• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Corrected SPH methods for solving shallow-water equations*

    2016-10-18 05:36:35ShanqunCHEN陳善群BinLIAO廖斌TaoHUANG黃濤
    關(guān)鍵詞:黃濤

    Shan-qun CHEN (陳善群), Bin LIAO (廖斌), Tao HUANG (黃濤)

    College of Architecture and Civil Engineering, Anhui Polytechnic University, Wuhu 241000, China,

    E-mail: chenshanqun@126.com

    ?

    Corrected SPH methods for solving shallow-water equations*

    Shan-qun CHEN (陳善群), Bin LIAO (廖斌), Tao HUANG (黃濤)

    College of Architecture and Civil Engineering, Anhui Polytechnic University, Wuhu 241000, China,

    E-mail: chenshanqun@126.com

    The artificial viscosity in the traditional smoothed particle hydrodynamics (SPH) methodology concerns some empirical coefficients, which limits the capability of the SPH methodology. To overcome this disadvantage and further improve the accuracy of shock capturing, this paper introduces two other ways for numerical viscosity, which are the Lax-Friedrichs flux and the twoshock Riemann solver with MUSCL reconstruction to provide stability. Six SPH methods with different kinds of numerical viscosity are tested against the analytical solution for a 1-D dam break with a wet bed. The comparison shows that the Lax-Friedrichs flux with MUSCL reconstruction can capture the shock wave more accurate than other five methods. The Lax-Friedrichs flux and the artificial viscosity with MUSCL reconstruction are finally both applied to a 2-D dam-break test case in a L-shaped channel and the numerical results are compared with experimental data. It is concluded that this corrected SPH method can be used to solve shallow-water equations well.

    smoothed particle hydrodynamics (SPH) methodology, artificial viscosity, Lax-Friedrichs flux, two-shock Riemann solver, MUSCL reconstruction, shallow water equations

    Introduction

    The shallow-water equations (SWEs) are widely used for hydrodynamic simulations in coastal regions,bays, estuaries and lakes, to predict tsunamis, dam breaks, storm surges, floods and other natural disasters[1]. Due to the obvious nonlinearity of the SWEs, the analytical solutions can only be obtained in rare special circumstances, so numerical simulation methods are required in actual projects.

    The grid-based classical Euler methods are now widely applied to solve the SWEs, such as the finite difference method and the finite volume method. However, due to restrictions of grid, grid-based methods suffer many limitations in simulating multi-phase effects, most importantly, the debris flows in flood modeling. On the other hand, the particle method requires no grid, therefore, the grid distortion and reconstruction problems can be avoided, with a natural advantage in dealing with large deformation for free interface. This feature makes particle methods promising in solving the SWEs.

    The smoothed particle hydrodynamics(SPH) is a purely Lagrangian meshless method originally introduced to simulate astrophysical problems by Lucy[2]in 1997. The method was then applied to solve the Navier-Stokes equations, and it now becomes increasingly popular as a technique to study a range of applications, including wave breaking, impact-fracture problems, and bio-medical problems. The SWEs are based on the incompressible Navier-Stokes equations with the assumption of the hydrostatic pressure and the Boussinesq approximation, which provides a theoretical basis for the use of the SPH method in their solutions. Ata and Soula?mani[3]obtained some results in the wet bed test case by improving the formulation of the stabilization term. Rodriguez-Paz and Bonet[4]presented a SPH formulation for shallow water, based on the variational formulation, which can conserve boththe total mass and momentum. De Leffe et al.[5]solved the nonlinear SWEs by an SPH method and presented coastal flow simulations.

    In the process of solving SWEs by the SPH methods, virtual numerical oscillations are produced in the vicinity of the shock wave. Traditionally, an artificial viscosity was added to the SPH momentum equation to suppress the non-physical oscillation. Nevertheless, the artificial viscosity contains some empirical coefficients[6], which is different in different test cases and so the conventional SPH methods suffer some limitations in solving the SWEs.

    To improve the accuracy and the generality of the conventional SPH method in modeling the SWEs, this paper introduces two schemes of numerical viscosities in the SPH method, and also uses the MUSCL reconstruction to reduce the level of numerical viscosity. Then, the corrected SPH methods are employed to solve classic shallow-water test cases and the results are compared with exact solutions. Finally, the ability of the shock capturing of the corrected SPH methods is verified by a more complicated numerical experiments.

    1. SPH for shallow water

    1.1 Lagrangian formulation of SWEs

    The SWEs are the depth-integrated equations of mass and momentum conservations and are written in the Lagrangian form as

    Equations (1) are in the form the same as the Euler equations if we redefine the densityas the amount of fluid per unit of area in a 2-D domain; with this new definition of, it can be related to the depth of wateras

    1.2 Density evaluation

    The SPH approximation for the density of theparticleis

    In the shallow-water approximation, the fluid will follow the terrain and its projected 2-D density will expand or contract according to the height of the water column as shown by Eq.(2). A variable smoothing length is therefore needed in order to maintain the accuracy of the solution. In general,must vary according to[4]

    According to Eq.(5), the smoothing lengthof theparticle is related to the densityas

    Differentiating Eq.(4) and using the chain rule for the kernel leads to

    The derivative of the kernel function with respect tois obtained as

    Substituting Eqs.(8) and (9) andinto Eq.(7) leads to

    Converting the directional derivative of Eq.(11)into the derivative of the density, we have

    The aforementioned Eq.(6) is implicit because the densityis a function ofas in Eq.(4), a Newton-Raphson iteration is adopted to solve Eqs.(4)and (6).

    The root of Eq.(7) can be found by using the Newton-Raphson iterative formula

    The derivative of the residual is calculated by differentiating Eq.(13) and using the chain rule for the kernel function

    Substituting the derived results of Eq.(9) into the above equation and remembering that, we have

    Substituting Eq.(16) into Eq.(14) gives the final iterative formula for

    where

    The Newton-Raphson iterations can be conducted independently for each particle and will be stopped when. Then entering into the iteration process of particlesand until all particles are covered. Since now we focus on the problem of the poor ability in shock capturing in solving the SWEs and the accuracy requirements are not very important, we let the coefficient

    1.3 Momentum equation

    The Lagrangian equation of motion for a particle iis

    where the Lagrangian functionalis defined in terms of the kinetic energyand the potential energyasis a function of particle positions but not velocities. The kinetic energy for a system of particles can be calculated as the sum of the energies of all particles

    Fig.1 Flow with a free surface under the effect of gravity

    According to Newton’s second law, Eq.(19) is equivalent to

    Substituting the kinetic energyinto the inertial forcegives

    The total internal energy stored in the group of particles is

    Substituting the compression ratioand the pressureinto Eq.(25) for the equivalent transformation, the directional derivative ofis (see Ref.[7])

    Substituting the derivative of(Eq.(11)) in the above equation and rearranging the summations gives

    The comparison of Eq.(26) with Eq.(28) gives the internal force

    Substituting in Eq.(29) the pressureobtained by means of the hydrostatic law:, the final formulation foris

    By substituting Eqs.(23), (24) and (30) into (22)and taking into account also the effect of the friction source term, the particle accelerationcan be finally obtained as

    1.4 Time integration scheme

    To integrate in time the particle positions and velocities, we use the leap-frog time integration scheme[8]defined as:

    As an explicit method, the time step must satisfy a Courant-Friedrichs-Lewy (CFL) condition[9]. In the SPH, this condition is imposed with the smoothing length as a reference length

    2. Stabilizing treatments

    2.1 Numerical viscous improvement

    In the Von Neumann stability analysis system[10],the SPH method can be interpreted as a central finite difference scheme and some viscosity is needed to avoid numerical oscillations in the presence of shock waves. Therefore, Eq.(30) should be modified as follows

    In the original SPH formulation introduced by Monaghan[6],is an artificial viscosity activated when two particles are approaching. The main drawback of this formulation is that it needs to be tuned according to the necessary numerical viscosity, which is different in different test cases. In order to overcome this drawback, the paper introduces two modified schemes.

    (1) Lax-Friedrichs flux

    According to Ata and Soula?mani[3], the centred fluxin the Lax-Friedrichs flux is replaced as

    Fig.2 Initial condition of 1D dam break flow with wet bed

    After some algebraic operations, the following expression of the stabilizingis obtained

    Fig.3 Water depth for 1-D dam break with wet bed at time 0.05 s

    (2) Two-shock Riemann solvers

    The Riemann solvers are widely used in finite volume schemes for hyperbolic equations[11,12]and there were some attempts to introduce them in the SPH formalism[13]. Comparing these approaches with the artificial viscosity method, the advantage of the Riemann solvers is that no extra numerical dissipation is introduced.

    In this work we introduce the two-shock Riemann solver[14]into our Shallow Water models. The main idea is to consider each interaction between theandparticles as a Riemann problem and therefore to replace the pressuresin Eq.(29) with the resultant pressure

    where, according to the two-shock Riemann solver,are the left and right water depthsrepresent the normal velocities in the left and right statesandis an estimate of the water depth that can be obtained from some other direct Riemann Solvers.

    2.2 MUSCL-type reconstruction

    To reduce the level of the numerical viscosity and improve the accuracy of the numerical calculation,a monotone upwind-centred scheme for the conservation law (MUSCL) non-upwind procedure[15]is used to reconstruct a generic physical quantityin the left and right states of the Riemann problem

    The MUSCL reconstruction used on two amendments in above two sections is applied to reconstruct the velocitiesand the water depthsin theterm of the Lax-Friedrichs flux (see Eq.(36)), whereis replaced with, and in the two-shock Riemann solver (see Eq.(39)).

    3. Test cases

    The dam break flow can cause disasters in the downstream, which would propagate in rivers in the form of standing wave, and the wave crest would generate a sudden rise of water level along its path[16-18]. The SWEs are widely used to simulate the water level in dam break flows, which are difficult to capture exactly. Hence we choose two dam break cases to test the corrected SPH methods.

    3.1 1-D dam break flow with wet bed

    To verify the effect of the shock capturing capability by using the stabilization schemes in solving shallow water equations, a 1-D dam break case is considered in this section. The initial conditions are shown in Fig.2, where the water depthin the upstream part of the domainandin the downstream part of the domain. There are 150 particles scattered nonuniformly inside the domain according to the water depth. In the upstream part of the reservoir, we letin the six different simulations, for the particles placed downstream,is twice the initial particle spacing for the upstream part. In the test, no source terms are considered and the initial velocity is 0.

    Fig.4 Water depth for 1-D dam break with wet bed at time 0.05 s

    Figure 3 shows the comparison between the analytical solution and the SPH results obtained by using different kinds of numerical viscosity. The results in Figs.3(a), 3(c) and 3(e) show that the three kinds of numerical viscosity, the artificial viscosity, the Lax-Friedrichs flux and the two-shock Riemann solver can all capture the shock wave with a certain degree of accuracy, but the additional numerical viscosity can cause unnecessary oscillations with a significant deviation of the water line in corners. In order to improve the shock capturing ability, the reconstruction technique is required to introduce into the three kinds of numerical viscosity mentioned above to prevent from producing the rarefaction wave. The comparison isshown in Figs.3(a)-3(f). The results indicate that the viscosity terms with the MUSCL reconstruction in comparison to those without reconstruction can reproduce the sharper shock without introducing unnecessary oscillatios in the rarefaction wave. Finally, the comparison is shown in Figs.3(b), 3(d)and 3(f). The results show that the artificial viscosity and the twoshock Riemann solver with the MUSCL reconstruction both overpredict the water depth in the initial part of the rarefaction wave, but with the Lax-Friedrichs flux with reconstruction, more accurate results are obtained.

    Table 1non-dimensional norm of water depth error calculated for 1-D dam break with wet bed atconsidering 6 different stabilization terms

    Table 1non-dimensional norm of water depth error calculated for 1-D dam break with wet bed atconsidering 6 different stabilization terms

    x?AV  LF  TS  AV+MUSCL  LF+MUSCL  TS+MUSCL 0.0100 m  1.52×10-2 1.57×10-2 1.56×10-2 1.03×10-2 1.00×10-2 1.02×10-20.0050 m  9.29×10-3 9.81×10-3 9.81×10-3 6.01×10-3 5.88×10-3 6.01×10-30.0025 m  5.82×10-3 6.41×10-3 6.41×10-3 4.12×10-3 3.87×10-3 4.12×10-3

    Figure 4 shows the comparison of water levels between the exact solution and the three viscosity schemes with MUSCL reconstruction, as well as, the local amplification of the shock wave front. From 4(b)and 4(c), it is seen that the Lax-Friedrichs flux method is more accuate than other two in the positon of a sudden drop of the water level.

    In order to illustrate the shock capturing capability of the six terms, a convergence analysis is also performed by using three different initial particle spacings0.01 m, 0.005 m and 0.0025 m, respectively, theerror norm of the nondimensional water depth is defined as

    3.2 2-D dam-break flow in a L-shaped channel

    In order to validate the shock wave capturing ability of the Lax-Friedrichs flux with the MUSCL reconstruction, the case of a 2-D dam-break flow in a channel with abend[19]is taken for simulation.

    Fig.5 Geometry of the reservoir and L-shaped channel: plane and profile views and positions of the gauges of the experimental setup (m)

    The flow domain consists of a square reservoir and the L-shaped channel as shown in Fig.5. The upstream reservoir has dimensions of 2.39 m×2.44 m,the channel is rectangular, 0.495 m wide, the upstream reach is 3.92 m long and the downstream reach, behind thebend, is 2.92 m long. The bottom of the channel is flat and is 0.33 m higher than that of the reservoir. Initially, the water depth is 0.53 m high in the reservoir, which is separated by a gate from the channel and then the gate is suddenly opened to produce a dam-break situation. The water levels are recorded during the experiment in the reservoir and along the channel using 6 gauges, as shown in Fig.5. In the simulation, 2 450 particles are initially placed in the reservoir over an uniform Cartesian grid with size. The channel bed is initially dry, and its Manning?s friction coefficient is

    Fig.6 Water level profiles at typical times of 2-D L-shaped dam break with dry bed (m)

    Figure 6 shows some typical water-level profiles at different times in the process of dam break. At3.2 s, the front reaches the bend and a bore forms in the corner, at, the bore travels back to the reservoir, atit disappears, atbecause of the effect of the channel end wall, a bore forms again and travels upstream, at, the second bore disppears and at, the water flow becomes stable.

    The variation of the water depth with time by the SPH-SWEs presented in this paper is compared with the experimental data at different gauge positions as shown in Fig.7. The Lax-Friedrich flux with MUSCL reconstruction is applied for its good performance mentioned in the last section. Numerical results obtained from the SPH with the artificial viscosity are presented here for a comparison to those obtained by using the numerical viscosity. Gauge 1 is placed inside the reservoir near the channel, the good agreement of the experimental data with the numerical results means that the discharge entering the channel is correct. Gauges 2, 3, 4 are placed along the channel upstream of the bend, therefore, they can capture the abrupt water level elevations because of the reflected wave travelling to the reservoir. The numerical model can reproduce the water level at Gauges 2, 3 and 4, especially when at 16 s at Gauge 2, at 14 s at Gauge 3 and at 9 s at Gauge 4, where the great change of water level occurs. However, differences are witnessed at Gauge 5. The overall disagreement at Gauge 5 is due to the local head loss caused by thebend which is not taken into account in the numerical computation. At Gauge 6, a good agreement with the experimental data is evidenced. In general, all numerical results are in good agreement with the experimental data, except that the AV+MUSCL method slightly overpredicts the water level at Gauge 2. However, the computational time of the simulation with the LF+MUSCL method is less than that of the AV+MUSCL method by about 1 000 s.

    4. Conclusion

    In the traditional SPH method, the artificial viscosity is added to the SPH momentum equation foreliminate the non-physical oscillation generated in the vicinity of the shock wave. Nevertheless, the artificial viscosity formulation needs to be tuned according to the necessary numerical viscosity, which is different in different test cases. To improve the accuracy and the generality of the conventional SPH method, this paper introduces two numerical viscosities, which are the two-shock Riemann solver and the Lax-Friedrichs flux. In order to reduce the numerical oscillation in the computational processes, the MUSCL reconstruction is used to reconstruct the velocity and the water depths in the artificial viscosity, the two-shock Riemann solver and the Lax-Friedrichs flux. These improved SPH methods are tested against the analytical solution for the 1-D dam break with wet bed. The results show that the shock waves are simulated accurately by schemes of the numerical viscosity with reconstruction procedures for stability and the best results are obtained by using the Lax-Friedrichs flux with MUSCL reconstruction. Finally, the Lax-Friedrichs flux and the artificial viscosity with MUSCL reconstruction are both applied to the case of a 2-D dam-break flow in a channel with a L-shaped bend. Both methods make good predictions as compared with experimental measurements, but the number of iterations necessary to converge with the LF+MUSCL is less than that for the AV+MUSCL, thus the first method is more efficient. In conclusion, the corrected SPH method can solve shallow water problems with improved accuracy and generality.

    Fig.7 Water levels recorded by gauges from G1 to G6

    Acknowledgement

    This work was supported by the opening fund of key Laboratory of Mechanics, Anhui Polytechnic University (Grant No. 201602).

    References

    [1] ZHAO Zhang-yi. Numerical simulation and application of a Runge-Kutta discontinuous Galerkin scheme for one-dimension shallow water equations[D]. Master Thesis, Tianjin, China: Tianjin University, 2010(in Chinese).

    [2] LUCY L. A numerical approach to the testing of fusion process[J]. Joural of Astronomical, 1977, 8(12): 1013-1024.

    [3] ATA R., SOULA?MANI A. A stabilized SPH method for inviscid shallow water flows[J]. International Journal for Numerical Methods in Fluids,2004, 47(2): 139-159.

    [4] RODRIGUEZ-PAZ M., BONET J. A corrected smooth particle hydrodynamics formulation of the shallow-water equations[J]. Computers and Structures, 2005, 83(17-18): 1396-1410.

    [5] De LEFFE M., Le TOUZé D. and ALESSANDRINI B. Coastal flow simulations using an SPH formulation modeling the nonLinear shallow water equations[C]. Proceedings of the 3th ERCOFTAC SPHERIC workshop on SPH applications. Lausanne, Switzerland, 2008, 48-54.

    [6] MONAGHAN J. J. Smoothed particle hydrodynamics and its diverse applications[J]. Annual Review Fluid Mechanics, 2012, 44: 323-346.

    [7] BONET J., KULASEGARAM S. Correction and stabilisation of smooth particle hydrodynamics with application in metal forming[J]. International Journal for Numerical Methods in Engineering, 2000, 47(6): 1189-1214.

    [8] CHEN Shan-qun, LIAO Bin. Numerical simulation of free surface flows based on SPS-SPH Method[J]. Journal of Ship Mechanics, 2013, 17(9): 969-981.

    [9] De MOURA C. A., KUBRUSLY C. S. The Courant-Friedrichs-Lewy (CFL) condition[M]. New York, USA: Springer Science+Business Media, 2013.

    [10] YUSTE S. B., ACEDO L. An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations[J]. SIAM Journal on Numerical Analysis, 2005, 42(5): 1862-1874.

    [11] INUTSUKA S.-I. Reformulation of smoothed particle hydrodynamics with Riemann solver[J]. Journal of Computational Physics, 2002, 179(1): 238-267.

    [12] CHA S. H., WHITWORTH A. P. Implementations and tests of Godunov-type particle hydrodynamics[J]. Monthly Notice of the Royal Astronomical Society, 2003, 340(1): 73-90.

    [13] TRICCO T. S., PRICE D. J.Constrained hyperbolic divergence cleaning for Smoothed Particle Magnetohydrodynamics[J]. Journal of Computational Physics, 2012,231(21): 7214-7236.

    [14] TORO E. F. Direct Riemann solvers for the time-dependent Euler equations[J]. Shock Waves, 1995, 5(1-2): 75-80.

    [15] EDWARDS M. G. The dominant wave-capturing flux: A finite-volume scheme without decomposition for systems of hyperbolic conservation laws[J]. Journal of Computational Physics, 2006, 218(1): 275-294.

    [16] WU Qiao-rui, TAN Ming-yi and XING Jing-tang. An improved moving particle semi-implicit method for dam break simulation[J]. Journal of Ship Mechanics, 2014,18(9): 1044-1054.

    [17] YUAN Yue, RONG Gui-wen and DAI Hui-chao et al. Simulation of dam-break flow over partially deformed bed based on 2D FEVM-SWEs model[J]. Chinese Journal of Hydrodynamics, 2015, 30(5): 549-555(in Chinese).

    [18] ZHANG Ming-liang, XU Yuan-yuan and QIAO Yang et al. Numerical simulation of flow and bed morphology in the case of dam break floods with vegetation effect[J]. Journal of Hydrodynamics, 2016, 28(1): 23-32.

    [19] SOARES-FRAZAO S., SILLEN S. and ZECH Y. Dambreak flow through sharp bends: physical model and 2D Boltzmann model validation[C]. Proceedings of the CADAM Meeting. Wallingford, UK, 1998.

    May 30, 2014, Revised October 14, 2014)

    * Project supported by the National Natural Science Foundation of China (Grant No. 51175001), the Natural Science Foundation of Anhui Province (Grant No. 1508085QE100) and the Higher Education of Anhui Provincial Scientific Research Project Funds (Grant No. TSKJ2015B03)

    Biography: Shan-qun CHEN (1981-), Female, Ph. D.,

    Associate Professor

    Bin LIAO,

    E-mail: liaobinfluid@126.com

    猜你喜歡
    黃濤
    小保安闖《封神》:親媽粉必須擁有姓名
    斑馬線上的猶豫
    Comparative study of pulsed breakdown processes and mechanisms in self-triggered four-electrode pre-ionized switches
    A low-jitter self-triggered spark-discharge pre-ionization switch: primary research on its breakdown characteristics and working mechanisms
    A calculation model for breakdown time delay and jitter of gas switches under hundred-nanosecond pulses and its application in a self-triggered pre-ionized switch
    黃濤:用雙手“剪”出幸福人生
    黃濤 設(shè)計作品選
    我校黃濤書記在2019中國(西安)世界職業(yè)教育大會做主旨發(fā)言
    法官情人曾記否,那蓋了章的離婚保證書
    以男友名義拯救你!愛到深處不娶不嫁
    免费黄频网站在线观看国产| 亚洲无线观看免费| 80岁老熟妇乱子伦牲交| av网站免费在线观看视频| 美女国产视频在线观看| 嫩草影院入口| 久久久久久久久久久丰满| 麻豆成人av视频| 国产成人精品久久久久久| 男女下面进入的视频免费午夜| 国国产精品蜜臀av免费| 亚洲欧美清纯卡通| 国产高清三级在线| 高清午夜精品一区二区三区| 精品久久久久久电影网| 性色avwww在线观看| 亚洲美女搞黄在线观看| 色综合色国产| 99久久精品热视频| 国产精品久久久久久av不卡| 亚洲精品一区蜜桃| 欧美区成人在线视频| 看非洲黑人一级黄片| 激情 狠狠 欧美| 99久国产av精品国产电影| 国产亚洲av片在线观看秒播厂| 99re6热这里在线精品视频| 久久精品人妻少妇| 舔av片在线| 乱系列少妇在线播放| 亚洲在线观看片| 欧美区成人在线视频| 菩萨蛮人人尽说江南好唐韦庄| 久久97久久精品| 国产精品一二三区在线看| 免费人成在线观看视频色| 人体艺术视频欧美日本| 国产欧美另类精品又又久久亚洲欧美| 日本欧美国产在线视频| 日本三级黄在线观看| 人妻制服诱惑在线中文字幕| 草草在线视频免费看| 亚洲色图综合在线观看| 欧美高清性xxxxhd video| 欧美+日韩+精品| 2022亚洲国产成人精品| 免费观看性生交大片5| 麻豆乱淫一区二区| 亚洲无线观看免费| 成人国产麻豆网| 国产精品女同一区二区软件| 欧美成人精品欧美一级黄| 欧美+日韩+精品| 亚洲精品日韩av片在线观看| 少妇猛男粗大的猛烈进出视频 | av.在线天堂| 少妇人妻久久综合中文| 大香蕉97超碰在线| 亚洲三级黄色毛片| 偷拍熟女少妇极品色| av卡一久久| 欧美极品一区二区三区四区| 看十八女毛片水多多多| 国产一区二区在线观看日韩| 久久午夜福利片| 久久精品国产亚洲av天美| 国产毛片a区久久久久| 亚洲精品成人久久久久久| 搡老乐熟女国产| 精品人妻熟女av久视频| kizo精华| 婷婷色综合大香蕉| 日韩欧美精品免费久久| 精品人妻一区二区三区麻豆| 成人欧美大片| 十八禁网站网址无遮挡 | 三级经典国产精品| 午夜免费男女啪啪视频观看| 国产欧美日韩一区二区三区在线 | 五月玫瑰六月丁香| 一本色道久久久久久精品综合| 中文精品一卡2卡3卡4更新| 中国国产av一级| 美女cb高潮喷水在线观看| 免费在线观看成人毛片| 久久久久久久久久成人| 亚洲国产av新网站| 亚洲婷婷狠狠爱综合网| 成人综合一区亚洲| 亚洲真实伦在线观看| 嫩草影院精品99| 青春草国产在线视频| 欧美老熟妇乱子伦牲交| 日韩不卡一区二区三区视频在线| 国产亚洲精品久久久com| 精品一区二区三卡| 永久免费av网站大全| 又粗又硬又长又爽又黄的视频| 在线 av 中文字幕| 国产伦理片在线播放av一区| 少妇被粗大猛烈的视频| 国产探花极品一区二区| 亚洲av成人精品一区久久| 在线精品无人区一区二区三 | 亚洲怡红院男人天堂| 激情五月婷婷亚洲| 欧美zozozo另类| 男人和女人高潮做爰伦理| 国产久久久一区二区三区| 日韩国内少妇激情av| 亚洲精品久久久久久婷婷小说| 亚洲av福利一区| 亚洲精品国产av成人精品| 久久久久久久大尺度免费视频| 又爽又黄无遮挡网站| 日韩强制内射视频| 日韩伦理黄色片| 一本色道久久久久久精品综合| 美女xxoo啪啪120秒动态图| 欧美bdsm另类| 自拍偷自拍亚洲精品老妇| 精品国产三级普通话版| 精华霜和精华液先用哪个| 久久国产乱子免费精品| 欧美亚洲 丝袜 人妻 在线| 亚洲国产欧美在线一区| 国产亚洲午夜精品一区二区久久 | 一区二区三区免费毛片| 日韩成人av中文字幕在线观看| 久久精品久久精品一区二区三区| 精品久久久精品久久久| 久热久热在线精品观看| 看黄色毛片网站| 夜夜看夜夜爽夜夜摸| 免费av毛片视频| 大香蕉97超碰在线| 内射极品少妇av片p| 少妇丰满av| 一区二区三区免费毛片| 亚洲精华国产精华液的使用体验| 精品国产乱码久久久久久小说| 日韩免费高清中文字幕av| 日韩一区二区视频免费看| 汤姆久久久久久久影院中文字幕| 天天躁日日操中文字幕| av专区在线播放| 日韩欧美精品v在线| 亚洲精品影视一区二区三区av| 日日啪夜夜爽| 久久久亚洲精品成人影院| 久久久久久久午夜电影| 亚洲人成网站在线播| 精品国产一区二区三区久久久樱花 | 麻豆精品久久久久久蜜桃| 国产真实伦视频高清在线观看| 国产中年淑女户外野战色| 亚洲精品乱码久久久v下载方式| 国产午夜精品一二区理论片| 亚洲国产高清在线一区二区三| av又黄又爽大尺度在线免费看| 亚洲欧美中文字幕日韩二区| 看免费成人av毛片| 视频区图区小说| 国产精品爽爽va在线观看网站| 国产片特级美女逼逼视频| 亚洲四区av| 国产成人a∨麻豆精品| 久久精品夜色国产| 真实男女啪啪啪动态图| kizo精华| av在线老鸭窝| 成人一区二区视频在线观看| 三级男女做爰猛烈吃奶摸视频| 国内少妇人妻偷人精品xxx网站| 我的女老师完整版在线观看| 深爱激情五月婷婷| 18禁裸乳无遮挡免费网站照片| 联通29元200g的流量卡| 一区二区av电影网| 99热6这里只有精品| 成人免费观看视频高清| 我的女老师完整版在线观看| 成人二区视频| 人妻夜夜爽99麻豆av| 国产精品爽爽va在线观看网站| 国产爽快片一区二区三区| 亚洲欧美精品自产自拍| 国产成人免费无遮挡视频| av在线老鸭窝| 婷婷色综合大香蕉| 国产美女午夜福利| 亚洲av二区三区四区| 美女国产视频在线观看| 美女高潮的动态| 网址你懂的国产日韩在线| 亚洲av免费在线观看| 97精品久久久久久久久久精品| 亚洲最大成人中文| 夫妻午夜视频| 亚洲国产精品国产精品| 少妇人妻一区二区三区视频| 老司机影院成人| 十八禁网站网址无遮挡 | 亚洲av中文av极速乱| 嫩草影院入口| 亚洲在久久综合| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产av码专区亚洲av| 国国产精品蜜臀av免费| 男女那种视频在线观看| 日本午夜av视频| 男插女下体视频免费在线播放| 18+在线观看网站| 亚洲欧洲国产日韩| 国产69精品久久久久777片| 国产黄片美女视频| 久久久久久久午夜电影| av黄色大香蕉| 免费观看a级毛片全部| 午夜福利视频1000在线观看| 精品一区在线观看国产| 一级毛片我不卡| 国产一区有黄有色的免费视频| 亚洲,欧美,日韩| 亚洲人成网站高清观看| 亚洲欧美成人精品一区二区| 日本黄大片高清| 一级毛片 在线播放| 一区二区三区免费毛片| 亚洲久久久久久中文字幕| 成人亚洲欧美一区二区av| 我要看日韩黄色一级片| 亚洲精品乱码久久久v下载方式| 久久久亚洲精品成人影院| 精品久久久久久久末码| 久久鲁丝午夜福利片| 777米奇影视久久| 亚洲精品中文字幕在线视频 | 亚洲图色成人| 91aial.com中文字幕在线观看| 国产在视频线精品| 亚洲性久久影院| 久久人人爽人人爽人人片va| 久久久久久久久久久丰满| 国产亚洲5aaaaa淫片| 亚洲四区av| 国产精品一区二区三区四区免费观看| 久久综合国产亚洲精品| 精品一区二区三卡| 国产精品国产三级国产av玫瑰| 热re99久久精品国产66热6| 日本免费在线观看一区| 亚洲av一区综合| 欧美一级a爱片免费观看看| 又大又黄又爽视频免费| 热re99久久精品国产66热6| 国内精品美女久久久久久| 综合色丁香网| 中国美白少妇内射xxxbb| 欧美精品国产亚洲| 久久精品国产a三级三级三级| 日韩欧美 国产精品| 嫩草影院入口| 少妇高潮的动态图| 久久精品久久精品一区二区三区| 色5月婷婷丁香| 久久久国产一区二区| 亚洲图色成人| 日韩精品有码人妻一区| 特大巨黑吊av在线直播| 中文欧美无线码| 简卡轻食公司| 精品熟女少妇av免费看| 亚洲综合精品二区| 白带黄色成豆腐渣| 日本爱情动作片www.在线观看| 国产伦精品一区二区三区四那| 一级毛片 在线播放| 久久久久久久大尺度免费视频| 午夜日本视频在线| 亚洲欧美一区二区三区国产| 亚洲第一区二区三区不卡| 在线观看美女被高潮喷水网站| 精品一区二区三卡| 777米奇影视久久| 别揉我奶头 嗯啊视频| 欧美日韩在线观看h| 国产淫片久久久久久久久| 国产老妇女一区| 校园人妻丝袜中文字幕| 伦精品一区二区三区| 九九久久精品国产亚洲av麻豆| av黄色大香蕉| 成人特级av手机在线观看| 下体分泌物呈黄色| 国产亚洲av片在线观看秒播厂| 久久久久国产网址| 久久久亚洲精品成人影院| 少妇裸体淫交视频免费看高清| 蜜桃亚洲精品一区二区三区| 成人免费观看视频高清| 国产成人精品婷婷| 久久久久性生活片| 中文字幕av成人在线电影| 亚洲va在线va天堂va国产| 内射极品少妇av片p| 亚洲精品国产色婷婷电影| 国产色婷婷99| 各种免费的搞黄视频| 国产91av在线免费观看| 亚洲熟女精品中文字幕| 成人二区视频| 国产精品成人在线| 国产精品国产三级国产专区5o| 麻豆久久精品国产亚洲av| 18禁在线无遮挡免费观看视频| 久久久久久久久久成人| 校园人妻丝袜中文字幕| 天天一区二区日本电影三级| 国产黄片视频在线免费观看| 国产精品99久久久久久久久| 偷拍熟女少妇极品色| 亚洲人成网站在线观看播放| 亚洲精品国产成人久久av| 青春草视频在线免费观看| 黑人高潮一二区| av线在线观看网站| 汤姆久久久久久久影院中文字幕| 亚洲国产最新在线播放| 国产探花在线观看一区二区| 亚洲色图av天堂| 日本黄大片高清| av国产免费在线观看| 观看美女的网站| 女人被狂操c到高潮| 亚洲成人av在线免费| 97超视频在线观看视频| 人妻系列 视频| 伦理电影大哥的女人| xxx大片免费视频| 成年免费大片在线观看| 成人高潮视频无遮挡免费网站| 午夜激情久久久久久久| 欧美一级a爱片免费观看看| 97超视频在线观看视频| 午夜精品一区二区三区免费看| 中国三级夫妇交换| 国产 一区 欧美 日韩| 国产精品av视频在线免费观看| 极品教师在线视频| 日韩伦理黄色片| 欧美 日韩 精品 国产| 久久99精品国语久久久| 国产精品一二三区在线看| 亚洲精品久久久久久婷婷小说| 51国产日韩欧美| 国产高潮美女av| 亚洲av免费高清在线观看| 国产黄片美女视频| 能在线免费看毛片的网站| 伊人久久精品亚洲午夜| 国产av不卡久久| 最近2019中文字幕mv第一页| 一级毛片aaaaaa免费看小| 久久99蜜桃精品久久| 午夜福利视频精品| 国产亚洲av片在线观看秒播厂| 免费观看在线日韩| 男女边吃奶边做爰视频| 特大巨黑吊av在线直播| 国产女主播在线喷水免费视频网站| 亚洲av电影在线观看一区二区三区 | av播播在线观看一区| 久久精品久久久久久久性| 中文欧美无线码| 干丝袜人妻中文字幕| 亚洲av欧美aⅴ国产| 日韩欧美精品免费久久| 人人妻人人爽人人添夜夜欢视频 | 欧美日韩在线观看h| 精品久久久久久久末码| 少妇的逼水好多| 搡女人真爽免费视频火全软件| 欧美xxxx性猛交bbbb| 美女脱内裤让男人舔精品视频| 青青草视频在线视频观看| 婷婷色av中文字幕| 国产午夜福利久久久久久| 国产成人a∨麻豆精品| 午夜视频国产福利| 最新中文字幕久久久久| 建设人人有责人人尽责人人享有的 | av女优亚洲男人天堂| 熟女av电影| 精品国产三级普通话版| 简卡轻食公司| 精品国产一区二区三区久久久樱花 | 久久这里有精品视频免费| 日韩av不卡免费在线播放| av国产久精品久网站免费入址| 人人妻人人爽人人添夜夜欢视频 | 久久久久久久国产电影| 精品人妻偷拍中文字幕| 一级毛片我不卡| 伊人久久精品亚洲午夜| 久久久久久久午夜电影| 亚洲人成网站高清观看| 日本wwww免费看| 国产乱来视频区| 全区人妻精品视频| 99久国产av精品国产电影| 国产高潮美女av| 少妇人妻精品综合一区二区| 成人黄色视频免费在线看| 极品教师在线视频| 日日撸夜夜添| 亚洲丝袜综合中文字幕| 激情五月婷婷亚洲| 国产成人freesex在线| 国精品久久久久久国模美| 大香蕉久久网| 高清欧美精品videossex| 亚洲精品aⅴ在线观看| 丝袜脚勾引网站| 男女啪啪激烈高潮av片| 免费看日本二区| 日韩不卡一区二区三区视频在线| 亚洲av成人精品一区久久| 国产黄a三级三级三级人| 国产伦精品一区二区三区四那| 亚洲av电影在线观看一区二区三区 | 一边亲一边摸免费视频| 亚洲av中文字字幕乱码综合| 黄色怎么调成土黄色| 一个人看视频在线观看www免费| 91久久精品国产一区二区成人| 大陆偷拍与自拍| 亚洲精品日本国产第一区| 久久久久久九九精品二区国产| a级毛色黄片| eeuss影院久久| 精品人妻一区二区三区麻豆| 精品久久国产蜜桃| 搞女人的毛片| 嫩草影院入口| 国产女主播在线喷水免费视频网站| 秋霞在线观看毛片| 久久精品久久久久久噜噜老黄| 中文字幕人妻熟人妻熟丝袜美| 大片电影免费在线观看免费| 伦精品一区二区三区| 国产成人a∨麻豆精品| 亚洲电影在线观看av| 国产精品99久久99久久久不卡 | 欧美极品一区二区三区四区| 国产成人免费观看mmmm| 男人添女人高潮全过程视频| 国产精品女同一区二区软件| 在线a可以看的网站| 日本欧美国产在线视频| 久久99精品国语久久久| 久久精品国产亚洲av天美| 久久综合国产亚洲精品| 2021少妇久久久久久久久久久| 国产精品一区二区性色av| 国产成人aa在线观看| 亚洲熟女精品中文字幕| 免费黄频网站在线观看国产| 国产亚洲最大av| 99re6热这里在线精品视频| 美女内射精品一级片tv| 国产免费福利视频在线观看| 国产精品一二三区在线看| 免费播放大片免费观看视频在线观看| 夜夜爽夜夜爽视频| a级毛片免费高清观看在线播放| 日本熟妇午夜| 毛片女人毛片| 亚洲精品久久久久久婷婷小说| 国产91av在线免费观看| 国产av不卡久久| 人人妻人人爽人人添夜夜欢视频 | 精华霜和精华液先用哪个| 中文字幕人妻熟人妻熟丝袜美| 亚洲内射少妇av| 亚洲在久久综合| 插阴视频在线观看视频| 国内少妇人妻偷人精品xxx网站| 婷婷色av中文字幕| 18禁裸乳无遮挡动漫免费视频 | 性插视频无遮挡在线免费观看| 免费观看在线日韩| 成年免费大片在线观看| av免费在线看不卡| 18+在线观看网站| 久久韩国三级中文字幕| 国内精品美女久久久久久| 美女高潮的动态| 国产精品久久久久久精品电影| 国产伦精品一区二区三区四那| 国产高清有码在线观看视频| 身体一侧抽搐| 美女视频免费永久观看网站| av又黄又爽大尺度在线免费看| av在线亚洲专区| 国产成人免费无遮挡视频| 三级国产精品欧美在线观看| 成年免费大片在线观看| av免费在线看不卡| 中文资源天堂在线| 18禁裸乳无遮挡免费网站照片| 亚洲精品亚洲一区二区| 成人鲁丝片一二三区免费| 99久久中文字幕三级久久日本| 午夜免费男女啪啪视频观看| 亚洲婷婷狠狠爱综合网| 亚洲精品视频女| 日本三级黄在线观看| 国产亚洲午夜精品一区二区久久 | 老司机影院成人| 亚洲欧美日韩无卡精品| 久久精品国产亚洲av天美| 久久久久久国产a免费观看| 天天一区二区日本电影三级| 亚洲精品日本国产第一区| 亚洲精品日韩av片在线观看| 国产免费又黄又爽又色| 啦啦啦中文免费视频观看日本| 国产精品久久久久久久电影| 午夜爱爱视频在线播放| 久久久久精品久久久久真实原创| 一级爰片在线观看| 亚洲最大成人av| 国产欧美亚洲国产| 国产人妻一区二区三区在| 欧美bdsm另类| 亚洲av中文字字幕乱码综合| 亚洲精品影视一区二区三区av| 日韩一本色道免费dvd| 丝瓜视频免费看黄片| 国产成人福利小说| 国产一区二区亚洲精品在线观看| 大香蕉久久网| 亚洲欧美一区二区三区国产| 九九久久精品国产亚洲av麻豆| 精品久久久久久久人妻蜜臀av| 性插视频无遮挡在线免费观看| 亚洲精品乱码久久久久久按摩| 国产在线一区二区三区精| 日韩强制内射视频| 在线天堂最新版资源| 欧美3d第一页| 国产成人精品婷婷| 精品酒店卫生间| 亚洲欧美一区二区三区国产| 国产成人91sexporn| 日日摸夜夜添夜夜添av毛片| 亚洲不卡免费看| a级一级毛片免费在线观看| 国产精品爽爽va在线观看网站| 国产精品人妻久久久久久| 美女xxoo啪啪120秒动态图| 伊人久久精品亚洲午夜| 亚洲国产精品成人综合色| 欧美最新免费一区二区三区| 大香蕉97超碰在线| 永久免费av网站大全| 免费在线观看成人毛片| 亚洲精品成人久久久久久| 九九爱精品视频在线观看| 亚洲伊人久久精品综合| 亚洲人成网站高清观看| 我要看日韩黄色一级片| 成人免费观看视频高清| 毛片女人毛片| 午夜日本视频在线| 晚上一个人看的免费电影| 又大又黄又爽视频免费| 成人无遮挡网站| av线在线观看网站| 国产精品人妻久久久影院| 亚洲人成网站在线播| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 夜夜爽夜夜爽视频| 午夜激情久久久久久久| 欧美一级a爱片免费观看看| 日韩中字成人| 欧美xxxx性猛交bbbb| 成人毛片a级毛片在线播放| 嫩草影院入口| 伦理电影大哥的女人| 能在线免费看毛片的网站| 午夜日本视频在线| 久久精品国产a三级三级三级| 久久精品综合一区二区三区| 天堂网av新在线| 少妇的逼好多水| 欧美潮喷喷水| 日本爱情动作片www.在线观看| 美女脱内裤让男人舔精品视频| 国产精品99久久99久久久不卡 | 亚洲欧美精品专区久久| 涩涩av久久男人的天堂| 国产亚洲午夜精品一区二区久久 | av在线天堂中文字幕| 成人免费观看视频高清| 热99国产精品久久久久久7| 久久久亚洲精品成人影院| 美女高潮的动态| www.色视频.com| 成人一区二区视频在线观看| 99九九线精品视频在线观看视频| 欧美激情久久久久久爽电影| 欧美日韩国产mv在线观看视频 | 亚洲欧美日韩无卡精品|