• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    炭纖維和廢棄聚乙烯在瀝青中的分散行為及其性能

    2016-11-01 00:55:24張茂榮方長青周世生程有亮胡京博
    新型炭材料 2016年4期
    關(guān)鍵詞:炭纖維長青理工大學(xué)

    張茂榮, 方長青, 周世生, 程有亮, 胡京博

    (1.西安理工大學(xué) 機(jī)械與精密儀器工程學(xué)院,陜西 西安710048;2.西安理工大學(xué) 印刷包裝與數(shù)字媒體學(xué)院,陜西 西安710048)

    ?

    炭纖維和廢棄聚乙烯在瀝青中的分散行為及其性能

    張茂榮1,2,方長青1,2,周世生1,2,程有亮2,胡京博1,2

    (1.西安理工大學(xué) 機(jī)械與精密儀器工程學(xué)院,陜西 西安710048;2.西安理工大學(xué) 印刷包裝與數(shù)字媒體學(xué)院,陜西 西安710048)

    聚丙烯腈基炭纖維和廢棄聚乙烯作為改性劑,采用熱熔共混、絮凝處理、熔融共擠3種工藝對(duì)道路瀝青進(jìn)行改性,并研究了炭纖維分散性對(duì)瀝青性能的影響。研究表明:炭纖維和廢棄聚乙烯對(duì)瀝青的改性為物理改性,隨著炭纖維含量的增加,改性瀝青的軟化點(diǎn)和延度上升,針入度降低,改性瀝青高溫性能得到改善。過高的炭纖維含量將不利于分散而發(fā)生纖維團(tuán)聚,當(dāng)炭纖維含量超過0.1%,將造成改性瀝青性能降低。微觀觀察發(fā)現(xiàn),熔融共擠工藝較其他工藝,炭纖維與聚乙烯能較好的分散和結(jié)合,使得聚乙烯與炭纖維形成良好的類荊棘狀吸附,在瀝青中分散最佳,改性瀝青的高溫性和抗車轍性能得到較大提高。

    包裝廢PE; 炭纖維; 復(fù)合改性; 瀝青

    1 Introduction

    The domestic ordinary asphalt is unable to meet the demands of modern high-speed motorway due to its disadvantages, such as high wax,bad cohesive force, low ductility and large temperature-sensitivity. In order to deal with these problems, many polymers were used to modify the asphalt, such as styrene-butadiene-styrene triblock copolymer (SBS), rubber and polyethylene(PE). At present, the asphalt modified by SBS are broadly used. The properties of the asphalt modified by any single polymer could not be improved comprehensively to meet the demands of modern paving[1-4]. There are different materials that have been employed to reinforce asphalt. Fibers and polymers are two important examples used for this purpose[5,6]. Carbon fibers have many advantages, such as high axial force, high modulus, low density, high temperature resistance in non oxidizing environment, high fatigue resistance, good corrosion resistance and good thermal conductivity[7,8]. Carbon fibers are one class of the important materials used to make composites,owing to their good tensile property and softness. Nowadays, environmental protection, as a social responsibility, has become an important task in all countries. Therefore, the recycled waste packaging polymers and carbon fibers appear to be the attractive modifiers.

    Based on the above background, recycled waste packaging polyethylene (WPE) and polyacrylonitrile (PAN) -based carbon fibers (PANCFs) were selected to modify the ordinary paving asphalt instead of the ordinary polymer modifiers. At the same time, three different types of combined modification technologies were studied to reveal the modification mechanism and provide a theoretical basis for the preparation of the low-priced modified asphalt.

    2 Materials and experiments

    2.1Materials

    The recycled WPE bags whose main component was linear low-density polyethylene (LLDPE) were cleaned and dried. The ordinary industrial asphalt was SK-90 produced in petrochemical factory in Xi’an and its main properties are shown in Table 1. PANCFs are made by Institute of Coal Chemistry, Chinese Academy of Sciences. And the carbon fibers are 6 K and cut into 5 mm.

    Table 1 Main properties of ordinary asphalt.

    2.2Preparation

    The recycled WPE bags were washed to remove impurities and dried in a vacuum drying oven until the water content was less than 1%. PANCFs were cut into a length about 5 mm. The compositions of the samples in the experiment are listed in Table 2.

    Table 2 Compositions of the modified asphalt samples in the experiment.

    Before the WPE and short-cut PANCFs were added into the asphalt, they were mixed in the following three methods. In the method A, WPE and PANCFs were weighed separately according to the formulations in Table 2. In the method B, WPE and short-cut PANCFs were added into xylene, heated to 90 ℃ and stirred by a blender for 100 min. The mixture was flocculated in alcohol, filtered and dried at 90 ℃ in a vacuum drying oven. In method C, WPE and short-cut PANCFs were mixed, crushed at high speed by double roller and extruded by an extruder at 170 ℃.

    The asphalt was heated to 170 ℃ until completely melted. To the melted asphalt, the blends of WPE and PANCFs produced in the above three methods were added in the completely melted raw asphalt at 170 ℃ in a reaction kettle. Keeping the temperature constant, the mixture was stirred for 30 min with a glass stirring rod, and then sheared by a shearing machine at a high-speed of 4 000 r/min for 80 min.The temperature of the mixture was then reduced to 130 ℃ and left undisturbed for 50 min for swelling. After fully swelled, the mixture was sheared again by a shearing machine at a high-speed of 3 800 r/min for 60 min until WPE and PANCFs were dispersed uniformly in the asphalt.

    2.3Performance test of the modified asphalts

    The softening point, the penetration degree and the ductility degree of the modified asphalts were measured according to the standards of China, GB/T0606-2000, GB/T0604-2000 and GB/T0605-1993, respectively. The penetration degree of the modified asphalts was measured with a GS-IV type automatic asphalt penetrometer (China). The softening point of the modified asphalts was tested with a SLR-C type digital softening point tester (China). The ductility was tested with a STYD-3 type digital ductility testing machine (China). The softening point, the penetration degree and the ductility degree of the modified asphalts were measured three times at different positions and averaged.

    Besides, a JSM-6390A scanning electron microscope (Japan) was employed to observe the microstructure of the modified asphalts at 5 kV. The modified asphalt samples were obtained at -5 ℃, and coated with gold/pallladium alloy before observation. An Olympus CX40-RFL32J fluorescent microscope was used to investigate the microstructure of the modified asphalts. FT-IR spectra were obtained using a Shimazu FTIR-8400S infrared spectrometer with a scanning range of 400- 4 000 cm-1and a frequency of 20 Hz.

    The samples for softening point were prepared according to GB/T0661-2000. First, three kinds of modified asphalts were put into three test tubes. Next, the test tubes were layered for 48±1 h in an incubator at 163±5 ℃. The test tubes were first cooled to room temperature, then to -5 ℃ for 4 h[9]. Finally, the softening points of the asphalts were measured. The softening points of the samples were measured three times at different positions to get an average value.

    3 Results and discussion

    3.1Softening point

    The softening point of asphalt is the temperature when asphalt changes from a state of being uneasy to flow to a liquid state in the presence of some external force and heat, reflecting the high temperature performance of the asphalt[10-12]. Fig.1 shows the softening point of the three types of modified asphalts. It can be seen that high temperature performance of the asphalts modified by WPE and PANCFs was greatly improved. Besides, the modification methods have great effects on the high temperature performance of the modified asphalts. The softening points of the WPE-modified asphalts with the method B and C are higher than that with the method A, because the particle sizes of WPE with the method B and C are much smaller than that with the method A. The softening points of the modified asphalts all increase with the amount of PANCFs below 0.1 wt% regardless of the method used. When the amount of PANCFs exceeds 0.1 wt%, the softening points of the modified asphalts slightly decrease. The reason for this might be that the dispersion degree of PANCFs reaches saturation in the modified asphalts[13-16]. Too much PANCFs might lead to agglomeration that forms large particles and affects the performance of the modified asphalts.

    Fig. 1 The softening points of the three types of

    3.2Penetration degree

    The penetration degree of asphalt is a representation of asphalt viscosity, reflecting the rheological properties of asphalt[10-12]. Fig.2 shows the penetration degree of the three types of modified asphalts. It can be seen that the penetration degree of the modified asphalts decreases with the increasing amount of PANCFs. The penetration degree declines sharply and levels off when the amount of PANCFs was over 0.02 wt%. It is found that the penetration degree of the modified asphalts with the method A decreases most slowly because the dispersion of PANCFs is better for the method B and C[17,18].

    3.3Ductility

    The ductility of asphalt reflects the rutting resistance properties of asphalt. The changes in ductility of the three types of modified asphalts at 5 ℃ are shown in Fig. 3. It can be found that the ductility of all the three types are higher than those without PANCFs, indicating that PANCFs can improve the rutting resistance of the modified asphalts[19-22]. The ductility of samples prepared by the method A are lowest while those by the method C are highest under the same formulation of the modified asphalts. For the samples prepared with the method B and C, the ductility increases obviously when the amount of PANCFs is below 0.02 wt%, then increases slightly with the amount from 0.02 to 0.1 wt% and decrease with a further increase of the amount beyond 0.1 wt%. The reasons might be that the network of the modified asphalts is destroyed by the agglomeration of the PANCFs.

    Fig. 2 The penetration degree of the three types of modified asphalts.

    Fig. 3 The ductility of the three types of modified asphalts.

    3.4Segregation

    Fig.4, Fig.5 and Fig.6 show the softening points of the upper, the middle and the lower parts of the three kinds of modified asphalts after segregation, respectively. It can be seen from Fig. 4 that change in the softening point of the upper parts is the most obvious, indicating that the segregation phenomenon of modified asphalts without any cross-linking agent is obvious. Because the density of WPE is lower than of asphalt, the content of WPE in the upper part is higher, resulting in a significant increase (by 20-40 ℃) of the softening points. The softening points of the upper parts of modified asphalts with method B and C change slower than those with the method A. Because the upper parts of modified asphalts with the method B and C have a better dispersion of PANCFs in WPE, which prevents segregation obviously. From Fig. 5 and Fig. 6, it can be seen that the softening points of the modified asphalts in the middle and lower parts slightly decrease after segregation. The segregation become weakened when the amount of PANCFs increase.

    Fig. 4 The softening points of the upper

    Fig. 5 The softening points of the middle

    Fig. 6 The softening points of the lower

    3.5Effectiveness of the modification

    It can be seen from Fig.7 that, there are no changes in the FT-IR spectra of the modified asphalts by the three different modification methods, indicating that no chemical reactions take place during the modification. So the performance improvement of the modified asphalts comes from physical dispersion of PANCFs and WPE into the asphalts and the swelling of WPE by asphalt.

    Fig. 7 FT-IR spectra of raw and modified asphalts.

    3.6Microstructure

    Fig.8 shows the SEM images of the three modified asphalts with the amount of PANCFs of 0.08 wt%. The dispersion of WPE and PANCFs in the modified asphalts is significantly different. Although the dispersion of WPE and PANCFs in the asphalts with the method A is uniform, no network structure is

    formed. By contrast, a net structure is formed with the method B and C and the network structure is more uniform with the method C. The net structure prevents the segregation largely and greatly improves the comprehensive performance of the modified asphalts.

    3.7The relationship between the CFs and WPE in asphalts

    Fig.9 shows the microstructures of PANCFs and WPE in the modified asphalts with the method A when the amounts of PANCFs are 0.04 and 0.08 wt%. In the modified asphalts, PANCFs and WPE exist in several forms. PANCFs are wrapped by WPE as “1” shows. The “2” and “6” show that some short-cut PANCFs are dispersed into asphalt and the “7” shows some long-cut PAN-CFs are dispersed into asphalt too. From “3”, it can be seen that part of PANCFs are wrapped by WPE and the rest are dispersed into asphalt. “4” shows that the PANCFs pass through WPE, but both ends of the PANCFs are dispersed in asphalt. The PAN-CFs are adsorbed by two particles of WPE in “5”. By comparing the existing forms of CFs and WPE in asphalt, it is found that the compatibility between the modifiers and the asphalt is better in the cases of “1” ,“3”,“4” and “5”. Under these conditions, the PANCFs promote not only the swelling of WPE but also the dispersion of WPE.

    Fig. 8 SEM images of the three types of modified asphalts with the method (a) A, (b) B and (c) C.

    Fig. 9 Microstructures of PANCFs and WPE in the modified

    A model is proposed to reveal the relationship between PANCFs and WPE in the modified asphalts as shown in Fig.10. This model is simplified as a rigid model. The WPE adsorption to PANCFs, the mixing extent between WPE and PANCFs, and the dispersion of PANCFs and WPE in modified asphalts are the worst in the method A, and best in the method C. In the modified asphalts, if the PANCFs are too long, their homogeneous dispersion in asphalt and WPE is difficult, WPE adsorption to them is weak and aggregation takes place, which are unfavorable for the modification. If the PANCFs are too short, their dispersion in WPE and asphalt is also not good, resulting in floating and suspension of PANCFs in the modified asphalts, which is unfavorable for the swelling of WPE. Experiment results verify that a length of 5 mm is the best for the short-cut PANCFs.

    Fig. 10 The relationship model of PANCFs and WPE in the modified asphalts (a) the method A, (b) the method B and (c) the method C.

    PANCFs have a good chemical stability and do not react with the components in the asphalt. The adsorption or insertion of PANCFs to WPE particles promotes the swelling and dispersion of the WPE in asphalt. In the modified asphalts, a higher swelling degree of the WPE and thicker adsorption layer of the asphalt on the surface of the WPE will make the WPE disperse more evenly in the asphalt and form more easily a spatial network structure. The thicker adsorption layer on the surface of the WPE particles prevent their aggregation in the modified asphalts. The network structure of the modified asphalts is able to inhibit the flow of asphalt at high temperature and also enhance the ability to resist external forces. So, for the modified asphalts with a network structure, only large external force can make the asphalt to bring forth phase displacement, and the ability to resist deformation at high temperature and the stability of hot storage are improved.

    4 Conclusions

    The modification of asphalt with PANCFs and WPE is physical. The of PANCFs with a proper length could promote the swelling and the dispersion of WPE in asphalt.

    The content of PANCFs in the modified asphalts should not exceed 0.1%. Too much CFs form aggregation and have a negative effect on the comprehensive performance of modified asphalts. The modification by WPE and short-cut PANCFs can obviously improve high temperature performance and resist deformation of the modified asphalts. WPE and short-cut PANCFs are best dispersed into asphalt by an extrusion method at 170 ℃.

    In the modified asphalts by the extrusion method, a network structure is well formed by PANCFs and WPE, which prevents segregation and improves the hot storage stability, high temperature performance and resistance to external force.

    [1]Airey G D. Styrene butadiene styrene polymer modification of road bitumen[J]. Journal of Materials Science, 2004, 39(3): 951-959.

    [2]Xiao C, Ling T Q, Qiu Y J. Optimization of technical measures for improving high-temperature performance of asphalt-rubber mixture[J]. J Mod Transport, 2013, 21(4): 273-280.

    [3]Sun L, Xin X T, Ren J L. Pavement performance of nanomaterial modified asphalt mixture[J]. Journal of southeast university, 2013, 43(4): 873-876.

    [4]Fang C Q, Zhou S S, Zhang M R, et al. Optimization of the modification technologies of asphalt by using waste EVA from packaging[J]. Vinyl and Additive Technology, 2009, 15(3): 119-203.

    [5]Mohammad J K, Ahmed K, Hashim R R. Characterization of carbon nano-fiber modified hot mix asphalt mixtures[J]. Construction and Building Materials, 2013, 40: 738-745.

    [6]Sayyed M A, Mohammad S, Sayyed M H. Fiber-reinforced asphalt-concrete-A review[J].Construction and Building Materials, 2010, 24: 871-877.

    [7]Che D M, Saxena I, Han PD, et al. Machining of carbon fiber reinforced plastics/polymers: A literature review[J]. Journal of Manufacturing Science and Engineering, 2014, 136: 034001-1-22.

    [8]Burri F, Fertl M, Feusi P, et al. Copper coated carbon fiber reinforced plastics for high and ultra high vacuum applications[J]. Vacuum, 2014, 101: 212-216.

    [9]Fang C Q , Zhang Y, Yu R E, et al. Effect of organic montmorillonite on the hot storage stability of asphalt modified by waste packaging polyethylene[J]. Journal of Vinyl & Additive Technology, 2014, 10: 1001-1005.

    [10]Cong P L, Yu J Y, Wu S P, et al. Laboratory investigation of the properties of asphalt and its mixtures modified with flame retardant[J]. Construction and Building Materials, 2008, 22: 1037-1042.

    [11]Industry standards of the People's Republic of China. Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering[S]. Issued by the Ministry of Transport of the People's Republic of China JTJ 052-2000.

    [12]Fang C Q, Yu R E, Zhang Y, et al. Combined modification of asphalt with polyethylene packaging waste and organophilic montmorillonite[J]. Polymer Testing, 2012, 31: 276-281.

    [13]Kesavan K, Ravisankar K, Senthil R, et al. Experimental studies on performance of reinforced concrete beam strengthened with CFRP under cyclic loading using FBG array[J]. Measurement, 2013, 46: 3855-3862.

    [14]Tang B M, Ding Y J, Zhu H Z, et al. Study on agglomeration variation pattern of asphalt molecules[J]. China Journal of Highway and Transport, 2013, 26(3): 50-56.

    [15]Hassan Firoozifar S, Foroutan S, Foroutan S. The effect of asphaltene on thermal properties of bitumen[J]. Chemical Engineering Research and Design, 2011,10: 698-703.

    [16]Haddadi S, Ghorbel E, Laradi N. Effects of the manufacturing process on the performances of the bituminous binders modified with EVA[J]. Construction and Building Materials, 2008, 22: 1212-1219.

    [17]Ye Y, Yang X H, Chen C H. Viscoplastic behaviour of asphalt mixture in compression[J]. Materials Research Innovations, 2011, 15: 45-48.

    [18]Vandellos T, Huchette C, Carrère N. Proposition of a framework for the development of a cohesive zone model adapted to Carbon-Fiber Reinforced Plastic laminated composites[J]. Composite Structures, 2013, 105: 199-206.

    [19]Schreiner C A. Review of mechanistic studies relevant to the potential carcinogenicity of asphalts[J]. Regulatory Toxicology and Pharmacology, 2011, 59: 270-284.

    [20]Chockalingam K, Saravanan U, Krishnan J M. Characterization of petroleum pitch using steady shear experiments[J]. International Journal of Engineering Science, 2010, 48: 1092-1109.

    [21]Adhikari S, You Z P, Hao P W, et al. Image analysis of aggregate, mastic and air void phases for asphalt mixture[J]. Journal of Traffic and Transportation Engineering, 2013, 2(13): 1-9.

    [22]Caro S, Masad E, Bhasin A, et al. Micromechanical modeling of the influence of material properties on moisture-induced damage in asphalt mixtures[J]. Construction and Building Materials, 2010, 24: 1184-1192.

    Modification of asphalt by dispersing waste polyethylene and carbon fibers in it

    ZHANG Mao-rong1,2,FANG Chang-qing1,2,ZHOU Shi-sheng1,2,CHENG You-liang2,HU Jing-bo1,2

    (1.SchoolofMechanicalandPrecisionInstrumentEngineering,Xi’anUniversityofTechnology,Xi’an710048,China;2.FacultyofPrinting,PackagingEngineeringandDigitalMediaTechnology,Xi’anUniversityofTechnology,Xi’an710048,China)

    Recycled waste packaging polyethylene (WPE) and chopped polyacrylonitrile-based carbon fibers (PAN-CFs) were dispersed in molten asphalt at 170 ℃ with a shearing machine at 3 800 r/min for 60 min to modify its properties to meet the demands of motorway paving. WPE and PAN-CFs were mixed by three methods before the dispersion: (a) simple blending, (b) first dissolving WPE in xylene, then mixing and evaporating and (c) blending and extrusion to rods of 1mm diameterat 170 ℃ which were fed directly into the hot asphalt. The PAN-CF content was varied in the range 0 to 0.12 wt% while the WPE content was constant(4 wt%). Results indicate that WPE and PAN-CFs are dispersed in asphalt to form a network structure by the xylene-assisted mixing or blending-extrusion methods. The softening points, penetration degree and ductility are improved with increasing content of PAN-CFs up to 0.1 wt%. Aggregation of the two modifiers occurs beyond 0.12 wt% of PAN-CFs, which degrades the properties of the modified asphalts. A fiber length of 5 mm is optimum for their best dispersion in the asphalt. Segregation of the modifiers from the modified asphalts can be prevented by increasing the content of PAN-CFs. The blending-extrusion method is best to form a fine network structure, which achieves a best performance. A model is proposed to explain the observed dispersion behavior in asphalt.

    Waste packaging polyethylene; Carbon fibers; Composite modification; Asphalt

    date: 2016-03-19;Reviseddate: 2016-07-27

    National Natural Science Foundation of China (51172180, 51372200); Program for New Century Excellent Talents in University of Ministry of Education of China (NCET-12-1045); Local Service Program of Shaanxi Provincial Education Department (2013JC19); Excellent PhD dissertation Foundation of XAUT (102-211208).

    introduction: ZHANG Mao-rong, Ph.D Candidate. E-mail: zmr.1234@163.com

    FANG Chang-qing, Professor. E-mail: fcqxaut@163.com

    1007-8827(2016)04-0424-07

    TQ342+.74

    A

    國家自然科學(xué)基金(51172180, 51372200); 新世紀(jì)優(yōu)秀人才支持計(jì)劃(NCET-12-1045); 陜西省教育廳服務(wù)地方專項(xiàng)計(jì)劃項(xiàng)目(2013JC19); 西安理工大學(xué)優(yōu)博基金資助項(xiàng)目(102-211208).

    方長青,教授. E-mail: fcqxaut@163.com

    10.1016/S1872-5805(16)60022-7

    作者介紹:張茂榮,博士生. E-mail: zmr.1234@163.com

    English edition available online ScienceDirect ( http:www.sciencedirect.comsciencejournal18725805 ).

    猜你喜歡
    炭纖維長青理工大學(xué)
    Co@CoO/竹炭纖維的制備及其對(duì)廢水中鹽酸四環(huán)素去除性能
    昆明理工大學(xué)
    論炭纖維復(fù)合材料在智能建筑結(jié)構(gòu)中的應(yīng)用
    昆明理工大學(xué)
    昆明理工大學(xué)
    熱處理對(duì)PAN基炭纖維微觀結(jié)構(gòu)和力學(xué)性能的影響
    浙江理工大學(xué)
    長青開啟中馬圓夢之旅
    長青 邁步環(huán)保公益
    長青榮耀三十載
    国产精品久久久人人做人人爽| www国产在线视频色| 国产成人啪精品午夜网站| 亚洲欧美一区二区三区久久| 黑人巨大精品欧美一区二区蜜桃| 午夜福利免费观看在线| 搡老岳熟女国产| 女性生殖器流出的白浆| 久99久视频精品免费| 搡老乐熟女国产| www日本在线高清视频| 国产深夜福利视频在线观看| 国产免费现黄频在线看| 免费在线观看亚洲国产| 亚洲精品av麻豆狂野| 亚洲精品一卡2卡三卡4卡5卡| 国产在线观看jvid| 国产一区二区三区在线臀色熟女 | 亚洲自偷自拍图片 自拍| 自线自在国产av| 老汉色av国产亚洲站长工具| 午夜精品久久久久久毛片777| 成人18禁高潮啪啪吃奶动态图| 欧美 亚洲 国产 日韩一| av天堂在线播放| 女生性感内裤真人,穿戴方法视频| 亚洲五月婷婷丁香| xxx96com| 丰满饥渴人妻一区二区三| 久热这里只有精品99| 亚洲国产精品一区二区三区在线| 亚洲精品国产一区二区精华液| 国产精品久久久久成人av| 99国产极品粉嫩在线观看| av有码第一页| 日韩一卡2卡3卡4卡2021年| 丁香六月欧美| av天堂在线播放| 淫秽高清视频在线观看| 亚洲人成伊人成综合网2020| 国产亚洲精品一区二区www| 自线自在国产av| 成人免费观看视频高清| 女人精品久久久久毛片| 岛国在线观看网站| 少妇被粗大的猛进出69影院| 久久性视频一级片| 看免费av毛片| 亚洲av成人不卡在线观看播放网| 亚洲九九香蕉| 久久久国产一区二区| 不卡av一区二区三区| 亚洲成人免费av在线播放| 极品教师在线免费播放| 欧美一级毛片孕妇| 亚洲精品一卡2卡三卡4卡5卡| 欧美黑人精品巨大| 一区二区三区精品91| 欧美大码av| 亚洲精品成人av观看孕妇| 精品人妻在线不人妻| 日韩av在线大香蕉| 搡老乐熟女国产| 中文亚洲av片在线观看爽| 亚洲激情在线av| 在线观看午夜福利视频| 人妻丰满熟妇av一区二区三区| 精品国产亚洲在线| 天堂√8在线中文| 午夜精品在线福利| 亚洲欧美一区二区三区久久| 一区福利在线观看| 两性夫妻黄色片| 精品久久久久久久久久免费视频 | 一个人观看的视频www高清免费观看 | 午夜免费激情av| 久久影院123| 夜夜看夜夜爽夜夜摸 | 亚洲avbb在线观看| 老熟妇乱子伦视频在线观看| 日韩欧美三级三区| 女警被强在线播放| 老司机深夜福利视频在线观看| 国产成人系列免费观看| 麻豆av在线久日| 丰满迷人的少妇在线观看| 亚洲熟女毛片儿| 亚洲av美国av| 三级毛片av免费| 91九色精品人成在线观看| 久久人人精品亚洲av| 久久人妻福利社区极品人妻图片| 精品欧美一区二区三区在线| 亚洲色图av天堂| 80岁老熟妇乱子伦牲交| 桃红色精品国产亚洲av| 欧美最黄视频在线播放免费 | a在线观看视频网站| 国产精品一区二区免费欧美| 亚洲av成人不卡在线观看播放网| 欧美在线一区亚洲| 精品一区二区三区av网在线观看| 男女午夜视频在线观看| av超薄肉色丝袜交足视频| 国产人伦9x9x在线观看| 黄色 视频免费看| 国产三级黄色录像| 中出人妻视频一区二区| 亚洲中文字幕日韩| 午夜福利免费观看在线| 欧洲精品卡2卡3卡4卡5卡区| 午夜两性在线视频| 成人亚洲精品一区在线观看| 欧美中文日本在线观看视频| 岛国在线观看网站| 亚洲熟妇熟女久久| 可以免费在线观看a视频的电影网站| 色婷婷久久久亚洲欧美| 丰满的人妻完整版| 欧美乱妇无乱码| 日日爽夜夜爽网站| 久久国产精品男人的天堂亚洲| 99国产精品一区二区蜜桃av| 99精品在免费线老司机午夜| 在线视频色国产色| 国产精品偷伦视频观看了| 日韩大尺度精品在线看网址 | 精品久久久久久久毛片微露脸| 亚洲免费av在线视频| 久久精品亚洲熟妇少妇任你| 亚洲,欧美精品.| 麻豆国产av国片精品| 成人精品一区二区免费| av欧美777| 一边摸一边抽搐一进一小说| 丁香六月欧美| 男女做爰动态图高潮gif福利片 | 欧美一区二区精品小视频在线| 少妇被粗大的猛进出69影院| 精品无人区乱码1区二区| 热99国产精品久久久久久7| 免费av毛片视频| 午夜精品久久久久久毛片777| 亚洲欧美一区二区三区久久| 免费在线观看完整版高清| 精品熟女少妇八av免费久了| 9热在线视频观看99| 亚洲成人国产一区在线观看| 免费不卡黄色视频| 亚洲熟女毛片儿| 视频区欧美日本亚洲| 欧美中文日本在线观看视频| 又紧又爽又黄一区二区| 亚洲av电影在线进入| 老司机午夜福利在线观看视频| 精品福利观看| 国产一区二区三区在线臀色熟女 | 亚洲熟妇中文字幕五十中出 | 搡老岳熟女国产| 国产黄色免费在线视频| 午夜91福利影院| 国产又色又爽无遮挡免费看| 精品熟女少妇八av免费久了| 国产精品1区2区在线观看.| 99精品欧美一区二区三区四区| 女警被强在线播放| 一边摸一边做爽爽视频免费| 丝袜美腿诱惑在线| 精品久久久久久久久久免费视频 | 久久久国产成人免费| 在线观看舔阴道视频| 两个人免费观看高清视频| tocl精华| 老熟妇乱子伦视频在线观看| 精品国产一区二区三区四区第35| 免费观看人在逋| 欧美日韩亚洲国产一区二区在线观看| 免费在线观看视频国产中文字幕亚洲| 男人舔女人的私密视频| a级片在线免费高清观看视频| 精品免费久久久久久久清纯| 一个人观看的视频www高清免费观看 | 老熟妇乱子伦视频在线观看| 亚洲专区中文字幕在线| 天天影视国产精品| www.999成人在线观看| 黄片小视频在线播放| 极品教师在线免费播放| 久久久国产成人免费| 成人18禁在线播放| 国产成人欧美| 深夜精品福利| 久久精品亚洲av国产电影网| 国产精品永久免费网站| 黑人欧美特级aaaaaa片| 黄频高清免费视频| 麻豆国产av国片精品| av国产精品久久久久影院| 精品一区二区三区视频在线观看免费 | 黄色 视频免费看| 亚洲精品粉嫩美女一区| 亚洲人成伊人成综合网2020| 色播在线永久视频| 纯流量卡能插随身wifi吗| 国产成人精品在线电影| 三级毛片av免费| 男男h啪啪无遮挡| 日本欧美视频一区| 久久99一区二区三区| 国产av一区在线观看免费| 老司机靠b影院| 美女高潮到喷水免费观看| 午夜老司机福利片| netflix在线观看网站| 91成人精品电影| 人成视频在线观看免费观看| 久久精品国产99精品国产亚洲性色 | 久久香蕉激情| 亚洲午夜理论影院| 一级a爱片免费观看的视频| 叶爱在线成人免费视频播放| 91麻豆av在线| 成人特级黄色片久久久久久久| 久久久水蜜桃国产精品网| 99香蕉大伊视频| 中文字幕高清在线视频| 97碰自拍视频| 黑丝袜美女国产一区| 久久久精品国产亚洲av高清涩受| 国产熟女xx| 日本欧美视频一区| 欧美激情高清一区二区三区| 大码成人一级视频| 精品福利观看| 亚洲第一青青草原| 99热国产这里只有精品6| 好看av亚洲va欧美ⅴa在| 夜夜看夜夜爽夜夜摸 | 叶爱在线成人免费视频播放| av片东京热男人的天堂| 一区二区三区国产精品乱码| 亚洲人成网站在线播放欧美日韩| 在线观看舔阴道视频| 涩涩av久久男人的天堂| 99精国产麻豆久久婷婷| 欧美日韩一级在线毛片| 国产精品永久免费网站| 成年版毛片免费区| 国产不卡一卡二| 免费女性裸体啪啪无遮挡网站| 成人黄色视频免费在线看| 久久人人爽av亚洲精品天堂| 12—13女人毛片做爰片一| 国产欧美日韩精品亚洲av| 国产成人影院久久av| 中文字幕最新亚洲高清| 久久国产精品影院| 国产精品二区激情视频| 黄色片一级片一级黄色片| 亚洲av成人一区二区三| 久久狼人影院| 亚洲精华国产精华精| 国产高清国产精品国产三级| 欧美成狂野欧美在线观看| 国产欧美日韩综合在线一区二区| 午夜久久久在线观看| 激情在线观看视频在线高清| 国产av一区二区精品久久| 日韩av在线大香蕉| xxx96com| 国产高清视频在线播放一区| 亚洲精品美女久久久久99蜜臀| 久久久久久亚洲精品国产蜜桃av| 欧美不卡视频在线免费观看 | 亚洲成av片中文字幕在线观看| 国产麻豆69| 国产免费男女视频| 亚洲 国产 在线| 黑丝袜美女国产一区| 午夜久久久在线观看| 黄色 视频免费看| 欧美日韩乱码在线| 免费不卡黄色视频| 99久久99久久久精品蜜桃| 国产视频一区二区在线看| 宅男免费午夜| 视频在线观看一区二区三区| 9色porny在线观看| 色在线成人网| 一边摸一边抽搐一进一小说| 久久 成人 亚洲| 亚洲第一av免费看| 亚洲国产欧美一区二区综合| 精品午夜福利视频在线观看一区| 欧美乱色亚洲激情| 成人国产一区最新在线观看| av在线播放免费不卡| 日日干狠狠操夜夜爽| av天堂久久9| 自线自在国产av| 电影成人av| 日日摸夜夜添夜夜添小说| 老熟妇仑乱视频hdxx| 成人免费观看视频高清| 欧美人与性动交α欧美精品济南到| 丁香六月欧美| 美女大奶头视频| a在线观看视频网站| 国产成人免费无遮挡视频| 日本 av在线| av福利片在线| 国产亚洲精品一区二区www| 日本精品一区二区三区蜜桃| 欧美中文日本在线观看视频| 亚洲中文字幕日韩| 天天添夜夜摸| 国产成人啪精品午夜网站| 精品国产亚洲在线| 在线天堂中文资源库| 成人三级做爰电影| 亚洲一区中文字幕在线| 在线观看一区二区三区| 在线观看午夜福利视频| 窝窝影院91人妻| 乱人伦中国视频| 欧美成人性av电影在线观看| 精品久久蜜臀av无| 热99国产精品久久久久久7| 精品国产一区二区三区四区第35| 中国美女看黄片| 精品第一国产精品| 亚洲熟女毛片儿| 国产成年人精品一区二区 | 91九色精品人成在线观看| 亚洲第一av免费看| 精品福利永久在线观看| 一级片'在线观看视频| 老熟妇乱子伦视频在线观看| 国产精品国产av在线观看| 在线观看午夜福利视频| 最新美女视频免费是黄的| 91字幕亚洲| 51午夜福利影视在线观看| 少妇的丰满在线观看| 少妇 在线观看| 一进一出好大好爽视频| 欧美乱妇无乱码| 国产亚洲精品一区二区www| 91成人精品电影| 亚洲熟妇熟女久久| 亚洲成a人片在线一区二区| 一边摸一边抽搐一进一出视频| 99re在线观看精品视频| 99riav亚洲国产免费| 国产精品电影一区二区三区| 亚洲精品一区av在线观看| 91av网站免费观看| 高清av免费在线| 侵犯人妻中文字幕一二三四区| 深夜精品福利| 三级毛片av免费| 亚洲午夜精品一区,二区,三区| 91麻豆精品激情在线观看国产 | 亚洲午夜理论影院| 亚洲精品在线美女| 亚洲av日韩精品久久久久久密| 视频区图区小说| 好看av亚洲va欧美ⅴa在| 日韩精品青青久久久久久| 美女高潮喷水抽搐中文字幕| 在线观看日韩欧美| 亚洲在线自拍视频| 动漫黄色视频在线观看| 黄色视频不卡| 狂野欧美激情性xxxx| 欧美精品啪啪一区二区三区| www.999成人在线观看| 美女扒开内裤让男人捅视频| 国产精品香港三级国产av潘金莲| 国产成人啪精品午夜网站| 精品人妻在线不人妻| 男女高潮啪啪啪动态图| 国产蜜桃级精品一区二区三区| 婷婷丁香在线五月| 国产xxxxx性猛交| 亚洲欧美精品综合久久99| 国产av在哪里看| 久久久精品国产亚洲av高清涩受| 亚洲成人精品中文字幕电影 | 999久久久国产精品视频| bbb黄色大片| 99久久人妻综合| 99久久精品国产亚洲精品| 久久人人精品亚洲av| 国产成人欧美在线观看| 欧美黑人精品巨大| xxx96com| av有码第一页| 无限看片的www在线观看| 亚洲欧美一区二区三区黑人| 9热在线视频观看99| 麻豆av在线久日| 夜夜看夜夜爽夜夜摸 | 久99久视频精品免费| 好男人电影高清在线观看| x7x7x7水蜜桃| 在线视频色国产色| 国内久久婷婷六月综合欲色啪| 午夜福利一区二区在线看| 高清在线国产一区| 亚洲av成人av| 在线观看舔阴道视频| 精品免费久久久久久久清纯| 一级a爱视频在线免费观看| 免费看十八禁软件| 国产成人欧美| 很黄的视频免费| 亚洲精品一区av在线观看| 国产单亲对白刺激| av视频免费观看在线观看| 最近最新中文字幕大全电影3 | 黄色 视频免费看| 一进一出抽搐动态| 婷婷精品国产亚洲av在线| www国产在线视频色| 精品一品国产午夜福利视频| 成人影院久久| 国产一区二区在线av高清观看| 亚洲色图综合在线观看| 91成年电影在线观看| 欧美乱色亚洲激情| 麻豆av在线久日| 亚洲一区二区三区色噜噜 | 妹子高潮喷水视频| 精品无人区乱码1区二区| 欧美av亚洲av综合av国产av| 黄色丝袜av网址大全| 亚洲,欧美精品.| 啦啦啦在线免费观看视频4| 国产免费现黄频在线看| 欧美乱色亚洲激情| 一边摸一边抽搐一进一小说| 少妇粗大呻吟视频| 亚洲成国产人片在线观看| 国产高清激情床上av| av天堂久久9| 黄色视频不卡| 国产精品久久久久成人av| 电影成人av| 超碰97精品在线观看| 精品国产一区二区久久| 久久狼人影院| 黄色a级毛片大全视频| 90打野战视频偷拍视频| av电影中文网址| 久久久久久久久久久久大奶| 成人特级黄色片久久久久久久| 久99久视频精品免费| 久久久国产欧美日韩av| 国产片内射在线| 精品人妻在线不人妻| 老司机福利观看| 国产xxxxx性猛交| 成人影院久久| 男女床上黄色一级片免费看| 黑人欧美特级aaaaaa片| 国产精品一区二区三区四区久久 | 夜夜夜夜夜久久久久| 在线观看一区二区三区| 高潮久久久久久久久久久不卡| 免费高清在线观看日韩| 亚洲va日本ⅴa欧美va伊人久久| 视频在线观看一区二区三区| 大型黄色视频在线免费观看| 欧美 亚洲 国产 日韩一| 久久 成人 亚洲| 99热只有精品国产| 丰满人妻熟妇乱又伦精品不卡| 日本 av在线| 欧美日韩亚洲国产一区二区在线观看| 日本欧美视频一区| 久久精品国产99精品国产亚洲性色 | 日韩高清综合在线| 精品少妇一区二区三区视频日本电影| 亚洲黑人精品在线| 国产精品98久久久久久宅男小说| a级毛片在线看网站| 国产精品一区二区精品视频观看| 亚洲av第一区精品v没综合| 亚洲欧美一区二区三区久久| 欧美日本中文国产一区发布| 两个人看的免费小视频| 日韩欧美一区二区三区在线观看| 99久久精品国产亚洲精品| 亚洲伊人色综图| av福利片在线| 黄色 视频免费看| 中国美女看黄片| 国产亚洲av高清不卡| 亚洲精华国产精华精| 亚洲av五月六月丁香网| 满18在线观看网站| 国产亚洲精品一区二区www| 国产精品二区激情视频| 精品一区二区三区av网在线观看| 日本精品一区二区三区蜜桃| 久久国产精品人妻蜜桃| 国产免费av片在线观看野外av| 自拍欧美九色日韩亚洲蝌蚪91| 午夜影院日韩av| 97超级碰碰碰精品色视频在线观看| 日本五十路高清| 色婷婷av一区二区三区视频| 亚洲成人免费av在线播放| 久久久国产成人精品二区 | 中文字幕色久视频| 欧美在线黄色| 人人妻人人添人人爽欧美一区卜| 免费女性裸体啪啪无遮挡网站| 成人特级黄色片久久久久久久| 免费不卡黄色视频| 亚洲第一青青草原| 国产成+人综合+亚洲专区| 18美女黄网站色大片免费观看| 日本免费一区二区三区高清不卡 | 曰老女人黄片| 成人黄色视频免费在线看| 国产在线观看jvid| 免费在线观看日本一区| 国产成人精品无人区| 每晚都被弄得嗷嗷叫到高潮| 99久久综合精品五月天人人| 男女床上黄色一级片免费看| 热99国产精品久久久久久7| 午夜精品在线福利| 欧美在线黄色| 免费一级毛片在线播放高清视频 | 国产精品自产拍在线观看55亚洲| 午夜激情av网站| 别揉我奶头~嗯~啊~动态视频| 亚洲国产看品久久| 脱女人内裤的视频| 免费搜索国产男女视频| www.自偷自拍.com| 级片在线观看| 日韩欧美免费精品| 老汉色∧v一级毛片| 人妻久久中文字幕网| 国产午夜精品久久久久久| 亚洲午夜精品一区,二区,三区| 亚洲人成电影免费在线| 精品人妻在线不人妻| 午夜日韩欧美国产| 高清毛片免费观看视频网站 | 国产成人av教育| 久久精品aⅴ一区二区三区四区| 精品高清国产在线一区| 一边摸一边抽搐一进一小说| 亚洲美女黄片视频| 久久久久久久久免费视频了| 在线看a的网站| 天天躁夜夜躁狠狠躁躁| 亚洲精品国产色婷婷电影| 亚洲人成77777在线视频| 亚洲三区欧美一区| 亚洲免费av在线视频| 欧美激情 高清一区二区三区| 又黄又粗又硬又大视频| 久久午夜亚洲精品久久| 日本欧美视频一区| 久久国产亚洲av麻豆专区| 母亲3免费完整高清在线观看| 神马国产精品三级电影在线观看 | 一本大道久久a久久精品| 成人手机av| 国产不卡一卡二| 亚洲中文日韩欧美视频| 视频在线观看一区二区三区| 色在线成人网| 欧美最黄视频在线播放免费 | 两性午夜刺激爽爽歪歪视频在线观看 | 欧美激情久久久久久爽电影 | 精品久久久精品久久久| 真人一进一出gif抽搐免费| 精品一区二区三卡| 国产成人精品久久二区二区免费| 久久久久国内视频| 丁香欧美五月| 亚洲中文日韩欧美视频| 久久精品亚洲av国产电影网| 午夜福利欧美成人| 国产亚洲精品综合一区在线观看 | 亚洲国产精品999在线| 啦啦啦在线免费观看视频4| 免费看十八禁软件| 国产精品久久久av美女十八| 日日夜夜操网爽| 这个男人来自地球电影免费观看| 国产精品久久久av美女十八| 国产1区2区3区精品| 超色免费av| 一级a爱片免费观看的视频| 美女福利国产在线| 青草久久国产| 国产高清激情床上av| 午夜福利影视在线免费观看| 中文字幕人妻熟女乱码| 久久精品国产清高在天天线| 色婷婷久久久亚洲欧美| 免费在线观看亚洲国产| 国产欧美日韩精品亚洲av| 国产精品免费视频内射| 成年女人毛片免费观看观看9| videosex国产| 欧美日韩黄片免|