• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      添加淀粉和通氣對(duì)固定化Fusarium.sp修復(fù)煤礦區(qū)老化污染土壤HMW-PAHs的影響

      2016-10-20 08:56:22張雪娜賈海濱張麗秀馮圣東楊志新
      關(guān)鍵詞:過(guò)氧化物菌劑去除率

      張雪娜,賈海濱,李 橙,王 偉,張麗秀,馮圣東*,楊志新,2*

      (1.河北農(nóng)業(yè)大學(xué)資源與環(huán)境科學(xué)學(xué)院,河北 保定 071000;2.河北省農(nóng)田生態(tài)環(huán)境重點(diǎn)實(shí)驗(yàn)室,河北 保定 071000;3.河北省環(huán)境科學(xué)研究院,石家莊 050000)

      添加淀粉和通氣對(duì)固定化Fusarium.sp修復(fù)煤礦區(qū)老化污染土壤HMW-PAHs的影響

      張雪娜1,賈海濱1,李橙3,王偉1,張麗秀1,馮圣東1*,楊志新1,2*

      (1.河北農(nóng)業(yè)大學(xué)資源與環(huán)境科學(xué)學(xué)院,河北 保定 071000;2.河北省農(nóng)田生態(tài)環(huán)境重點(diǎn)實(shí)驗(yàn)室,河北 保定 071000;3.河北省環(huán)境科學(xué)研究院,石家莊 050000)

      為了提高Fusarium.sp對(duì)PAHs的修復(fù)效果,在典型煤礦區(qū)老化污染土壤中添加淀粉和通氣,經(jīng)為期60 d的土壤培養(yǎng)試驗(yàn),研究玉米秸稈固定化Fusarium.sp對(duì)土壤10種HMW-PAHs的修復(fù)效果及不同處理下土壤中酶活性變化規(guī)律。結(jié)果表明:HMWPAHs(High molecular weight-PAHs)總量去除率表現(xiàn)為固定化菌劑+淀粉+通氣處理(J+D+O,29.19%)≈固定化菌劑+淀粉處理(J+D,25.89%)>固定化菌劑處理(J,16.54%);4環(huán)、5環(huán)和6環(huán)PAHs去除率在J+D+O和J+D兩組處理間的差異均不顯著,且與J處理相比均有顯著提高(P<0.05);三組處理對(duì)單個(gè)HMW-PAH的去除率分別為9.12%~21.73%、17.93%~43.12%、24.34%~35.79%,J+D+O 和J+D處理對(duì)單個(gè)HMW-PAH的修復(fù)效果均有顯著促進(jìn)作用,其中,對(duì)BkF的去除增幅最大,分別增加了68.09%、63.78%。從酶活性規(guī)律看,土壤過(guò)氧化氫酶活性呈CK>J>J+D>J+D+O(P<0.05)的規(guī)律,且與10種PAHs單體的去除率呈顯著或極顯著負(fù)相關(guān);土壤木質(zhì)素過(guò)氧化物酶活性卻與Chry、BkF、InP、DbA、BghiP去除率呈顯著正相關(guān)。綜上認(rèn)為,不同處理對(duì)單個(gè)PAHs的去除具有其選擇性,且添加淀粉的兩處理均顯著提高了土壤中HMW-PAHs的修復(fù)效果。

      典型煤礦區(qū);HMW-PAHs;固定化Fusarium.sp;淀粉;通氣;土壤酶活性

      張雪娜,賈海濱,李橙,等.添加淀粉和通氣對(duì)固定化Fusarium.sp修復(fù)煤礦區(qū)老化污染土壤HMW-PAHs的影響[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2016,35 (9):1709-1716.

      ZHANG Xue-na,JIA Hai-bin,LI Cheng,et al.Effect of starch and aerationon addition on degradation of HMW-PAHs by immobilized Fusarium.sp in a polluted and aged soil of a coal mining area[J].Journal of Agro-Environment Science,2016,35(9):1709-1716.

      多環(huán)芳烴(Polycyclicaromatichydrocarbons,PAHs)是由兩個(gè)或兩個(gè)以上苯環(huán)組成的一類化合物,具有致癌、致畸、致突變的性質(zhì)[1-2],是美國(guó)環(huán)境保護(hù)署優(yōu)先控制的持久性有機(jī)污染物[3],其中4環(huán)及4環(huán)以上的高環(huán)PAHs(High molecular weight-PAHs,HMW-PAHs),因疏水性、親脂性、穩(wěn)定性更強(qiáng),不易被去除[4-5],最終會(huì)通過(guò)食物鏈和其他暴露途徑對(duì)人體產(chǎn)生威脅[6]。環(huán)境中絕大多數(shù)的PAHs積累于土壤中[7],煤礦區(qū)、焦化廠區(qū)及其影響的農(nóng)田土壤范圍是典型的多環(huán)芳烴污染場(chǎng)地[8],如本課題組前期對(duì)河北省某煤礦區(qū)農(nóng)田土壤中PAHs進(jìn)行生態(tài)風(fēng)險(xiǎn)評(píng)估發(fā)現(xiàn),89%土壤存在生態(tài)風(fēng)險(xiǎn)[9],10種HMW-PAHs總含量為3 392.77 μg·kg-1,而一般污染農(nóng)田土壤中以低環(huán)PAHs積累為主[10]。目前許多研究主要集中于土壤中PAHs的含量分布、來(lái)源、遷移轉(zhuǎn)化特征以及PAHs的物化性質(zhì)與其環(huán)境行為間的關(guān)系、風(fēng)險(xiǎn)評(píng)價(jià)等方面,對(duì)煤礦區(qū)附近土壤中PAHs污染修復(fù)的研宄較少[11],煤礦區(qū)農(nóng)田污染土壤的修復(fù)迫在眉睫。

      目前,環(huán)境友好的微生物修復(fù)是土壤中PAHs修復(fù)的主要途徑之一。在真菌修復(fù)中,關(guān)于白腐真菌的研究報(bào)道較為深入[12-13],而鐮刀屬真菌(Fusarium.sp)修復(fù)PAHs老化污染土壤僅見(jiàn)零星報(bào)道[14]。本課題組前期在煤礦區(qū)污染土壤中篩選出的Fusarium.sp培養(yǎng)7 d對(duì)無(wú)機(jī)鹽溶液 BaP、BKF、DbA、BghiP、InP單個(gè)PAH的去除率均達(dá)38%以上,證實(shí)了它是具有去除HMW-PAHs潛力的菌株。微生物固定化技術(shù)是一種有效的土壤修復(fù)技術(shù),能夠顯著增強(qiáng)微生物的環(huán)境適應(yīng)能力和污染物去除能力,極大地提高污染土壤修復(fù)效果[15-17],Su等[16]證實(shí)固定化的真菌對(duì)環(huán)境具有更強(qiáng)適應(yīng)能力和更快的反應(yīng)啟動(dòng)速度。此外,許多學(xué)者已證實(shí),通過(guò)外加碳源如水楊酸、鄰苯二甲酸、鄰苯二酚、礦物油、葡萄糖等可提高微生物對(duì)PAHs的去除效果[18-22],而大分子淀粉的作用影響研究尚少[23]。課題組前期發(fā)現(xiàn),添加淀粉可顯著促進(jìn)Fusarium.sp對(duì)無(wú)機(jī)鹽溶液中HMW-PAHs的去除,1 g·L-1淀粉使Fusarium.sp對(duì)其去除率達(dá)到了83.07%,該菌株在淀粉外加碳源的條件下效果卓越。

      本研究針對(duì)通過(guò)淀粉強(qiáng)化固定化Fusarium.sp修復(fù)煤礦區(qū)老化HMW-PAHs污染土壤是否也能達(dá)到較為理想的效果,以及其降解效果與前人研究的對(duì)PAHs去除相關(guān)的土壤酶活性是否有關(guān)等問(wèn)題[24-26],以河北某典型煤礦區(qū)長(zhǎng)期污染的農(nóng)田土壤為研究對(duì)象,利用玉米秸稈載體材料將Fusarium.sp ZH-H2固定化,在添加淀粉并伴隨通氣措施下,研究該菌劑對(duì)污染土壤HMW-PAHs的修復(fù)效果以及土壤酶活性變化規(guī)律,以期為煤礦區(qū)農(nóng)田土壤HMW-PAHs的修復(fù)提供理論依據(jù)及技術(shù)支撐。

      1 材料與方法

      1.1試驗(yàn)材料

      試驗(yàn)用土取自河北某典型煤礦區(qū)周邊農(nóng)田,陰干后過(guò)2 mm篩,4℃冰箱內(nèi)保藏待用。其基本性質(zhì)見(jiàn)表1,10種HMW-PAHs總含量為3 392.77 μg·kg-1,各PAHs含量比例如圖1所示。

      供試菌株ZH-H2(Fusarium.sp)為本課題組前期在煤礦區(qū)農(nóng)田土壤中篩選的HMW-PAHs高效去除菌。保藏單位:中國(guó)微生物菌種保藏管理委員會(huì)普通微生物中心;保藏號(hào):CGMCC No.9316,已申請(qǐng)專利(專利號(hào):201410432336.5)。

      表1 土壤基本理化性質(zhì)Table 1 The basic physical and chemical properties of soil

      圖1 土壤中單個(gè)PAH在∑10種PAHs的百分含量Figure 1 The proportion of individual PAHs content in total

      供試載體玉米秸稈,取自河北省保定市,將其洗凈,殺青30 min(105℃),陰干粉碎,過(guò)1 mm篩,并分別與草炭土按1∶2混合均勻,121℃滅菌20 min,備用。

      有機(jī)試劑丙酮、二氯甲烷、氘代三聯(lián)苯(替代物),4溴-2氟聯(lián)苯(替代物)、氘代苝(內(nèi)標(biāo)物質(zhì))等均購(gòu)于北京百靈威試劑公司。

      1.2樣品制備

      菌種培養(yǎng):從斜面挑取一株ZH-H2菌接入高氏一號(hào)固體培養(yǎng)基的培養(yǎng)皿中,培養(yǎng)皿用封口膜封口,在30℃恒溫培養(yǎng)箱中培養(yǎng)7 d。用無(wú)菌水反復(fù)沖洗吹打菌落,菌液經(jīng)滅菌的4層紗布過(guò)濾后,得到孢子懸浮液,再用滅菌水調(diào)節(jié)孢子的數(shù)量為1.25×107cfu·mL-1,作為原液備用。取出5 mL原液放入20 mL高氏一號(hào)液體培養(yǎng)基中,搖床培養(yǎng)2 d得到菌絲懸液。

      載體菌劑制備:分別稱取1.1中制備的秸稈材料90 g放入500 mL錐形瓶(共9瓶)。于121℃高溫高壓滅菌20 min,降溫后分別加入上述菌液,并適當(dāng)補(bǔ)充無(wú)菌水,在30℃、150 r·min-1搖床條件下培養(yǎng)3 h,即得到固定化ZH-H2的玉米載體材料,用于土壤培養(yǎng)試驗(yàn)。

      1.3試驗(yàn)方案

      采用上口直徑13 cm,底面直徑9 cm,高11 cm的試驗(yàn)用塑料盆缽,土壤培養(yǎng)試驗(yàn)處理見(jiàn)表2。試驗(yàn)設(shè)置3個(gè)處理,每個(gè)處理3個(gè)重復(fù),共12個(gè)盆缽。取210 g陰干土放入每個(gè)盆缽中,依據(jù)表2處理方案按3∶7質(zhì)量比向土壤中添加滅菌載體材料和玉米秸稈固定化ZH-H2載體材料,淀粉添加量為5 g·kg-1,充分混合后調(diào)節(jié)水分含量為田間持水量的60%,將盆缽置于30℃恒溫培養(yǎng)箱中培養(yǎng)。每2 d補(bǔ)水一次,通氣時(shí)間設(shè)定在灌水以后,由空氣壓縮機(jī)注入,輸氣管平鋪于土壤中,由土壤的體積質(zhì)量、孔隙度和體積含水率計(jì)算注入空氣量,通氣量系數(shù)為0.05,以2 d為一個(gè)通氣周期,60 d后采集土壤樣品。將每盆土壤混合均勻后采用四分法分取樣品,一半土壤樣品過(guò)1 mm篩,密封,置于4℃冰箱中保存,用于測(cè)定PAHs的殘留量;另一半自然陰干后過(guò)1 mm篩,用于測(cè)定土壤酶活性。

      表2 土壤HMW-PAHs去除的試驗(yàn)方案Table 2 The treatments of HMW-PAHs degradation in soil

      1.4樣品的測(cè)定指標(biāo)及方法

      土壤基本理化性質(zhì)采用土壤農(nóng)化常規(guī)分析法[27]。

      HMW-PAHs指標(biāo)測(cè)定及分析方法:Flt、Pyr、BaA、Chry、BbF、BkF、BaP、DbA、BghiP、InP,總計(jì) 10 種HMW-PAHs。采用超聲-索式聯(lián)合提取法提取,稱取土壤樣品20 g及10 g無(wú)水硫酸鈉,混合均勻后,加入替代物(20 μg·mL-1氘代三聯(lián)苯與4-溴-2氟聯(lián)苯)20 μL,用丙酮與正己烷體積比1∶1的提取劑超聲提取30 min,索氏水浴溫度70℃提取12 h,經(jīng)過(guò)干燥、濃縮、凈化、再次濃縮定容,通過(guò)氣相色譜-質(zhì)譜法(GC-MS,Aglient 7890/5975c)測(cè)定樣品[28]。GC-MS程序升溫步驟:起始溫度為80℃,保持2 min;以10℃· min-1上升到140℃,保持3 min;再以10℃·min-1上升到210℃保持3 min;最后以5℃·min-1上升到290℃保持3 min。進(jìn)樣口溫度為280℃,進(jìn)樣量為1 μL,不分流進(jìn)樣,流速為1.1 mL·min-1,離子源溫度230℃,四極桿溫度150℃[28]。

      土壤酶活性測(cè)定指標(biāo)及分析方法:土壤過(guò)氧化氫酶活性采用高錳酸鉀滴定法測(cè)定,以20 min每克土壤消耗0.1 mol·L-1KMnO4的毫升數(shù)表示:土壤木質(zhì)素過(guò)氧化物酶活性以每分鐘使1 μmol黎蘆醇氧化成黎蘆醛所需的酶量為一個(gè)酶活力單位(U)表示,黎蘆醛的摩爾吸光系數(shù)ε=9300 L·mol-1·cm-1[29]。

      氣相色譜儀-質(zhì)譜儀聯(lián)用,氣相色譜儀為安捷倫7890,質(zhì)譜儀為美國(guó)HP5975系列。

      回收率和檢測(cè)限的測(cè)定參考EPA標(biāo)準(zhǔn)方法?;厥章什捎猛寥阑|(zhì)加標(biāo)法,氘代三聯(lián)苯與4-溴-2氟聯(lián)苯回收率控制在70%~130%,同時(shí)設(shè)置樣品的20%進(jìn)行平行提取試驗(yàn)[28,30]。

      1.5數(shù)據(jù)統(tǒng)計(jì)分析

      HMW-PAHs的去除率(Rs)=(C0-Ct)/C0×100%式中:C0為對(duì)照土壤HMW-PAHs的含量;Ct為土壤中HMW-PAHs的殘留含量(相對(duì)去除率)。

      本論文數(shù)據(jù)采用Excel 2003和SPSS 17.0軟件進(jìn)行統(tǒng)計(jì)分析。

      2 結(jié)果與分析

      2.1淀粉和通氣促進(jìn)固定化ZH-H2菌劑修復(fù)土壤HMW-PAHs的研究

      2.1.1ZH-H2菌劑修復(fù)土壤HMW-PAHs總量

      在不同處理?xiàng)l件下,固定化ZH-H2菌劑對(duì)土壤10種HMW-PAHs總量及不同環(huán)數(shù)成分的去除效果見(jiàn)圖2。HMW-PAHs總量去除率在J+D和J+D+O處理間差異不顯著(P>0.05),分別為25.89%和29.19%,但均顯著高于處理J(16.54%),分別提高了56.5%、76.0%,說(shuō)明添加淀粉能夠顯著促進(jìn)固定化ZH-H2菌劑對(duì)土壤中10種HMW-PAHs總量的去除,而增加空氣對(duì)其去除影響并不顯著。

      比較不同環(huán)數(shù)的去除率可知(圖2),在J+D和J+ D+O兩組處理下,6環(huán)PAHs總量的去除率均高于4環(huán)和5環(huán),分別為38.31%和35.73%,J處理下不同環(huán)數(shù)之間的去除效果差異不顯著。另外,各環(huán)在J+D+O 和J+D兩組處理間的差異均不顯著,且與J處理相比均有顯著提高(P<0.05),J+D+O與J相比,4環(huán)、5環(huán)和6環(huán)PAHs去除率分別提高了61%、100%和80%,去除效果提高顯著;J+D與 J相比分別提高了39.34%、54.89%和92.81%,去除效果提高顯著??梢?jiàn),添加淀粉并伴隨通氣條件對(duì)5環(huán)PAHs總量的去除提高最突出,而只添加淀粉處理對(duì)6環(huán)PAHs總量的

      圖2 不同措施下固定化ZH-H2菌劑對(duì)土壤總量及不同環(huán)數(shù)PAHs的去除效果Figure 2 The degradation of the total PAHs and the PAHs with different rings in soil by immobilized ZH-H2 in the different treatments

      去除提高更明顯。

      2.1.2ZH-H2菌劑修復(fù)土壤單個(gè)HMW-PAH

      如圖3所示,在J處理下,單個(gè)PAH去除率范圍為9.12%~21.73%。經(jīng)檢驗(yàn),BaA的去除效果最佳,去除率達(dá)21.73%;其次為Flt、Pry、Chry、DbA、InP和BghiP;BkF和BaP的去除效果最差,去除率為9.12%、11.66%。但與課題組前期向老化污染土壤中添加0.1 g·kg-1游離菌相比,ZH-H2對(duì) BbF、BKF、BaP、InP、DbA、BghiP的去除率(5.49%、8.46%、0.35%、6.75%、5.79%、7.06%)分別提高了1.94、0.08、32.32、1.29、2.60、1.66倍,對(duì)PAHs的去除效果顯著。這說(shuō)明在該礦區(qū)長(zhǎng)期污染的老化土壤中添加該固定化菌劑對(duì)10種單個(gè)HMW-PAHs均有不同程度的去除潛力且比游離菌對(duì)老化污染土壤的修復(fù)效果高。在J+D處理下,10種HMW-PAHs去除率范圍為17.93%~43.12%。經(jīng)檢驗(yàn),在10種PAHs中,各PAH的去除效果由大到小依次為InP(43.12%)>DbA、BghiP(31.56%,33.92%)>BaA (30.60%)>Flt、Pry、Chry、BkF、BaP>BbF(17.93%)。在J+D+O處理下,10種單個(gè)PAH去除率范圍為24.34%~35.81%,其中BaA、BghiP、InP的去除率顯著高于其他7種HMW-PAHs,分別為35.81%、35.67%、35.79%。與J處理相比,J+D處理下Flt、Chry、BkF、BaP、DbA、BghiP、InP 7種HMW-PAHs的去除率顯著提高,其中BkF的增幅最大,增加了63.78%,表明添加淀粉對(duì)不同種類HMW-PAHs的去除促進(jìn)作用有一定差異;J+D+O處理中10種單個(gè)HMW-PAHs去除率比J處理均有顯著增加,其中BkF的增幅最明顯,增加了68.09%。對(duì)比J+D和J+D+O處理不難發(fā)現(xiàn),除BbF外,其余9種PAHs的去除率在兩組處理之間差異均不顯著,通氣對(duì)單個(gè)HMW-PAH的修復(fù)未產(chǎn)生顯著影響。

      2.2不同處理對(duì)土壤酶活性影響的研究

      不同處理土壤酶活性的變化見(jiàn)表3。J處理下木質(zhì)素過(guò)氧化物酶活性大于CK,但未達(dá)到顯著水平,J+ D、J+D+O處理下木質(zhì)素過(guò)氧化物酶活性顯著高于CK和J,與HMW-PAHs總量去除率的結(jié)果一致,推測(cè)土壤HMW-PAHs的降解可能與該酶活性有關(guān),過(guò)氧化氫酶活性大小順次為J+D+O<J+D<J<CK(P<0.05)。同時(shí),研究?jī)煞N土壤酶活性與PAHs去除率的相關(guān)性(表4)可以看出,土壤過(guò)氧化氫酶活性與Chry、BkF、BaP、DbA、BghiP、InP的去除率呈極顯著負(fù)相關(guān),與Flt、BaA的去除率呈顯著負(fù)相關(guān);土壤木質(zhì)素過(guò)氧化物酶活性與Chry、BkF、InP、DbA、BghiP的去除率呈顯著正相關(guān)。該結(jié)果進(jìn)一步證實(shí)了該酶可能與鐮刀真菌ZH-H2降解HMW-PAHs的效率有關(guān)。

      圖3 不同措施下固定化ZH-H2菌劑對(duì)土壤各HMW-PAHs的去除效果Figure 3 The degradation of individual HMW-PAHs in soil by immobilized ZH-H2 in the different treatments

      表3 不同處理下土壤酶活性的測(cè)定結(jié)果Table 3 Soil enzymatic activities in different treatments

      3 討論

      向土壤中添加高效去除菌、高效去除菌載體或者其營(yíng)養(yǎng)物質(zhì)等共代謝底物來(lái)提高污染物去除效果的方法被稱為生物強(qiáng)化[31-32]。本研究采用生物強(qiáng)化的方法向PAHs長(zhǎng)期污染土壤中添加玉米秸稈固定化Fusarium.sp修復(fù)HMW-PAHs,并結(jié)合添加淀粉以及通氣措施來(lái)提高HMW-PAHs的修復(fù)效率。

      表4 酶活性與各HMW-PAHs去除率的相關(guān)性分析Table 4 The correlation analysis about the soil enzyme activity and the degradation of ten different HMW-PAHs

      與課題組前期向土壤中添加0.1 g·kg-1游離菌的研究結(jié)果相比,ZH-H2經(jīng)固定化后顯著促進(jìn)了PAHs的去除。這可能是因?yàn)閆H-H2經(jīng)固定化后單位體積介質(zhì)中微生物的數(shù)量顯著增加,增加了ZH-H2與PAHs接觸的機(jī)會(huì);或者是ZH-H2經(jīng)固定化后微環(huán)境有利于屏蔽土著菌的競(jìng)爭(zhēng)作用,降低了污染物對(duì)ZHH2的毒害作用,使其可以保證高效的修復(fù)效果[33]。另外,過(guò)氧化氫酶分解土壤中過(guò)氧化氫,是H2O2的解毒劑,有利于防止過(guò)氧化氫對(duì)生物體的毒害作用,可用作PAHs引起的氧化脅迫的生物標(biāo)志物[34]。本研究土壤過(guò)氧化氫酶活性隨去除率升高而降低,與王洪等[35]研究得出的PAHs修復(fù)效果與過(guò)氧化氫酶活性呈負(fù)相關(guān)結(jié)論相一致,可能是由于PAHs或者其中間代謝產(chǎn)物的毒性作用,促使微生物固定化、添加淀粉等措施增強(qiáng)了對(duì)ZH-H2的保護(hù)作用,導(dǎo)致土壤過(guò)氧化氫酶活性降低。

      本研究中土培60 d后,固定化ZH-H2、固定化ZH-H2-淀粉處理均能夠顯著促進(jìn)固定化Fusarium. sp對(duì)HMW-PAHs污染農(nóng)田土壤的修復(fù)。淀粉加強(qiáng)HMW-PAHs去除效果一方面歸于淀粉基質(zhì)可能改善了土壤微生物的營(yíng)養(yǎng)條件,利于固定化降解菌ZHH2及土著微生物的生長(zhǎng)[36],改變了微生物種群結(jié)構(gòu),課題組前期已證實(shí)淀粉促進(jìn)Fusarium.sp對(duì)HMWPAHs降解的顯著效果;另一方面,添加淀粉可能促進(jìn)了固定化ZH-H2及土著微生物分泌一些關(guān)鍵的去除酶[37]。Wang[38]已證實(shí),P.Chrysosporium分泌的木質(zhì)素過(guò)氧化物酶和錳過(guò)氧化物酶是土壤中PAHs去除的主要酶,且其酶活性隨著土壤有機(jī)質(zhì)含量的提高而增加,Collybia.sp和Rhizoctonia在土壤多環(huán)芳烴修復(fù)應(yīng)用中產(chǎn)生木質(zhì)素過(guò)氧化物酶[39-40],而且本研究中木質(zhì)素過(guò)氧化物酶活性與Chry、BkF、InP、DbA、BghiP的去除率呈顯著正相關(guān)。該結(jié)果進(jìn)一步說(shuō)明不同處理措施對(duì)土壤HMW-PAHs的去除影響可能與分泌的木質(zhì)素過(guò)氧化物酶有關(guān);同時(shí),固定化ZH-H2—淀粉處理中過(guò)氧化氫酶活性顯著低于固定化ZH-H2,也可能是添加淀粉促進(jìn)了對(duì)ZH-H2的保護(hù)作用。綜合以上兩方面因素認(rèn)為,添加淀粉可能是提升HMWPAHs去除的主要原因。另外,鄒德勛等[41]證明通氣促進(jìn)微生物生長(zhǎng),提高了PAHs修復(fù)效果,但Teng[23]等卻得到了不同的結(jié)論,他們發(fā)現(xiàn)在通氣的處理中,BaP的含量高于未通氣處理。在本研究中,通氣措施對(duì)HMW-PAHs修復(fù)的影響也不顯著,與Teng等的結(jié)論相符,可見(jiàn),通氣對(duì)不同菌種降解PAHs的影響差異較大。

      在添加淀粉、淀粉-通氣兩組處理下,6環(huán)PAHs總量的去除率均高于4環(huán)和5環(huán)。一般來(lái)說(shuō),隨著PAHs環(huán)數(shù)的增加,去除率因其生物可利用性降低而降低。孫鐵珩等[42]指出,PAHs的難去除性與其分子量和環(huán)數(shù)呈正相關(guān)性,與本研究結(jié)果相反,不過(guò)有學(xué)者已證明淀粉能夠增加BaP的水溶性[43]。這可能是解釋本研究結(jié)果的重要證據(jù)之一。另外,Olivier等[14]也發(fā)現(xiàn),鐮刀菌屬對(duì)5環(huán)、6環(huán)HMW-PAHs的修復(fù)效果高于4環(huán)PAHs,與本研究結(jié)果一致。這可能與該菌種的去除特性有直接關(guān)系。

      縱觀國(guó)內(nèi)外文獻(xiàn)不難發(fā)現(xiàn),添加淀粉伴隨通氣與固定化Fusarium.sp菌劑相結(jié)合修復(fù)HMW-PAHs長(zhǎng)期老化污染土壤中10種單體的研究尚未檢索到相關(guān)文獻(xiàn)。有學(xué)者已證實(shí)添加可溶性淀粉促進(jìn)了土著微生物對(duì)BaP的去除效果[20],但尚未有添加淀粉與固定化Fusarium.sp菌劑相結(jié)合的方法用以修復(fù) HMWPAHs長(zhǎng)期污染老化土壤的研究。本研究證實(shí)了淀粉與固定化Fusarium.sp菌劑相結(jié)合措施對(duì)6環(huán)PAHs有較好的去除效果。

      4 結(jié)論

      (1)添加淀粉能夠顯著促進(jìn)固定化ZH-H2菌劑的降解能力,而通氣對(duì)其降解影響不大。

      (2)隨著淀粉、通氣調(diào)控因子的改變,單個(gè)HMWPAH的去除能力隨之發(fā)生了改變。在J+D+O處理下固定化菌劑對(duì)BaA、BghiP、InP的修復(fù)效果最佳,且對(duì)6環(huán)PAHs有較好的去除效果,在J+D處理下對(duì)InP的去除最高。

      (3)不同處理土壤過(guò)氧化氫酶和木質(zhì)素過(guò)氧化物酶活性可能影響對(duì)HMW-PAHs的去除。

      [1]Hunter R D,Ekunwe S I N,Dodor D E,et al.Bacillus subtilis is a potential degrader of Pyrene and Benzo[a]pyrene[J].International Journal of Environmental Research and Public Health,2005,2(2):267-271.

      [2]毛健,駱永明,滕應(yīng),等.一株副球菌對(duì)污染土壤中多環(huán)芳烴的降解研究[J].土壤,2009,41(3):448-453.

      MAO Jian,LUO Yong-ming,TENG Ying,et al.Biodegradation of PAHs by Paracoccus aminovorans HPD-2 in contaminated soil[J].Soils,2009,41(3):448-453.

      [3]Benner B A,Bryner N P,Wise S A,et al.Polycyclic aromatic hydrocarbon emissions from the combustion of crude oil on water[J].Environ SciTechnol,1990,24:1418-1427.

      [4]Shree N S,Rudra D T.Environmental bioremediation technologies[M]. Berlin:Springer,2007:409-443.

      [5]羅 霂.高效降解高分子量多環(huán)芳烴的混合菌劑的開(kāi)發(fā)[D].北京:輕工業(yè)環(huán)境保護(hù)研究所,2013:1-7.

      LUO Lin.Develoment of a mixed microbial-agent efficiently degrading High-molecular-weight-polycyclic-aromatic-hydrocarbons[D].Beijing:Environmental Production Institute of Light Industry,2013:1-7.

      [6]徐瑩.高分子量多環(huán)芳烴降解菌的篩選、鑒定及其降解特性研究[D].南京:南京大學(xué),2014:1-9. XU Ying.Isolation,identification and characteristics of high-molecular-weight polycyclic aromatic hydrocarbons degradation strains[D]. Nanjing:Nanjing University,2014:1-9.

      [7]Wild S R,Jones K C.Polynuclear aromatic hydrocarbons in the united kingdom environment:A preliminary source inventory and budget[J]. Environ Pollut,1995,88(1):91-108.

      [8]劉大錳,王 瑋,李運(yùn)勇.首鋼焦化廠環(huán)境中多環(huán)芳烴分布賦存特征研究[J].環(huán)境科學(xué)學(xué)報(bào),2004,24(4):746-749.

      LIU Da-meng,WANG Wei,LI Yun-yong.Distribution and occurrence of polycyclic aromatic hydrocarbons from the Shougang coking plant[J]. Acta Scientiae Circumstantiae,2004,24(4):746-749.

      [9]趙歐亞,馮圣東,石維,等.煤礦區(qū)農(nóng)田土壤多環(huán)芳烴生態(tài)風(fēng)險(xiǎn)評(píng)估方法比較[J].安全與環(huán)境學(xué)報(bào),2015,15(2):352-358.

      ZHAO Ou-ya,F(xiàn)ENG Sheng-dong,SHI Wei,et al.A method for assessing the ecological risks due to the polycyclic aromatic hydrocarbons in the farming soil near coal mine area[J].Journal of Safety and Environment,2015,15(2):352-358.

      [10]肖春燕,邰超,趙同謙,等.燃煤電廠附近農(nóng)田土壤中多環(huán)芳烴的分布特征[J].環(huán)境科學(xué)學(xué)報(bào),2008,28(8):1579-1585.

      XIAO Chun-yan,TAI Chao,ZHAO Tong-qian,et al.Distirbution characteristics of polycyclic aromatic hydrocarbons in the soil around theJiaozuoPowerPlant[J].Acta Scientiae Circumstantiae,2008,28(8):1579-1585.

      [11]劉靜靜.典型煤礦區(qū)土壤中烴類化合物的地球化學(xué)循環(huán)研究[D].合肥:中國(guó)科學(xué)技術(shù)大學(xué),2014:1-15.

      LIU Jing-jing.Geochemical cycling of hydrocarbon compounds in soil of tipical coal mine district[D].Hefei:University of Science and Technology of China,2014:1-15.

      [12]Tony H,Risky A K.Fate and cometabolic degradation of benzo[a]pyrene by white-rot fungus Armillaria sp.F022[J].Bioresource Technology,2012,107:314-318.

      [13]Andrzej M,Christian J,Aloys H.Oxidation of polycyclic aromatic hydrocarbons by laccase of Trametes versicolor[J].Enzyme and Microbial Technology,1998,22(5):335-341.

      [14]Olivier P,Catherine R,Etienne V,et al,Bioremediation of an aged polycyclic aromatic hydrocarbons(PAHs)-contaminated soil by filamentous fungi isolated from the soil[J].International Biodeterioration& Biodegradation,2004,54:45-52.

      [15]王新,李培軍,鞏宗強(qiáng),等.混合固定化酵母菌對(duì)苯并(a)芘污染土壤的修復(fù)[J].環(huán)境污染與防治,2008,30(1):1-8.

      WANG Xin,LI Pei-jun,GONG Zong-qiang,et al.Remediation of soil contaminated with benzo(a)pyrene using mixed immobilized yeast strains[J].Environmental Pollution&Control,2008,30(1):1-8.

      [16]Su D,Li P J,Wang X,et al.Biodegradation of benzo[a]pyrene in soil by immobilized fungus[J].Environmental Engineering Science,2008,25 (8):1181-1188.

      [17]王新,李培軍,鞏宗強(qiáng),等.蓮藕狀固定化真菌(鐮刀菌)對(duì)土壤中菲、芘的降解[J].中國(guó)環(huán)境科學(xué),2002,22(1):44-47.

      WANG Xin,LI Pei-jun,GONG Zong-qiang,et al.The degradation of phenanthrene and pyrene in soil with the lotus-root form to immobilized Fusarium sp.[J].China Environmental Science,2002,22(1):44-47.

      [18]呂雪峰,王堅(jiān).污染土壤生物修復(fù)的共代謝機(jī)制研究進(jìn)展[J].科技創(chuàng)新導(dǎo)報(bào),2013(3):49-52.

      Lü Xue-feng,WANG Jian.Recent advances in cometabolism mechanics for bioremediation of contaminated soil[J].Science and Technology Innovation Herald,2013(3):49-52.

      [19]Mahaffey W R,Gibson D T,Cerniglia C E.Bacterial oxidation of chemical carcinogens:Formation of polycyclic aromatic acids from benz[a]anthracene[J].Applied and Environmental Microbilogy,1988,54(10):2415-2423.

      [20]Lun F Y,Ying T,Luo Y M,et al.Biodegradation of polycyclic aromatic hydrocarbons(PAHs)by Trichoderma reesei FS10-C and effect of bioaugmentation on an aged PAH-contaminated soil[J].Bioremediation Journal,2015,19(1):9-11.

      [21]溫繼偉.白腐真菌Pseudotrametes gibbosa共代謝降解芘的研究[D].哈爾濱:東北林業(yè)大學(xué),2011.

      WEN Ji-wei,Co-metabolie degradation of pyrene by white-rot fungus Pseudotrametes gibbosa[D].Harbin:Northeast Forestry University,2011.

      [22]Tittle P C.Use of alternative growth sub-strates to enhance PAH degradation.In:R.E.Hinchee(eds)[J].Bioremediation of Recalcitrant Organics,1995:1-7.

      [23]Teng Y,LuoY M,Li F P,et al.Effects of soil amendment with different carbon sources and other factors on the bioremediation of an aged PAH-contaminated soil[J].Biodegradation,2010,21:167-178.

      [24]周禮凱.土壤酶學(xué)[M].北京:科學(xué)出版社,1987:107-240. ZHOU Li-kai.Soil enzymology[M].Beijing:Science Press,1987:107-240.

      [25]劉世亮,駱永明,丁克強(qiáng),等.黑麥草對(duì)苯并[a]芘污染土壤的根際修復(fù)及其酶學(xué)機(jī)理研究[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2007,26(2):52632.

      LIU Shi-liang,LUO Yong-ming,DING Ke-qiang,et al.Rhizosphere remediation and its mechanism of benzo[a]pyrene-contaminated soil by growing ryegrass[J].Journal of Agro-Environment Science,2007,26(2):52-63.

      [26]藍(lán)靖.木質(zhì)素過(guò)氧化物酶對(duì)疏水性芳香化合物的高效降解及機(jī)制研究[D].濟(jì)南:山東大學(xué),2008.

      LAN Jing.Studies on the degradation of hydrophobic aromatic compounds with lignin peroxidase and the related mechanism[D].Jinan:Shandong University,2008.

      [27]鮑士旦.土壤農(nóng)化分析[M].北京:中國(guó)農(nóng)業(yè)出版社,2000:30-163.

      BAO Shi-dan,Soil analysis[M].Beijing:Chinese Agricultural Press,2000:30-163.

      [28]趙歐亞.淀粉和苜蓿促進(jìn)煤礦區(qū)土壤高環(huán)PAHs污染的真菌修復(fù)研究[D].保定:河北農(nóng)業(yè)大學(xué),2015:12-14.

      ZHAO Ou-ya.Study on enhancing fungi remediation of coal mine area soil comtaminated with HMW-PAHs by starch and alfalfa[D].Baoding:Agricultural University of Hebei,2015:12-14.

      [29]程曉濱,裂褶菌F17錳過(guò)氧化物酶的分離純化及其對(duì)偶氮染料脫色的研究[D].合肥:安徽大學(xué),2008:8-10.

      CHENG Xiao-bin,Purification of a new manganese peroxidase of the White-rot Fungus Schizophyllum sp.F17,and decolorization of Azo Dyes by the enzyme[D].Hefei:Anhui University,2008:8-10.

      [30]EPA 8270d,Semivolatile organic compounds by gas chromatographymass spectrometry[S].United States Environmental Protection Agency. 1998.

      [31]Thompson I P,Van G C,Ciric L,et al.Bioaugmentation for bioremediation:The challenge of strain selection[J].Environmental Microbiology,2005,7(7):909-915.

      [32]Seklemova E,Pavlova A,Kovacheva K.Biostimulation-based bioremediation of diesel fuel:Field demonstration[J].Biodegradation,2001,12 (5):311-316.

      [33]胡廣軍,梁成華,李培軍,等.固定化微生物對(duì)多環(huán)芳烴污染土壤的降解[J].生態(tài)學(xué)雜志,2008,27(5):745-750.

      HU Guang-jun,LIANG Cheng-hua,LI Pei-jun,et al.Degradation of soil polycyclic aromatic hydrocarbons by immobilized microbes[J].Chinese Journal of Ecology,2008,27(5):745-750.

      [34]Lionetto M G,Caricato R,Giordano M E,et al.Integrated use of biomarkers(acetyl cholinesterase and antioxidant enzymes activities)in Mytilus galloprovincialis and Mullus barbatus in an Italian coastal marine area[J].Marine Pollute Bulletin,2003,46:324-330.

      [35]王洪,李海波,孫鐵珩,等.生物修復(fù)PAHs污染土壤對(duì)酶活性的影響[J].生態(tài)環(huán)境學(xué)報(bào),2011,20(4):691-695.

      WANG Hong,LI Hai-bo,SUN Tie-heng,et al.Bioremediation of PAHs contaminated soil and its impacts on soil enzyme activity[J].E-cology and Environmental Sciences,2011,20(4):691-695.

      [36]Ana-Maria R,Catherine R,Gheorghe S,et al.Synthesis of alkylated potato starch derivatives and their potential in the aqueous solubilization of benzo[a]pyrene[J].Carbohydrate Polymers,Carbohydrate Polymers,2013,93:184-190.

      [37]姜巖,楊穎,張賢明.典型多環(huán)芳烴生物降解及轉(zhuǎn)化機(jī)制的研究進(jìn)展[J].石油學(xué)報(bào)(石油加工),2014,30(6):1137-1150.

      JIANG Yan,YANG Ying,ZHANG Xian-ming,Review on the biodegradation and conversion mechanisms of typical polycyclic aromatic hydrocarbons[J].Acta Petrolei Sinica(Petrol Eum Processing Section),2014,30(6):1137-1150.

      [38]Wang C P,Sun H W,Li J M,et al.Enzyme activities during degradation of polycyclic aromatic hydrocarbons by white rot fungus Phanerochaete chrysosporium in soils[J].Chemosphere,2009,77(6):733-738.

      [39]許華夏,李培軍,劉宛,等.真菌細(xì)胞色素P450與多環(huán)芳烴濃度及降解率的相互關(guān)系 [J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2004,23(5):972-976.

      XU Hua-xia,LI Pei-jun,LIU Wan,et al.Interrelationship between Cytochrome P450 in fungi and contents and degradation rates of PAHs [J].Journal Agro-Environment Science,2004,23(5):972-976.

      [40]McErlean,C,Marchant,R,Banat,I M.An evaluation of soil colonization of selected fungi and their production of ligninolytic enzymes for use in soil bioremediation applications[J].Anton Leeuw Int J G,2006,90:147-158.

      [41]鄒德勛,駱永明,滕應(yīng),等.多環(huán)芳烴長(zhǎng)期污染土壤的微生物強(qiáng)化修復(fù)初步研究[J].土壤,2006,38(5):652-656.

      ZOU De-xun,LUO Yong-ming,TENG Ying,et al.Enhanced microbial remediation of long-term polycyclic aromatic hydrocarbons(PAHs)polluted soils[J].Soils,2006,38(5):652-656.

      [42]孫鐵珩,宋玉芳,許華夏,等.植物法生物修復(fù)PAHs和礦物油污染土壤的調(diào)控研究[J].應(yīng)用生態(tài)學(xué)報(bào),1999,10(2):225-229.

      SUN Tie-heng,SONG Yu-fang,XU Hua-xia,et al.Plant bioremediation of PAHs and mineral oil contaminated soil[J].Chinese Journal of Applied Ecology,1999,10(2):225-229.

      [43]Ana-Maria R,Catherine R,Gheorghe S,et al.Synthesis of alkylated potato starch derivatives and their potential in the aqueous solubilization of benzo[a]pyrene[J].Carbohydrate Polymers,2013,93(1):184-190.

      Effect of starch and aeration addition on degradation of HMW-PAHs by immobilized Fusarium.sp in a polluted and aged soil of a coal mining area

      ZHANG Xue-na1,JIA Hai-bin1,LI Cheng3,WANG Wei1,ZHANG Li-xiu1,F(xiàn)ENG Sheng-dong1*,YANG Zhi-xin1,2*
      (1.College of Resource and Environment Science,Agricultural University of Hebei,Baoding 071000,China;2.Key laboratory for Farm Land Eco-environment,Baoding 071000,China;3.Hebei Institute of Environmental Science,Shijiazhuang 050000,China)

      The soil incubation experiment was performed to study the effect of starch and aeration addition on HMW-PAHs degradation by Fusarium.sp in polluted and aged soil of a coal mining area.After 60 days incubation,the degradation rate of 10 HMW-PAHs as well as the change rule of soil enzyme activities were analyzed.The results showed that the treatments were in the following order in terms of∑10 HMW-PAHs degradation rate:immobilized Fusarium.sp+starch+aeration(J+D+O,29.19%)≈immobilized Fusarium.sp+starch(J+D,25.89%)>immobilized Fusarium.sp(J,16.54%).There was no significant difference between J+D+O and J+D for the degradation of∑4-rings,∑5-ring and∑6-ring PAHs,but their degradation rates were higher than J significantly(P<0.05).The degradation range of 10 individual HMW-PAHs were 9.12%~21.73%,17.93%~43.12%,24.34%~35.79%in J,J+D and J+D+O treatments respectively.The results demonstrated that far higher degradation rates of the 10 individual HMW PAHs were achieved in J+D+O and J+D treatments than those in Jtreatment,but there was no significant difference between J+D+O and J+D.The removal rates of BkF presented the highest increase extent in the two treatments and increased 68.09%,63.78%respectively.In addition,the treatments were in the following order in terms of catalase enzyme activities:CK>J>J+D>J+D+O(P<0.05).We found that there were significant(P<0.05)linear negative correlation between the removal rates of the 10 individual HMW-PAHs and catalase activity in soil.However,the degradation rate of Chry,BkF,InP,DbA,BghiP had significant(P<0.05)linear positive correlation with lignin peroxidase activity.In conclusion,the individual PAH was removed by different treatments selectively,and the degradation rate were significantly improved by adding starch.

      a coal mining area;HMW-PAHs;immobilized Fusarium.sp;starch;aeration;soil enzyme activity

      X53

      A

      1672-2043(2016)09-1709-08doi:10.11654/jaes.2016-0596

      2016-04-28

      河北省教育廳項(xiàng)目(Z2013058);863專項(xiàng)(2012AA101403-3)

      張雪娜(1990—),女,河北廊坊人,碩士生,主要從事環(huán)境質(zhì)量評(píng)價(jià)與監(jiān)控研究。E-mail:815798846@qq.com

      楊志新E-mail:yangzhixin@126.com; 馮圣東E-mail:fengshengdong@126.com

      猜你喜歡
      過(guò)氧化物菌劑去除率
      銀納米團(tuán)簇的過(guò)氧化物模擬酶性質(zhì)及應(yīng)用
      Co3O4納米酶的制備及其類過(guò)氧化物酶活性
      不同溫度下彈性填料對(duì)ABR處理生活污水的影響
      復(fù)合微生物菌劑在農(nóng)業(yè)生產(chǎn)中的應(yīng)用
      外生菌根真菌菌劑的制備及保存研究
      園林科技(2020年2期)2020-01-18 03:28:26
      基于遺傳BP神經(jīng)網(wǎng)絡(luò)的內(nèi)圓磨削ZTA陶瓷材料去除率預(yù)測(cè)
      新型液體菌劑研制成功
      過(guò)氧化物交聯(lián)改性PE—HD/EVA防水材料的研究
      金剛石多線切割材料去除率對(duì)SiC晶片翹曲度的影響
      “播可潤(rùn)”微生物菌劑在甜瓜上的應(yīng)用效果研究
      林口县| 汶川县| 武功县| 吉隆县| 合作市| 盘锦市| 塘沽区| 汉寿县| 来凤县| 大港区| 西吉县| 合肥市| 道孚县| 北京市| 宁化县| 昭觉县| 宁夏| 梓潼县| 芮城县| 茶陵县| 曲麻莱县| 馆陶县| 克山县| 光泽县| 彭州市| 古浪县| 和田县| 白沙| 渭源县| 刚察县| 贵定县| 商洛市| 格尔木市| 九江市| 东山县| 阜新市| 南平市| 来宾市| 高密市| 保定市| 开远市|