation (Shanghai Laboratory Animal Center, China). The animals had free access to food and water in the room maintained at about 25 ℃ with a 12 h light/dark cycle.

    1.2 Preparation of Caco-2 cell monolayers

    Caco-2 cells were cultured in DMEM containing 4.5 g/L glucose and supplemented with 10% (V/V) FBS, 1% (V/V) L-glutamine, 100 U/mL penicillin, 100 mg/mL streptomycin, 1%(V/V) NEAA, and maintained at 37 ℃ in a controlled atmosphere of 5% CO2and 90% relative humidity. Medium was replaced every two days until the confluence reached 80%-90%. After 32-40 passages by trypsinization with 0.25% trypsin and 0.02% of ethylenediaminetetraacetic acid (EDTA) in PBS, Caco-2 cells were inoculated at a density of 1.5×105cells/cm2on Transwell membrane inserts. Medium was renewed every 2 days for the 5 weeks and every day for the next 8-21 day s[13]. Differentiation of Caco-2 cells was examined by determining the activity of alkaline phosphatase with an assay kit; the integrity was checked by measuring the transepithelial electrical resistance (TEER)with an Evom resistance voltohmmeter (World Precision Instruments, Sarasota, USA) after monitoring for 60 min; and the transportation ability was tested by running standard assays using atenolol and propranolol as paracellular fl ux and transcellular fl ux markers, respectively[16].

    1.3 Transport of soyasaponinsⅠandⅡacross Caco-2 cell monolayers

    After the integral cell monolayers were washed twice with prewarmed Hank’s balanced salt solution (HBSS) medium, 0.5 mL aliquots of HBSS containing different concentrations of soyasaponins Ⅰ and Ⅱ (0.5, 1, 3 mmol/L) were added to the apical side and 1.5 mL of fresh HBSS to the basolateral side, or 0.5 mL HBSS to the apical side and 1.5 mL samples to the basolateral side. The monolayers were incubated at 37 ℃ on a vibrax shaker at 60 r/min. At the time intervals of 30, 45, 60, 90, 120, 150, 180 and 240 min, 0.5 or 0.25 mL aliquots were drawn from the receiving side for analysis and replaced with an equal volume of fresh buffer. In order to investigate the transport variation, a 0.5 mL aliquot of HBSS containing 1mmol/L soyasaponin Ⅰ and 1 mmol/L soyasaponin Ⅱ was added to the apical side, or 0.5 mL aliquots of HBSS containing 1 mmol/L soyasaponin Ⅰor soyasaponin Ⅱ and sodium azide (0.5 mmol/L) or verapamil (0.1 mmol/L) or borneol (0.5 g/100 mL) or SDC (0.5 g/100 mL) or polysorbate 80 (0.5 g/100 mL) or carbomer 934P (0.5 g/100 mL) or chitosan (0.5 g/100 mL) were added to the apical side, and 0.5 mL aliquots were removed from the basolateral side over a period of 180 min. The collected samples were immediately frozen, lyophilized and stored below -20 ℃ for subsequent high-performance liquid chromatography (HPLC) analysis[13]. The Pappwas calculated according to the following equation.

    where ΔQ/Δt is the appearance rate of the soyasaponin on the receiving side/(mol/s), A is the membrane surface area /cm2, and C0is the initial concentrationin the donor compartment/ (mol/mL).

    Transport enhancement ratio (ER) was calculated from Pappvalues according to the following equation:

    1.4 ex vivo transport of soyasaponinsⅠandⅡacross rat intestinal tissues

    Rats were anaesthetized via intraperitoneal injection of 15% urethane (10 mL/kg) and then a laparotomy was performed. The intestine was excised and rinsed in ice-cold PBS (pH 7.4). The duodenal segment was the first 10 cm portion from the stomach, the ileal segment was the fi nal 10 cm portion of the small intestine, and the remaining intestine was used as the jejunum. After experimental segments were obtained, the underlying muscularis was removed before mounting in an Ussing chamber, in which a surface area of 0.293 cm2was exposed. PBS (3 mL) was added to the serosal side and an equal volume of sample solution (1 mmol/L) was added to the mucosal side. After the chamber was placed in a water bath at 30 ℃, mixing was performed by bubbling with 95% O2-5% CO2[17]. Samples were taken away from the serosal side over a period of 180 min and were immediately frozen, lyophilized and stored below -20 ℃ for subsequent HPLC analysis.

    1.5 Quantifi cation of soyasaponins I and Ⅱ by HPLC

    The lyophilized samples were dissolved in 200 mL MeOH and centrifuged at 15 000 × g for 10 min. The resulting supernatant (20 μL) was injected and separated by the reversed phase-HPLC(RP-HPLC) system comprised of a Jupiter 4 μ Proteo 90A C12 reversed-phase column (250 mm × 4.6 mm, Phenomenex, Inc., Torrance, CA), a Waters 2695 Separations Module and a Waters 996 photodiode array detector (Waters Co., Milford, MA) recording absorbance from 190 to 350 nm. Solvent A was 0.05% (V/V) trifluoroacetic acid (TFA) in filtered deionized water, and solvent B was 0.05% (V/V) TFA in acetonitrile. Elution was achieved by a linear gradient from 38% to 48% solvent B within 40 min at a fl ow rate of 1 mL/min[1]. Calibration curves of the peak area versus standard concentration were used to calculate the soyasaponin concentrations.

    1.6 Data analysis

    All data were expressed as the± s and unpaired Student’s t-test was used to assess the significance of the difference between two mean values at a signifi cant level of P < 0.05.

    2 Results and Analysis

    2.1 Time- and concentration-dependent transport of soyasaponinsⅠandⅡacross Caco-2 cell monolayers

    After Caco-2 cells grew for 14 days, alkaline phosphatase could hydrolyze the substrate para-nitrophenyl phosphate into yellow para-nitrophenol. On the 21thday, TEER measurement showed a value of above 450 Ω/cm2after subtracting the intrinsic resistance of insert alone.Pappvalues of two known model substrates atenolol (poor permeability) and propranolol (high permeability) were (2.37 ± 0.02) × 10-7cm/s and (2.62 ± 0.07) × 10-5cm/s, respectively. These control assays confi rmed the integrity and transportation ability of Caco-2 cell monolayers. Within the test concentration range, soyasaponins Ⅰ and Ⅱ showed no apparent cytotoxicity on Caco-2 cells. The recovery during transport assays was measured as the total amount of soyasaponins in two sides of the insert. A recovery rate of > 95% for both soyasaponins indicated low cell accumulation and supported the experimental reliability.

    Fig. 1 Effects of time and concentration on the transport ofsoyasaponins I (A) and Ⅱ (B) across Caco-2 cell monolayers (apical to basolateral, n = 5)

    Pappvalues for soyasaponins Ⅰ and Ⅱ across Caco-2 cell monolayers from the apical to basolateral direction were showed in Fig. 1. With a defi ned concentration, Pappincreased linearly until a plateau was reached at 120 min. According to the equation (1), the transport rate (ΔQ/Δt) increased for the fi rst 120 min and afterwards tended to remain constant. When the soyasaponin concentration was elevated, the transported mass was increased with a less magnitude, Pappdecreased and the uptake tended to be saturable probably due to the carrier saturation. The results show that Pappvalues from the apical to basolateral direction were significantly higher (P < 0.05) than those from the basolateral to apical direction with the ratios being larger than 1.5 (Table 1) further indicated the active transport[16]. Therefore, the transport of soyasaponinsⅠand Ⅱ might involve a carriermediated mechanism; the absorption could be enhanced when the soyasaponin concentration is low and could be limited by the capacity of epithelial cells to take up and transfer soyasaponins to the basolateral side when the high concentration is present[15]. The order of magnitude (10-6cm/s) for fi nal Pappvalues indicated an intermediate permeability of two soyasaponins. For comparison, Pappvalues of 36 fl avonoids across Caco-2 monolayers from the apical to basolateral side ranged from less than 5 × 10-7to 2.96 × 10-5cm/s[16]. Compounds of intermediate or low permeability have a lower permeability in Caco-2 model than in vivo. Atenolol, ranitidine, furosemide and chlorothiazide, which are adequately absorbed in humans, showed poor permeability in the standard 21-day Caco-2 cell monolayer. Caco-2 cells originate from the colon and have a tighter paracellular route than in vivo. The average pore radius of tight junctions in the human intestine is around 8-13?, whereas the corresponding radius in Caco-2 cells is about 5 ?[18].

    TTaabble 1 Bilateral apparent permeation coeffi cients (Paapppp)) ooff soyasaponins in the Caco-2 model

    2.2 Effects of inhibitors and absorption enhancers on the transport of soyasaponins Ⅰ and Ⅱ across Caco-2 cell monolayers

    When soyasaponins Ⅰ and Ⅱ were simultaneously added to the apical side, the individual Pappwas mildly lower than that for a soyasaponin added separately (Fig. 2), which indicated that two soyasaponins might use the same carrier and therefore competitively inhibit the permeation each other and that the interaction in food matrix could regulate their absorption. Sodium azide, a cytochrome c oxidase-respiratory chain complex Ⅳinhibitor due to enhanced cytochrome c holoenzyme dissociation that inhibits the electron transfer between mitochondrial respiratory chain and thus prevents the oxidative ATP production[19], significantly reduced the transport of both soyasaponins (P < 0.05). Competitive inhibition and energy requirement during transport further indicated the carrier-mediated flux of soyasaponins Ⅰand Ⅱ. P-glycoprotein, a transmembrane permeability glycoprotein, is an ATP dependent efflux pump that is strongly expressed by Caco-2 cells and often causes multidrug resistance and poor bioavailability[20]. Its specific inhibitorverapamil did not significantly increase the permeation of both soyasaponins, hence suggesting that the carrier might not involve in the efflux of soyasaponins Ⅰ and Ⅱ in the Caco-2 model. When different enhancers were added, the ranking in terms of absorption enhancing ability was borneol > SDC > carbomer 934P > polysorbate 80 > chitosan. Among them, borneol, SDC, carbomer 934P and polysorbate 80 significantly promoted the permeation of soysaponins (P < 0.05) with ERs being 3.06, 2.98, 2.52, 2.44 for soyasaponin Ⅰ and 3.21, 3.03, 2.73 and 2.62 for soyasaponin Ⅱ, respectively. Chitosan showed no absorption enhancing effect for two soyasaponins and in contrast, suppressed in different degrees. Borneol is an efficacyenhancing ingredient in traditional Chinese medicine; SDC is a type of bile salts that tend to dissolve the extracellular proteins and loosen the tight junctions and also to dissolve the membrane bound cholesterol and increase the fl uidity of the membrane, thereby increasing the transcellular permeability[21]; polysorbate 80 is a nonionic surfactant used in the manufacture of a variety of pharmaceutical products and can induce alternation of biomembranes and therefore increase the permeability[22]; carbomer and chitosan with strong mucoadhesiveness and low toxicity have been proved to function by opening intercellular junctions and thereby enhancing the paracellular permeability[23].

    Fig. 2 Pappand transport ER of soyasaponins Ⅰ (A) and Ⅱ (B) in theCaco-2 model in the presence of various inhibitors and enhancers (apical to basolateral)

    2.3 Regional difference of the transport of soyasaponinsⅠ and Ⅱ in the intestine

    The optimal sites for absorption of soyasaponins Ⅰ andⅡ were determined by ex vivo transport across rat intestinal segments in Ussing chambers. Pappvalues of soyasaponins across rat duodenum, jejunum and ileum were summarized in Fig. 3. The calculated Pappvalues for soyasaponins Ⅰand Ⅱ across the jejunal segment were more than 2-times greater (P < 0.05) than Pappvalues across the duodenal and ileal segments, whereas the Pappvalues across duodenum and ileum did not differ signifi cantly. These results indicated jejunum was the optimum absorption site of soyasaponins I and Ⅱ. The unstirred water layer, differences in the thickness of mucous layers, the tightness and the number of tight junctions and membrane components might have infl uenced the transport of soyasaponins Ⅰ and Ⅱ across the various intestinal membranes[17]. Additionally, Pappvalues obtained through the ex vivo Ussing chambers were higher than those observed in the Caco-2 experiments with permeability ratios ranging from about 3.2 (ileum) up to 6.9 (duodenum), which may be explained by the higher tightness of the Caco-2 cell monolayer compared to intact mammalian intestinal tissue[24].

    Fig. 3 Transport of soyasaponins Ⅰ and Ⅱ across the intestinal segments

    3 Conclusions

    The present study showed the permeability of soyasaponins Ⅰ and Ⅱ as being intermediate in the Caco-2 model. Active transport was suggested to be the major absorption mechanism, which was further supported by the inhibitory effects of sodium azide. Absorption enhancers, borneol, SDC, carbomer 934P and polysorbate 80, did improve the permeability of soyasaponins Ⅰ and Ⅱ in the Caco-2 model. Jejunum was suggested to be the optimal absorption tissue. Thus a manipulated transport would increase the intestinal permeability so that soyasaponinsⅠand Ⅱ could exert their health actions.

    [1] HU Jiang, LEE S, HENDRICH S, et al. Quantifi cation of the group B soyasaponins by high-performance liquid chromatography[J]. Journal of Agricultural and Food Chemistry, 2002, 50(9): 2587-2594. DOI:10.1021/jf011474.

    [2] BERHOW M A, KONG S, VERMILLION K E, et al. Complete quantifi cation of group A and group B soyasaponins in soybeans[J]. Journal of Agricultural and Food Chemistry, 2006, 54(6): 2035-2044. DOI:10.1021/jf053072o.

    [3] ZHANG Wei, POPOVICH D G. Chemical and biological characterization of oleanane triterpenoids from soy[J]. Molecules, 2009, 14(8): 2959-2975. DOI:10.3390/molecules14082959.

    [4] LEE I, PARK Y, YEO H, et al. SoyasaponinⅠattenuates TNBS-induced colitis in mice by inhibiting NF-κB pathway[J]. Journal of Agricultural and Food Chemistry, 2010, 58(20): 10929-10934. DOI:10.1021/jf102296y.

    [5] CHANG Weiwei, YU Chiayu, LIN Tzuwen, et al. SoyasaponinⅠdecreases the expression of α-2,3-linked sialic acid on the cell surface and suppresses the metastatic potential of B16F10 melanoma cells[J]. Biochemical and Biophysical Research Communications, 2006, 341(2): 614-619. DOI:10.1016/ j.bbrc.2005.12.216.

    [6] EL-HAWIET A M, TOAIMA S M, ASAAD A M, et al. Chemical constituents from Astragalus annularis Forssk. and A. trimestriss L., Fabaceae[J]. Brazilian Journal of Pharmacognosy, 2010, 20(6): 860-865. DOI:10.1590/S0102-695X2010005000047.

    [7] ODA K, MATSUDA H, MURAKAMI T, et al. Relationship between adjuvant activity and amphipathic structure of soyasaponins[J]. Vaccine, 2003, 21(17/18): 2145-2151. DOI:10.1016/S0264-410X(02)00739-9.

    [8] ISHII Y, TANIZAWA H. Effects of soyasaponins on lipid peroxidation through the secretion of thyroid hormones[J]. Biological & Pharmaceutical Bulletin, 2006, 29(8): 1759-1763. DOI:10.1248/ bpb.29.1759.

    [9] TAKAJASHI S, HORI K, HOKARI M, et al. Inhibition of human renin activity by saponins[J]. Biomedical Research, 2010, 31(2): 155-159. DOI:10.2220/biomedres.31.155.

    [10] PHIBRICK D J, BUREAU D P, COLLINS F W, et al. Evidence that soyasaponin Bbretards disease progression in a murine model of polycystic kidney disease[J]. Kidney International, 2003, 63(4): 1230-1239. DOI:10.1046/j.1523-1755.2003.00869.x.

    [11] KINJO J, YOKOMIZO K, HIRAKAWA T, et al. Anti-herps virus activity of fabaceous triterpenoidal saponins[J]. Biological & Pharmaceutical Bulletin, 2000, 23(7): 887-889. DOI:10.1248/ bpb.23.887.

    [12] GUANG Cuie, CHEN Jie, SANG Shangyuan, et al. Biological functionality of soyasaponins and soyasapogenols[J]. Journal of Agricultural and Food Chemistry, 2014, 62(33): 8247-8255. DOI:10.1021/jf503047a.

    [13] GUANG Cuie, SHANG Jiangang, JIANG Bo. Transport of traditional Chinese pimple milk-derived angiotensin- converting enzyme(ACE) inhibitory peptides across a Caco-2 cell monolayer and their molecular recognition with ACE[J]. Journal of Food, Agriculture & Environment, 2012, 10(3/4): 40-44.

    [14] YEE S Y. In vitro permeability across caco-2 cells (colonic) can predict in vivo (small intestinal) absorption in man-fact or myth[J]. Pharmaceutical Research, 1997, 14(6): 763-766. DOI:10.1023/ A:1012102522787.

    [15] HU Jiang, REDDY M B, HENDRICH S, et al. SoyasaponinⅠand sapogenol B have limited absorption by Caco-2 intestinal cells and limited bioavailability in women[J]. Journal of Nutrition, 2004, 134(8): 1867-1873.

    [16] TIAN Xiaojuan, YANG Xiuwei, YANG Xiaoda, et al. Studies of intestinal permeability of 36 flavonoid using Caco-2 cell monolayer model[J]. International Journal of Pharmaceutics, 2009, 367(1/2): 58-64. DOI:10.1016/j.ijpharm.2008.09.023.

    [17] UCHIYAMA T, SUGIYAMA T, QUAN Y S, et al. Enhanced permeability of insulin across the rat intestinal membrane by various absorption enhancers: their intestinal mucosal toxicity and absorption-enhancing mechanism of n-lauryl-β-D-maltopyranoside[J]. Journal of Pharmacy and Pharmacology, 1999, 51(11): 1241-1250. DOI:10.1211/0022357991776976.

    [18] MASUNGI C, BORREMANS C, WILLEMS B, et al. Usefulness of a novel Caco-2 cell perfusion system. I. In vitro prediction of the absorption potential of passively diffused compounds[J]. Journal of Pharmaceutical Science, 2004, 93(10): 2507-2521. DOI:10.1002/ jps.20149.

    [19] LEARY S C, HILL B C, LYONS C N, et al. Chronic treatment with azide in situ leads to an irreversible loss of cytochrome c oxidase activity via holoenzyme dissociation[J]. Journal of Biological Chemistry, 2002, 277(13): 11321-11328. DOI:10.1074/jbc. M112303200.

    [20] VARMA M V, ASHOKRAJ Y, DEY C S, et al. P-glycoprotein inhibitors and their screening: a perspective from bioavailability enhancement[J]. Pharmacological Research, 2003, 48(4): 347-359. DOI:10.1016/S1043-6618(03)00158-0.

    [21] RUAN Liping, YU Boyang, ZHU Danni, et al. Effect of enhancer on the absorption of matrine in vitro and its hepato-protective effect on mice[J]. Journal of China Pharmaceutical University, 2008, 39(2): 116-121.

    [22] AKHTAR N, REHMAN M U, KHAN H M S, et al. Penetration enhancing effect of polysorbate 20 and 80 on the in vitro percutaneous absorption of L-ascorbic acid[J]. Tropical Journal of Pharmaceutical Research, 2011, 10(3): 281-288. DOI:10.4314/tjpr.v10i3.1.

    [23] LUEBEB H L, de LEEUW B J, LANGEMEYER M W E, et al. Mucoadhesive p olymers in peroral peptide drug delivery. VI. Carbomer and chitosan improve the intestinal absorption of the peptide drug buserelin in vitro[J]. Pharceutical Research, 1996, 13(11): 1668-1672. DOI:10.1023/A:1016488623022.

    [24] FOLTZ M, CERSTIAENS A, van MEENSEL A, et al. The angiotensin converting enzyme inhibitory tripeptides Ile-Pro-Pro and Val-Pro-Pro show increasing permeabilities with increasing physiological relevance of absorption models[J]. Peptides, 2008, 29(8): 1313-1320. DOI:10.1016/j.peptides.2008.03.021.

    Variability of Transepithelial Transport of Soyasaponins Ⅰ and ⅡUsing a Caco-2 Cell Monolayer and a Rat Intestinal Model

    GUANG Cuie1, WANG Shiqiang1, SANG Shangyuan1, ZHANG Hailing1, YANG Hongfei1, CHENG Shuiyuan2
    (1. State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; 2. Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang Normal University, Huanggang 438000, China)

    The absorption mechanism and variability of soyasaponins I and II were investigated using a Caco-2 cell monolayer and a rat intestinal model. Apparent permeability coeffi cients (Papp) across the Caco-2 model increased linearly until plateaus were reached at 120 min with intermediate Pappvalues of (1.02?3.41) × 10-6and (0.9?3.05) × 10-6cm/s for two soyasaponins, respectively. Saturable transport, bilateral Pappratios of more than 1.5 and the inhibitory effect of mitochondrial electron transport chain blocker sodium azi de indicated the active transport mechanisms. The transmembrane permeability glycoprotein (p-glycoprotein) inhibitor verapamil did not increase the permeation of both soyasaponins, excluding the p-glycoprotein-related effl ux. Several absorption enhancers promoted the permeation across the Caco-2 cell monolayers with a rank of borneol > sodiumdeoxycholate > carbomer 934P polysorbate 80; but chitosan did not exhibit such an enhancing ability. The transepithelial transport also showed tissue difference in the intestine with the Pappvalues for soyasaponins I and II across the jejunal segment being more than 2 times greater than those across the duodenal and ileal segments. Therefore, a controlled transport should be able to improve the intestinal absorption so that soyasaponins I and II would exert their health functions. Key words: soya saponin; Caco-2; sodium azide; p-glycoprotein; absorption enhancer

    nces:

    10.7506/spkx1002-6630-201611030

    TS201.4

    A

    1002-6630(2016)11-0174-06

    GUANG Cuie, WANG Shiqiang, SANG Shangyuan, et al. Variability of transepithelial transport of soyasaponins I and II

    using a Caco-2 cell monolayer and a rat intestinal model[J]. 食品科學(xué), 2016, 37(11): 174-179. DOI:10.7506/spkx1002-6630-201611030. http://www.spkx.net.cn

    2015-03-01

    國家自然科學(xué)基金青年科學(xué)基金項(xiàng)目(31201289);經(jīng)濟(jì)林木種質(zhì)改良與資源綜合利用湖北省重點(diǎn)實(shí)驗(yàn)室開放基金資助項(xiàng)目(2011BLKF241);食品科學(xué)與技術(shù)國家重點(diǎn)實(shí)驗(yàn)室自由探索項(xiàng)目(SKLF-ZZB-201208)

    光翠娥(1976—),女,副教授,博士,研究方向?yàn)槭称窢I養(yǎng)與功能因子。 E-mail:guang1226@hotmail.com

    猜你喜歡
    黃岡單層皂苷
    書的厚與薄
    二維四角TiC單層片上的析氫反應(yīng)研究
    分子催化(2022年1期)2022-11-02 07:10:16
    黃岡師范學(xué)院美術(shù)作品選登
    黃岡師范學(xué)院美術(shù)學(xué)院寫生作品選登
    黃岡師范學(xué)院書法作品選登
    基于PLC控制的立式單層包帶機(jī)的應(yīng)用
    電子制作(2019年15期)2019-08-27 01:12:04
    單層小波分解下圖像行列壓縮感知選擇算法
    HPLC-MS/MS法同時(shí)測(cè)定三七花總皂苷中2種成分
    中成藥(2018年9期)2018-10-09 07:19:04
    HPLC法測(cè)定大鼠皮膚中三七皂苷R1和人參皂苷Rb1
    中成藥(2017年9期)2017-12-19 13:34:40
    HPLC法同時(shí)測(cè)定熟三七散中13種皂苷
    中成藥(2017年6期)2017-06-13 07:30:34
    久久精品国产综合久久久| 9热在线视频观看99| 亚洲欧美一区二区三区久久| 欧美日韩视频精品一区| 女警被强在线播放| 日韩一卡2卡3卡4卡2021年| 青草久久国产| 国产国语露脸激情在线看| 日本wwww免费看| 色综合欧美亚洲国产小说| 精品第一国产精品| av国产精品久久久久影院| 亚洲av片天天在线观看| 欧美日韩瑟瑟在线播放| 亚洲三区欧美一区| 精品国产一区二区三区四区第35| 在线天堂中文资源库| 欧美激情高清一区二区三区| 午夜福利在线观看吧| 波多野结衣一区麻豆| 97超级碰碰碰精品色视频在线观看| 精品久久久久久成人av| 亚洲国产欧美网| 久久久久国产精品人妻aⅴ院| 亚洲五月色婷婷综合| 老熟妇仑乱视频hdxx| 又紧又爽又黄一区二区| 老司机在亚洲福利影院| 不卡一级毛片| 日本免费一区二区三区高清不卡 | 久久国产亚洲av麻豆专区| 91九色精品人成在线观看| 亚洲精品一卡2卡三卡4卡5卡| 亚洲精品中文字幕在线视频| 日韩精品免费视频一区二区三区| 国产一区二区三区综合在线观看| 亚洲国产欧美一区二区综合| 国产亚洲欧美98| 色尼玛亚洲综合影院| 黄色毛片三级朝国网站| 岛国在线观看网站| 波多野结衣高清无吗| 男女下面进入的视频免费午夜 | 日日干狠狠操夜夜爽| 露出奶头的视频| 一进一出好大好爽视频| 亚洲aⅴ乱码一区二区在线播放 | 日日干狠狠操夜夜爽| 国产亚洲欧美在线一区二区| 国产av精品麻豆| 亚洲精品一区av在线观看| 人人妻人人爽人人添夜夜欢视频| 成年人黄色毛片网站| 久久影院123| 变态另类成人亚洲欧美熟女 | 精品久久久久久久毛片微露脸| av福利片在线| 久久香蕉激情| 国产日韩一区二区三区精品不卡| 91av网站免费观看| 久久久国产成人免费| 成人国语在线视频| 黄片播放在线免费| 国产精品98久久久久久宅男小说| 丁香欧美五月| 午夜福利,免费看| 搡老岳熟女国产| 黄色女人牲交| 亚洲av第一区精品v没综合| 91国产中文字幕| 91麻豆精品激情在线观看国产 | 男男h啪啪无遮挡| 亚洲精品国产区一区二| 女性生殖器流出的白浆| 18禁黄网站禁片午夜丰满| 美女福利国产在线| 国产男靠女视频免费网站| 露出奶头的视频| 桃色一区二区三区在线观看| a级毛片黄视频| 久久狼人影院| 久久精品亚洲av国产电影网| 亚洲av片天天在线观看| 一a级毛片在线观看| 久久精品国产亚洲av高清一级| 一级片'在线观看视频| 久久久久国产精品人妻aⅴ院| 在线观看免费视频网站a站| 精品福利永久在线观看| 两个人看的免费小视频| 国产无遮挡羞羞视频在线观看| 亚洲av美国av| 在线观看日韩欧美| 真人做人爱边吃奶动态| 亚洲成人免费av在线播放| 嫩草影院精品99| 国产97色在线日韩免费| 老熟妇乱子伦视频在线观看| 午夜福利,免费看| 久久香蕉激情| 精品久久久精品久久久| 久久国产乱子伦精品免费另类| 俄罗斯特黄特色一大片| 女人被狂操c到高潮| 国产精品久久久久成人av| 在线视频色国产色| 欧美av亚洲av综合av国产av| 狠狠狠狠99中文字幕| 91麻豆av在线| 精品国产亚洲在线| 一a级毛片在线观看| 中国美女看黄片| 一进一出抽搐动态| 国产在线精品亚洲第一网站| 黄色成人免费大全| 99久久人妻综合| 午夜免费观看网址| 久久精品91无色码中文字幕| 精品久久蜜臀av无| 欧美最黄视频在线播放免费 | 亚洲第一av免费看| 欧美激情极品国产一区二区三区| 亚洲五月天丁香| 视频区图区小说| 精品第一国产精品| 亚洲国产欧美日韩在线播放| 美女午夜性视频免费| 淫秽高清视频在线观看| 国内毛片毛片毛片毛片毛片| 老司机午夜十八禁免费视频| 国产熟女xx| 国产一区二区三区视频了| 日本 av在线| 成人免费观看视频高清| 欧美色视频一区免费| 在线av久久热| 丁香六月欧美| 色播在线永久视频| 少妇粗大呻吟视频| 亚洲,欧美精品.| 交换朋友夫妻互换小说| 国产区一区二久久| 熟女少妇亚洲综合色aaa.| 91九色精品人成在线观看| 国产高清视频在线播放一区| 精品乱码久久久久久99久播| www.www免费av| 亚洲成国产人片在线观看| 国产成人免费无遮挡视频| 水蜜桃什么品种好| av在线播放免费不卡| 亚洲视频免费观看视频| 日日干狠狠操夜夜爽| 精品一区二区三区四区五区乱码| 9色porny在线观看| 一级a爱视频在线免费观看| 乱人伦中国视频| 99精品欧美一区二区三区四区| 免费搜索国产男女视频| 精品欧美一区二区三区在线| 无限看片的www在线观看| 欧美日韩亚洲高清精品| 老汉色av国产亚洲站长工具| 高清毛片免费观看视频网站 | e午夜精品久久久久久久| 搡老乐熟女国产| 免费在线观看视频国产中文字幕亚洲| 国产av在哪里看| 免费高清视频大片| 桃红色精品国产亚洲av| 高清av免费在线| 99久久99久久久精品蜜桃| 妹子高潮喷水视频| 久久精品国产清高在天天线| 中亚洲国语对白在线视频| 精品午夜福利视频在线观看一区| 9色porny在线观看| 妹子高潮喷水视频| 他把我摸到了高潮在线观看| 国产成人精品久久二区二区91| 男人的好看免费观看在线视频 | 精品一品国产午夜福利视频| 午夜亚洲福利在线播放| 精品午夜福利视频在线观看一区| 亚洲av片天天在线观看| 最好的美女福利视频网| av在线天堂中文字幕 | 超色免费av| 国产区一区二久久| 欧美日韩亚洲高清精品| 91精品三级在线观看| 人人妻人人澡人人看| 最新美女视频免费是黄的| 免费日韩欧美在线观看| 亚洲国产毛片av蜜桃av| 黄色视频,在线免费观看| 又大又爽又粗| 黑人猛操日本美女一级片| 一边摸一边抽搐一进一出视频| 免费看a级黄色片| 欧美av亚洲av综合av国产av| 新久久久久国产一级毛片| 一二三四社区在线视频社区8| 桃红色精品国产亚洲av| 后天国语完整版免费观看| svipshipincom国产片| 日韩国内少妇激情av| 国产欧美日韩一区二区三区在线| 国产精品二区激情视频| 亚洲国产欧美一区二区综合| 91大片在线观看| 欧美成人午夜精品| 1024香蕉在线观看| 久久精品亚洲av国产电影网| 高潮久久久久久久久久久不卡| 黑人操中国人逼视频| 黑人巨大精品欧美一区二区蜜桃| 亚洲精品一二三| 午夜福利在线观看吧| a在线观看视频网站| 国产精品爽爽va在线观看网站 | 精品欧美一区二区三区在线| 热re99久久国产66热| 超碰成人久久| 久久精品国产亚洲av香蕉五月| 母亲3免费完整高清在线观看| 美女扒开内裤让男人捅视频| 在线国产一区二区在线| 国产三级在线视频| 午夜免费激情av| av视频免费观看在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 麻豆久久精品国产亚洲av | 久久久水蜜桃国产精品网| 日本wwww免费看| 757午夜福利合集在线观看| 国产在线观看jvid| 欧美乱妇无乱码| 在线国产一区二区在线| 亚洲av美国av| 欧美另类亚洲清纯唯美| 亚洲伊人色综图| 母亲3免费完整高清在线观看| 脱女人内裤的视频| 丰满的人妻完整版| 操美女的视频在线观看| 老汉色∧v一级毛片| 天堂中文最新版在线下载| 制服人妻中文乱码| 国产一区在线观看成人免费| 美女 人体艺术 gogo| av免费在线观看网站| 久久精品影院6| 欧美一级毛片孕妇| 麻豆久久精品国产亚洲av | 精品国产超薄肉色丝袜足j| 亚洲精品国产精品久久久不卡| 狂野欧美激情性xxxx| 色婷婷久久久亚洲欧美| 久久精品人人爽人人爽视色| 91老司机精品| 男女做爰动态图高潮gif福利片 | 久久热在线av| av在线播放免费不卡| 操出白浆在线播放| 色哟哟哟哟哟哟| 18禁美女被吸乳视频| 亚洲精品久久午夜乱码| 日韩欧美一区二区三区在线观看| 欧美一级毛片孕妇| 欧美日本亚洲视频在线播放| 在线观看免费午夜福利视频| 日本黄色视频三级网站网址| 亚洲aⅴ乱码一区二区在线播放 | 久久精品成人免费网站| 欧美性长视频在线观看| 亚洲人成77777在线视频| 亚洲欧洲精品一区二区精品久久久| 免费看a级黄色片| 成人手机av| 欧美精品啪啪一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 日日摸夜夜添夜夜添小说| 国产免费av片在线观看野外av| 日本vs欧美在线观看视频| 黄网站色视频无遮挡免费观看| 亚洲av熟女| 久久久久久久久中文| 精品乱码久久久久久99久播| 免费av中文字幕在线| 日韩精品青青久久久久久| 嫁个100分男人电影在线观看| 不卡av一区二区三区| 成年人免费黄色播放视频| 超色免费av| xxx96com| 无限看片的www在线观看| 国产深夜福利视频在线观看| 成人亚洲精品一区在线观看| 久久人妻福利社区极品人妻图片| 国产黄色免费在线视频| 亚洲五月天丁香| 中文字幕色久视频| 50天的宝宝边吃奶边哭怎么回事| 超碰成人久久| 亚洲成人精品中文字幕电影 | 精品久久蜜臀av无| 久久精品亚洲精品国产色婷小说| 国产在线观看jvid| 欧美黄色淫秽网站| 久久午夜综合久久蜜桃| 国产无遮挡羞羞视频在线观看| 亚洲精品美女久久久久99蜜臀| 欧美乱妇无乱码| 欧美久久黑人一区二区| 久久久久久人人人人人| 午夜精品在线福利| 亚洲人成网站在线播放欧美日韩| 国产亚洲精品久久久久5区| 免费在线观看日本一区| 国产精品二区激情视频| 久久人妻av系列| 国产主播在线观看一区二区| 老司机福利观看| 亚洲精品一区av在线观看| 国产欧美日韩综合在线一区二区| 免费在线观看影片大全网站| 久久精品亚洲av国产电影网| 欧美成人午夜精品| 久久精品91无色码中文字幕| 老司机在亚洲福利影院| 高清黄色对白视频在线免费看| 香蕉久久夜色| 99精国产麻豆久久婷婷| 午夜日韩欧美国产| videosex国产| 99国产精品99久久久久| 国产精品九九99| 国产在线精品亚洲第一网站| 亚洲第一青青草原| 黄片播放在线免费| 99热只有精品国产| 国产高清国产精品国产三级| 国产一区在线观看成人免费| 免费久久久久久久精品成人欧美视频| 欧美在线黄色| 成人国语在线视频| 波多野结衣高清无吗| 欧美人与性动交α欧美精品济南到| 黑人巨大精品欧美一区二区mp4| 母亲3免费完整高清在线观看| www日本在线高清视频| 国产精品自产拍在线观看55亚洲| 色综合婷婷激情| 欧美日本中文国产一区发布| 久久青草综合色| 亚洲av美国av| 日韩大尺度精品在线看网址 | 亚洲人成电影观看| 在线观看免费视频日本深夜| 丝袜人妻中文字幕| 国产亚洲av高清不卡| 久久久久久久久久久久大奶| 欧美日韩精品网址| 老鸭窝网址在线观看| 一边摸一边抽搐一进一出视频| 中文字幕另类日韩欧美亚洲嫩草| 在线十欧美十亚洲十日本专区| 极品教师在线免费播放| 看黄色毛片网站| 淫秽高清视频在线观看| 精品卡一卡二卡四卡免费| 亚洲中文av在线| 免费在线观看日本一区| 女性生殖器流出的白浆| 亚洲午夜理论影院| 99精国产麻豆久久婷婷| 无限看片的www在线观看| 日本免费a在线| 搡老熟女国产l中国老女人| 久久久久久大精品| 在线国产一区二区在线| 欧美激情高清一区二区三区| 亚洲国产精品合色在线| 日本a在线网址| 国产免费男女视频| 免费女性裸体啪啪无遮挡网站| 女人爽到高潮嗷嗷叫在线视频| 亚洲狠狠婷婷综合久久图片| 欧美日韩国产mv在线观看视频| 99国产综合亚洲精品| netflix在线观看网站| 久久久久久久午夜电影 | 99精国产麻豆久久婷婷| 欧美国产精品va在线观看不卡| 欧美日韩乱码在线| www日本在线高清视频| а√天堂www在线а√下载| 日韩免费高清中文字幕av| 男女之事视频高清在线观看| a级毛片黄视频| 母亲3免费完整高清在线观看| 一级a爱视频在线免费观看| av超薄肉色丝袜交足视频| 女性被躁到高潮视频| 狠狠狠狠99中文字幕| 久久精品亚洲精品国产色婷小说| 国产成人精品久久二区二区91| 757午夜福利合集在线观看| 满18在线观看网站| 又紧又爽又黄一区二区| 久久精品亚洲av国产电影网| ponron亚洲| 国产熟女午夜一区二区三区| 超碰97精品在线观看| tocl精华| 天天躁夜夜躁狠狠躁躁| 免费不卡黄色视频| 亚洲国产毛片av蜜桃av| 免费久久久久久久精品成人欧美视频| 宅男免费午夜| 国产99久久九九免费精品| 成年人免费黄色播放视频| 成人精品一区二区免费| 叶爱在线成人免费视频播放| 欧美不卡视频在线免费观看 | 999精品在线视频| av福利片在线| 久久久久亚洲av毛片大全| 97超级碰碰碰精品色视频在线观看| 免费看a级黄色片| 99久久综合精品五月天人人| 久热这里只有精品99| 在线播放国产精品三级| 亚洲精品一二三| 国产精品一区二区免费欧美| 国产精品九九99| 91在线观看av| 欧美成人性av电影在线观看| 国产精品98久久久久久宅男小说| 国产av又大| 纯流量卡能插随身wifi吗| 国产极品粉嫩免费观看在线| av中文乱码字幕在线| 精品午夜福利视频在线观看一区| 男女做爰动态图高潮gif福利片 | 一本综合久久免费| 国产成人精品久久二区二区91| 一级a爱视频在线免费观看| 中文欧美无线码| 悠悠久久av| 99久久国产精品久久久| 巨乳人妻的诱惑在线观看| 村上凉子中文字幕在线| 国产97色在线日韩免费| 国产真人三级小视频在线观看| 久久伊人香网站| 88av欧美| 黑人操中国人逼视频| 精品免费久久久久久久清纯| 国产亚洲av高清不卡| 国产熟女午夜一区二区三区| 亚洲美女黄片视频| 国内久久婷婷六月综合欲色啪| 中文字幕人妻丝袜一区二区| 精品卡一卡二卡四卡免费| 最近最新中文字幕大全免费视频| 在线观看免费视频日本深夜| bbb黄色大片| 国产三级在线视频| 亚洲avbb在线观看| 亚洲成av片中文字幕在线观看| 国产精品野战在线观看 | av免费在线观看网站| 成年人黄色毛片网站| 久久欧美精品欧美久久欧美| 精品久久久久久成人av| 一二三四社区在线视频社区8| 久久国产亚洲av麻豆专区| 黄频高清免费视频| 久热爱精品视频在线9| 久久久国产成人免费| av天堂在线播放| 99久久综合精品五月天人人| 亚洲男人天堂网一区| 国产亚洲精品综合一区在线观看 | 国产视频一区二区在线看| 久久久国产成人免费| 999久久久国产精品视频| 在线观看免费日韩欧美大片| 国产亚洲av高清不卡| 亚洲国产欧美一区二区综合| 成人影院久久| 三上悠亚av全集在线观看| 免费女性裸体啪啪无遮挡网站| 一夜夜www| av天堂久久9| 亚洲激情在线av| 国产区一区二久久| 亚洲精品一卡2卡三卡4卡5卡| 大陆偷拍与自拍| 丰满迷人的少妇在线观看| 久久精品国产亚洲av香蕉五月| e午夜精品久久久久久久| 亚洲成人久久性| 后天国语完整版免费观看| 丰满饥渴人妻一区二区三| 中国美女看黄片| 国产乱人伦免费视频| 免费女性裸体啪啪无遮挡网站| 9191精品国产免费久久| 国产精品日韩av在线免费观看 | 午夜老司机福利片| 国产熟女xx| 亚洲第一青青草原| 亚洲欧美精品综合久久99| 最好的美女福利视频网| aaaaa片日本免费| 97碰自拍视频| 美女 人体艺术 gogo| 男人舔女人的私密视频| 精品无人区乱码1区二区| 精品电影一区二区在线| 国产欧美日韩一区二区精品| 亚洲自拍偷在线| 久久伊人香网站| 色综合站精品国产| www日本在线高清视频| 欧美日韩视频精品一区| 免费少妇av软件| 亚洲国产中文字幕在线视频| 日本黄色日本黄色录像| 精品国产国语对白av| 在线观看午夜福利视频| 女人高潮潮喷娇喘18禁视频| 国产片内射在线| 亚洲精品粉嫩美女一区| 欧美 亚洲 国产 日韩一| 成年人黄色毛片网站| 亚洲国产精品sss在线观看 | 两个人免费观看高清视频| 真人做人爱边吃奶动态| 亚洲精华国产精华精| 91字幕亚洲| 老司机午夜福利在线观看视频| 一进一出好大好爽视频| 精品久久久精品久久久| a在线观看视频网站| 欧美日本亚洲视频在线播放| 两个人看的免费小视频| 国产精品av久久久久免费| 日韩中文字幕欧美一区二区| 免费不卡黄色视频| 精品乱码久久久久久99久播| 免费在线观看视频国产中文字幕亚洲| 高清毛片免费观看视频网站 | 精品熟女少妇八av免费久了| 美女大奶头视频| 久久青草综合色| 免费搜索国产男女视频| 日韩欧美国产一区二区入口| 国产精品一区二区在线不卡| 久久久久久大精品| 亚洲人成网站在线播放欧美日韩| 欧美丝袜亚洲另类 | 亚洲黑人精品在线| 欧美一区二区精品小视频在线| 婷婷丁香在线五月| 亚洲第一青青草原| 亚洲va日本ⅴa欧美va伊人久久| 亚洲一卡2卡3卡4卡5卡精品中文| 搡老岳熟女国产| 精品国产乱子伦一区二区三区| 欧美成人性av电影在线观看| 18禁观看日本| 国产人伦9x9x在线观看| 国产亚洲精品久久久久5区| 黄色 视频免费看| 精品日产1卡2卡| 亚洲av日韩精品久久久久久密| 黑人巨大精品欧美一区二区mp4| 首页视频小说图片口味搜索| 亚洲男人天堂网一区| 免费日韩欧美在线观看| 国产极品粉嫩免费观看在线| 久久天堂一区二区三区四区| 国产熟女xx| 成人黄色视频免费在线看| 精品一品国产午夜福利视频| 精品国产国语对白av| 久久九九热精品免费| 欧美在线黄色| 国产成人精品久久二区二区免费| 中国美女看黄片| 亚洲国产毛片av蜜桃av| 国产精品野战在线观看 | 97碰自拍视频| 黑人欧美特级aaaaaa片| 欧美日韩亚洲综合一区二区三区_| 亚洲精品国产区一区二| 成人三级做爰电影| 国产一区二区在线av高清观看| 国产精品99久久99久久久不卡| 国产亚洲欧美98| 亚洲成av片中文字幕在线观看| 成年版毛片免费区| av片东京热男人的天堂| 天堂√8在线中文| 老司机在亚洲福利影院| 国产区一区二久久| 成年人免费黄色播放视频| 少妇 在线观看| 精品欧美一区二区三区在线| 久久精品人人爽人人爽视色| 动漫黄色视频在线观看|