• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Theoretical analysis and numerical simulation of mechanical energy loss and wall resistance of steady open channel flow*

    2016-10-18 05:36:50ShiheLIU劉士和JiaoXUE薛嬌

    Shi-he LIU (劉士和), Jiao XUE (薛嬌)

    School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan 430072, China,

    E-mail: shihe3086@163.com

    ?

    Theoretical analysis and numerical simulation of mechanical energy loss and wall resistance of steady open channel flow*

    Shi-he LIU (劉士和), Jiao XUE (薛嬌)

    School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan 430072, China,

    E-mail: shihe3086@163.com

    The mechanical energy loss and the wall resistance are very important in practical engineering. These problems are investigated through theoretical analysis and numerical simulation in this paper. The results are as follows. (1) A new mechanical energy equation for the total flow is obtained, and a general formula for the calculation of the mechanical energy loss is proposed. (2)The general relationship between the wall resistance and the mechanical energy loss for the steady channel flow is obtained, the simplified form of which for the steady uniform channel flow is in consistent with the formula used in Hydraulics deduced bytheorem and dimensional analysis. (3) The steady channel flow over a backward facing step with a small expansion ratio is numerically simulated, and the mechanical energy loss, the wall resistance as well as the relationship between the wall resistance and the mechanical energy loss are calculated and analyzed.

    channel flow, energy equation, mechanical energy loss, resistance

    Introduction

    Channel flows are gravity driven flows, with viscous resistance and form resistance at the channel wall to induce mechanical energy loss when the liquid flows downstream. The mechanical energy loss and the wall resistance are important issues in Hydraulics and Engineering Fluid Mechanics, as well as in practical engineering. The wall resistance was studied by experiments[1,2], numerical simulations[3,4]and theoretical analyses[5,6]since the pioneering work of the famous German scholar, Prandtl.

    Among the experimental studies, Knight and Sterling[1]conducted experiments to determine the distribution of the boundary shear stress, which, they found, was related to the shape of the secondary flow cells while the shape of the secondary flow cells was decided by the aspect ratio. Yoon et al.[7]studied the velocity distribution and the resistance coefficient with circular flume experiments. It is shown that the flow depth significantly affects the velocity distribution. The ratio of mean to maximum velocities will reduce and the position of the maximum velocity will be lowered if the flow depth is below 50%. The wall friction and the Manning coefficients also differ from the generally estimated values as the flow depth is reduced by 50%. Patnaik et al.[8]conducted experiments in highly sinuous trapezoidal meandering channels to investigate the effect of the aspect ratio and the sinuosity on the wall resistance under the smooth and rigid bed condition. The percentage of the shear force on the inner wall, the outer wall and the bed were estimated and the experimental data were used to establish an equation for the percentage of the total wall shear force, which is more consistent and covers a wider range of aspect ratio than available ones. The wall resistance was also studied by numerical simulations. Cacqueray et al.[3]investigated the shear stress in a smooth rectangular channel by numerical simulations and it is shown that the stress associated with the secondary flow and the shear stress on the interface could not be neglected and the provided division lines match well with the existing results. Berlamont et al.[9]studied the shear stress distribution in circular channels by numerical simulations, focusing on the effect of the aspect ratio, the velocity distribution and the wall roughness on the stress distribution. The computational fluid dynamics (CFD) was used to determine thedistribution of the bed and sidewall shear stresses in trapezoidal channels by Ansari et al.[10]and the effects of the slant angle of the side walls, the aspect ratio and the composite roughness on the shear stress distribution were analyzed. The stress associated with the secondary flow and the shear stress on the interface are the main contributions. The distribution of the shear stress on the boundaries is considerably influenced by the variation of the slant angle and the aspect ratio, especially for low aspect-ratio channels. Stoesser et al.[11]calculated the turbulent flow in a meandering channel with the steady Reynolds-averaged Navier-Stokes equations (RANS) code based on an isotropic turbulence closure and the large eddy simulation (LES)code, respectively and the results were compared with the previous ones. It is shown that the RANS code ove-predicts the size and the strength of the secondary cell while the LES code is better in the secondary cell prediction. However, the wall shear stresses obtained by the LES code and the RANS code agree well though the secondary cells have a great influence on the distribution of the wall shear stress. In addition,the wall resistance was studied by analytical methods. For example, Guo and Julien[12]discussed the wall shear stress and Yang and Lim[13]discussed this paper,subsequently. Khodashenas et al.[14]made a comparison among six methods for the determination of the boundary shear stress distribution. There were a few investigations of the wall mechanical energy loss. Liu et al.[15,16]established a mechanical energy equation for the total flow of incompressible homogeneous liquid in pipes and open channels, and the expressions for the mechanical energy loss were suggested based on a theoretical analysis. In Ref.[16] the effect of the aspect ratio and the Reynolds number on the mechanical energy loss in open channels was studied numerically, and it is shown that in a laminar flow, the coefficient of the mechanical energy loss decreases with the increase of the aspect ratio and the Reynolds number, yet in a turbulent flow, this coefficient tends to be independent of the aspect ratios as long as the Reynolds number is large enough. Nevertheless, the mechanical energy defined in Ref.[16] includes the mean turbulent kinetic energy, which is difficult to determine in practical engineering now and the relationship between the wall resistance and the mechanical energy loss is not available.

    Thence in this paper the investigations are focused on the following points: (1) A new mechanical energy equation for the total flow is proposed by defining the mechanical energy as the sum of the potential energy of gravity, the potential energy of surface force and the mean kinetic energy. (2) The general relationship between the wall resistance and the mechanical energy loss in open channel flows is analyzed, and further discussed for the steady uniform flow and the steady flow over a backward-facing step.

    Fig.1 The sketch of open channel flow

    1. Improved mechanical energy equation for steady channel flow

    We consider the steady channel flow of a control volumeas shown in Fig.1, with the outer boundariescomposed of two cross-sectionsandat its upstream and downstream positions with a distancebetween them, the channel walland the free surface. For the statistically steady turbulent flow of homogeneous incompressible liquid of densityin the gravitational field, the mean surface force, whereandare the mean pressure and the mean viscous shear stress respectively can be expressed by using the Reynolds averaged equation(Eq.(7) of this paper) as

    Therefore, Eq.(1) can be simplified further as

    The boundary conditions for the steady channel flow are: on the channel wallthe mean velocity is zero, which is the so called no-slip condition, on the free surface, where, the kinematic boundary condition is, whereis the unit vector in the outward direction of the normal line on, the dynamical boundary conditions mean that there exist no shear stresses and the normal stress is just the atmospheric pressure. The above dynamical boundary conditions on the free surface are reasonable in the case that the relative velocity between the liquid and the air is not so large and the effect of the surface tension can be neglected.

    Integrating Eq.(3) over the control volume, by transforming the volume integral into the surface integral using the Gaussian Theorem, we have

    Now let us consider the integral terms in Eq.(4). Since for a static pressure field,is always equal to a constant on any cross-section, therefore by using the boundary conditions on the wall and on the free surface, as well as the continuity equation, we obtain

    We have

    Therefore if we further define

    Equation (4) can be simplified as

    2. Formulation of the momentum equation for steady channel flow

    The Reynolds averaged equation for the steady channel flow is

    Integrating Eq.(7) over the control volume, transforming the volume integral into the surface integral using the Gaussian Theorem and projecting the integral result in the direction of, we have

    Euation (8) is the general form of the momentum equation for the total flow, and in this paper, only its longitudinal component (i.e., letandis discussed. By defining the angles between the outward directions of the normal line onandand the horizontal plane asand, and introducing the no-slip boundary condition on the channel wall and the kinematic boundary condition on the free surface,we have

    Substituting Eq.(9) into Eq.(8), we obtain the relationship between the total resistance on the channel walland the mechanical energy loss,as

    The wall resistance and the mechanical energy loss are both the characteristics of the total flow in open channels, and there surely exists a certain relationship between them since the liquid flow is harmonious. This relationship is given in Eq.(10), where on the right hand side,are the resultant force of the mean pressure, the momentum variation, the resistance caused by the mechanical energy variation and the variation of the mean shear stress including the viscous shear stress and the Reynolds stress, respectively.

    3. Wall resistance for steady uniform channel flow

    If the shape of the cross section of the open channel does not change along the longitudinal direction and the channel is straight and long enough, the flow in it will be steady and uniform. In this case we have for Eq.(10):and, whereandare the wetted perimeter, the bed area and the wetted perimeter averaged shear stress, hereafter referred to as the mean shear stress, respectively. Under this condition, the mean shear stress of the steady uniform flow in open channels is simplified as

    Substituting Eq.(5c) into Eq.(11), and defining the coefficient of the mechanical energy lossλas

    Equation (13) expresses the relationship between the mean shear stress and the mean velocity in the section for the steady uniform channel flow. This formula is widely used in Hydraulics, which is deduced based ontheorem and dimensional analysis. However, in this paper, it is obtained directly from the governing equations of Fluid Mechanics. Defining the wall resistance coefficient for the steady uniform channel flow as, according to the definition we have

    Comparing Eq.(13) with Eq.(14), we obtain that, i.e., the coefficient of the mechanical energy loss is three times larger than the wall resistance coefficient for the steady uniform channel flow.

    4. Estimation of mechanical energy loss and wall resistance for steady backward-facing step flow

    A sketch of the backward-facing step flow is shown in Fig.2, whereis the height of the stepis the water depth of the downstream uniform flow, and the expansion ratiois used to represent the step change. In view of the scope, only the 2-D backward-facing step flow with expansion ratio less than 5% is considered. Under this condition, the free surface would not be influenced by the step.

    Fig.2 Sketch of the backward-facing step flow

    4.1 Mathematical model and numerical calculation method

    The governing equations for the mean velocityand the mean pressureare as follows:

    The governing equations are discretized by the finite volume method (FVM). The coupling relationship between the mean pressure and the mean velocity is handled with the SIMPLE scheme based on the collocated variable arrangement. A third-order accuracy QUICK scheme is used for the convection term while the central difference scheme is used for the diffusion term. The algebraic equations are solved by the Gauss-Seidel iteration method in this paper.

    4.2 Verification

    The experimental results[18]are used for verification. The experiment was conducted in a wind tunnel. A flat plate is put into the wind tunnel as shown in Fig.3. The velocity over the flat plate is measured with the pulsed-wire anemometer, which is used to verify the numerical model. The computed results are well consistent with the measured ones as shown in Fig.4,which shows that the calculated results from the numerical model can be further used to estimate the mechanical energy loss and other quantities.

    Fig.3 The experimental facility[18]

    Fig.4 The verification results of the velocity distribution

    4.3 Estimation of mechanical energy loss and wall resistance

    4.3.1 Simulation conditions

    In the simulation, the calculation cases are asfollows. The flow Reynolds numbervaries between 4×104and 9×104, and the expansion ratiovaries between 0.02 and 0.05. Under these conditions, the Froude numbers of all cases are less than 1, which shows that the flow is the subcritical flow in all calculation cases. The cross sectionis in the upstream of the step with a distance of 200-500 times of the step height while the cross section 2 S is in the downstream of the step with a distance of 200-500 times of the step height in order to make sure that the flow in these two sections is uniform.

    Fig.5 Variation of the mechanical energy loss with the Reynolds numbers and the expansion ratios

    Fig.6 Variations of the surface force potential energy deviation between static liquid and moving liquid with the Reynolds numbers and the expansion ratios

    Fig.7 Variations of portion of surface force potential energy deviation in the mechanical energy excluding the gravitational potential energy

    4.3.2 Mechanical energy loss and surface force potential energy deviation of total flow

    4.3.3 Wall resistance

    The wall resistance between the cross sectionsandincludes the form resistance and the viscous resistance, calculated from the simulation results, and the variations of the resistance forces against the Reynolds numbers and the expansion ratios are shown in Fig.8. As can be seen from Fig.8 that: (1) the viscous resistance is much smaller than the form resistance under given conditions, (2) the viscous resistance increases with the increase of the Reynolds number and decreases with the increase of the expansion ratio,(3) the form resistance decreases with the increase of the Reynolds number, and increases with the increase of the expansion ratio.

    Fig.8 Variations of resistance forces with the Reynolds numbers and the expansion ratios

    4.3.4 The relationship between wall resistance and mechanical energy loss of total flow Equation (10) shows that the wall resistance of the total flow between the cross sectionsandis approximately proportional to the mechanical energy loss. By converting Eq.(10) to its dimensionless form,we have

    Fig.9 Variation ofagainst the Reynolds numbers and the expansion ratios

    5. Conclusions

    The mechanical energy loss and the wall resistance are investigated through theoretical analysis and numerical simulation in this paper. The following conclusions are drawn for the steady flow in open channels.

    (1) A new mechanical energy equation for the total flow is obtained by defining the mechanical energy as the sum of the potential energy of gravity,the potential energy of surface force and the mean kinetic energy as in Hydraulics. The formula for the mechanical energy loss of the total flow is derived exactly while in Hydraulics it is determined empirically or experimentally.

    (2) The general relationship between the wall resistance and the mechanical energy loss for steady channel flows is obtained by theoretical analysis, the simplified form of which for the steady uniform channel flow is in consistent with the formula used in Hydraulics deduced bytheorem and dimensional analysis.

    (3) The steady channel flow over a backward facing step with a small expansion ratio is numerically simulated, and the mechanical energy loss, the wall resistance as well as the relationship between the wall resistance and the mechanical energy loss are calculated and analyzed based on the simulation results.

    References

    [1] KNIGHT D. W., STERLING M. Boundary shear in circular pipes running partially full[J]. Journal of Hydraulic Engineering, ASCE, 2000, 126(4): 263-275.

    [2] CHEN Xiao-fang, HE Jian-jing. Experimental study on bed shear stress in smooth open channels[J]. Journal of Hohai University (Natural Sciences), 2007, 35(6): 704-708(in Chinese).

    [3] CACQUERAY N. D., HARGREAVES D. M. and MORVAN H. P. A computational study of shear stress in smooth rectangular channels[J]. Journal of Hydraulic Research, 2009, 47(1): 50-57.

    [4] KNIGHT D. W., OMRAN M. and TANG X. Modeling depth-averaged velocity and boundary shear in trapezoidal channels with secondary flows[J]. Journal of Hydraulic Engineering, ASCE, 2007, 133(1): 39-47.

    [5] CHENG N. S. Resistance coefficients for artificial and natural coarse-bed channels: alternative approach for large-scale roughness[J]. Journal of Hydraulic Engineering, ASCE, 2015, 141(2): 04014072.

    [6] HU Xu-yue, ZENG Guang-ming and HUANG Guo-he et al. Study on the boundary shear stress in rectangular open channels[J]. Journal of Sediment Research, 2002, (4): 42-47(in Chinese).

    [7] YOON J., SUNG J. and LEE M. H. Velocity profiles and friction coefficients in circular open channels[J]. Journal of Hydraulic Research, 2012, 50(3): 304-311.

    [8] PATNAIK M., PATRA K. C. and KHATUA K. K. et al. Modelling boundary shear stress in highly sinuous meandering channels[J]. ISH Journal of Hydraulic Engineering, 2014, 20(2): 161-168.

    [9] BERLAMONT J. E., TROUW K. and LUYCKX G. Shear stress distribution in partially filled pipes[J]. Journal of Hydraulic Engineering, ASCE, 2003, 129(9): 697-705.

    [10] ANSARI K., MORVAN H. P. and HARGREAVES D. M. Numerical investigation into secondary currents and wall shear in trapezoidal channels[J]. Journal of Hydraulic Engineering, ASCE, 2011, 137(4): 432-440.

    [11] STOESSER T., RUETHER N. and OLSEN N. R. B. Calculation of primary and secondary flow and boundary shear stresses in a meandering channel[J]. Advances in Water Resources, 2010, 33(2): 158-170.

    [12] GUO J., JULIEN P. Y. Shear stress in smooth rectangular open-channel flows[J]. Journal of Hydraulic Engineering, ASCE, 2005, 131(1): 30-37.

    [13] YANG S. Q., LIM S. Y. Discussion of “Shear stress in smooth rectangular open-channel flows” by Junke Guo and Pierre Y. Julien[J]. Journal of Hydraulic Engineering, ASCE, 2006, 132(6): 629-632.

    [14] KHODASHENAS S. R., ABDERERRZAK K. E. K. and PAQUIER A. Boundary shear stress in open channel flow: A comparison among six methods[J]. Journal of Hydraulic Research, 2008, 46(5): 598-609.

    [15] LIU Shi-he, XUE Jiao and FAN Min. The calculation of mechanical energy loss for incompressible steady pipe flow of homogeneous fluid[J]. Journal of Hydridynamics, 2013, 25(6): 912-918.

    [16] LIU Shi-he, FAN Min and XUE Jiao. The mechanical energy equation for total flow in open channels[J]. Journal of Hydridynamics, 2014, 26(3): 416-423.

    [17] LIU Shi-he, LIU Jiang and LUO Qiu-shi et al. Engineering turbulence[M]. Beijing, China: Science Press,2011(in Chinese).

    [18] DURST F., LAUNDER B. C. and SCHMIDT F. W. Turbulent shear flows I[M]. Berlin, Heidelberg, Germany: Springer-Verlag, 1979, 198-207.

    April 16, 2015, Revised March 8, 2016)

    * Biography: Shi-he LIU (1962-), Male, Ph. D., Professor

    av福利片在线| 国产av一区二区精品久久| 日韩一本色道免费dvd| 热re99久久精品国产66热6| 亚洲欧美一区二区三区久久| 免费不卡的大黄色大毛片视频在线观看| 成人手机av| 亚洲一码二码三码区别大吗| 不卡视频在线观看欧美| 青春草视频在线免费观看| 乱人伦中国视频| 久久久久久免费高清国产稀缺| 国产精品熟女久久久久浪| 91精品伊人久久大香线蕉| 亚洲一级一片aⅴ在线观看| 国产 一区精品| 2022亚洲国产成人精品| 男女下面插进去视频免费观看| 香蕉丝袜av| 岛国毛片在线播放| 日韩精品免费视频一区二区三区| 欧美日韩国产mv在线观看视频| 少妇的丰满在线观看| 亚洲国产日韩一区二区| h视频一区二区三区| 黑人巨大精品欧美一区二区蜜桃| 免费看av在线观看网站| 亚洲欧美日韩另类电影网站| 婷婷色综合www| 久久 成人 亚洲| 91久久精品国产一区二区三区| 2018国产大陆天天弄谢| 色哟哟·www| 成人国语在线视频| 日韩中字成人| 婷婷色综合大香蕉| 中文欧美无线码| 老鸭窝网址在线观看| 日本免费在线观看一区| 国产白丝娇喘喷水9色精品| 国产成人一区二区在线| 日韩精品免费视频一区二区三区| 欧美97在线视频| 97在线人人人人妻| 久久久久久人妻| 欧美成人精品欧美一级黄| 韩国高清视频一区二区三区| 美国免费a级毛片| 丝袜美足系列| 99九九在线精品视频| 国产精品女同一区二区软件| 18禁裸乳无遮挡动漫免费视频| 美女主播在线视频| 男女边摸边吃奶| 国产免费福利视频在线观看| 18+在线观看网站| 久久精品aⅴ一区二区三区四区 | 搡老乐熟女国产| 国产无遮挡羞羞视频在线观看| 久久久久久久亚洲中文字幕| 老熟女久久久| a级毛片黄视频| 丰满少妇做爰视频| 欧美 亚洲 国产 日韩一| 精品卡一卡二卡四卡免费| 午夜福利视频精品| 看免费av毛片| 午夜91福利影院| 欧美人与性动交α欧美软件| 亚洲精品国产av成人精品| 午夜福利影视在线免费观看| 最近手机中文字幕大全| 九色亚洲精品在线播放| 精品少妇一区二区三区视频日本电影 | 欧美 亚洲 国产 日韩一| 国产av国产精品国产| 国产精品一区二区在线不卡| 青春草亚洲视频在线观看| 亚洲 欧美一区二区三区| 啦啦啦视频在线资源免费观看| 最近手机中文字幕大全| 不卡av一区二区三区| 欧美精品亚洲一区二区| www日本在线高清视频| 亚洲四区av| 在现免费观看毛片| 国产乱来视频区| 日本欧美国产在线视频| 国产一级毛片在线| 最近中文字幕2019免费版| 亚洲av男天堂| 老司机亚洲免费影院| 精品亚洲成国产av| 亚洲第一区二区三区不卡| 爱豆传媒免费全集在线观看| 久久精品夜色国产| 中文字幕人妻丝袜一区二区 | 午夜免费鲁丝| 中文字幕制服av| 波野结衣二区三区在线| 欧美中文综合在线视频| 婷婷色av中文字幕| 熟女电影av网| 欧美另类一区| 国产成人欧美| 国产熟女欧美一区二区| 色哟哟·www| 麻豆精品久久久久久蜜桃| 久久av网站| 观看av在线不卡| 久久韩国三级中文字幕| 美女中出高潮动态图| 亚洲精品视频女| 午夜免费鲁丝| 国产野战对白在线观看| 这个男人来自地球电影免费观看 | 韩国高清视频一区二区三区| 看免费成人av毛片| 一本色道久久久久久精品综合| 国产片特级美女逼逼视频| 亚洲伊人色综图| 国产xxxxx性猛交| 丁香六月天网| 亚洲精品视频女| 久久久久精品久久久久真实原创| 国产麻豆69| 精品一区在线观看国产| 亚洲色图综合在线观看| 欧美 亚洲 国产 日韩一| 婷婷色综合www| 午夜老司机福利剧场| 99久国产av精品国产电影| 国产成人欧美| 亚洲欧美成人精品一区二区| 天堂中文最新版在线下载| 成人黄色视频免费在线看| www.熟女人妻精品国产| 中文字幕精品免费在线观看视频| 久久久久久人人人人人| 免费看不卡的av| 在线看a的网站| 女人精品久久久久毛片| 久久97久久精品| 少妇人妻精品综合一区二区| 老熟女久久久| 亚洲中文av在线| 伊人亚洲综合成人网| 搡女人真爽免费视频火全软件| 看免费av毛片| 精品99又大又爽又粗少妇毛片| 99精国产麻豆久久婷婷| 欧美精品av麻豆av| 999久久久国产精品视频| 色网站视频免费| 亚洲av福利一区| 精品久久久精品久久久| 在线观看www视频免费| 精品人妻一区二区三区麻豆| 国产亚洲精品第一综合不卡| 午夜福利乱码中文字幕| 女人久久www免费人成看片| 亚洲激情五月婷婷啪啪| 女人精品久久久久毛片| 一区二区三区四区激情视频| 精品少妇一区二区三区视频日本电影 | 一边亲一边摸免费视频| 午夜老司机福利剧场| 黑人巨大精品欧美一区二区蜜桃| 99re6热这里在线精品视频| 伊人亚洲综合成人网| 啦啦啦在线观看免费高清www| 一区二区三区乱码不卡18| 熟妇人妻不卡中文字幕| 午夜福利,免费看| 亚洲av中文av极速乱| 人人妻人人添人人爽欧美一区卜| 天天影视国产精品| 91国产中文字幕| 久久精品国产综合久久久| 成年女人在线观看亚洲视频| 亚洲伊人久久精品综合| 久久人人爽人人片av| 99re6热这里在线精品视频| 国产精品一国产av| 国产精品一区二区在线不卡| 亚洲,一卡二卡三卡| 精品国产超薄肉色丝袜足j| 另类亚洲欧美激情| 午夜福利网站1000一区二区三区| 精品午夜福利在线看| 不卡av一区二区三区| 国产精品麻豆人妻色哟哟久久| 黑丝袜美女国产一区| 日日撸夜夜添| 久久99热这里只频精品6学生| 啦啦啦啦在线视频资源| 亚洲精华国产精华液的使用体验| 亚洲av中文av极速乱| 国产人伦9x9x在线观看 | 免费高清在线观看视频在线观看| 久久综合国产亚洲精品| 亚洲精品中文字幕在线视频| 人人妻人人爽人人添夜夜欢视频| 中国三级夫妇交换| 久热久热在线精品观看| 国产免费福利视频在线观看| av卡一久久| 精品一品国产午夜福利视频| 精品一区二区三区四区五区乱码 | 国产亚洲精品第一综合不卡| 两性夫妻黄色片| 日韩欧美精品免费久久| 亚洲久久久国产精品| 一级毛片 在线播放| 秋霞在线观看毛片| 国产成人精品无人区| 色视频在线一区二区三区| 国产野战对白在线观看| 久久精品国产自在天天线| 亚洲国产色片| 亚洲在久久综合| 亚洲成国产人片在线观看| a 毛片基地| 久久久久国产网址| 久久ye,这里只有精品| 韩国精品一区二区三区| 国产精品一国产av| 亚洲欧美日韩另类电影网站| 大话2 男鬼变身卡| 美女福利国产在线| 欧美黄色片欧美黄色片| 777米奇影视久久| 晚上一个人看的免费电影| 欧美xxⅹ黑人| 精品少妇内射三级| 精品少妇黑人巨大在线播放| 97在线视频观看| 国产爽快片一区二区三区| 国产女主播在线喷水免费视频网站| 亚洲色图综合在线观看| 久久av网站| 亚洲av福利一区| 18禁观看日本| 国产精品成人在线| 亚洲精品第二区| 精品国产乱码久久久久久男人| 久久影院123| 久久久久久久亚洲中文字幕| 日韩制服骚丝袜av| 中文字幕亚洲精品专区| 欧美精品一区二区免费开放| 我要看黄色一级片免费的| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 三级国产精品片| 香蕉丝袜av| 亚洲精品久久午夜乱码| av视频免费观看在线观看| 日韩一卡2卡3卡4卡2021年| 国产乱来视频区| 成年美女黄网站色视频大全免费| 国产精品久久久久久av不卡| 看免费成人av毛片| 日韩成人av中文字幕在线观看| 成年动漫av网址| 亚洲欧洲国产日韩| 999精品在线视频| 天天躁夜夜躁狠狠久久av| 午夜91福利影院| 国产探花极品一区二区| 国产人伦9x9x在线观看 | 丰满迷人的少妇在线观看| 国产精品久久久av美女十八| 性少妇av在线| 女的被弄到高潮叫床怎么办| 91aial.com中文字幕在线观看| 曰老女人黄片| 满18在线观看网站| 日本欧美国产在线视频| 亚洲经典国产精华液单| 久久99热这里只频精品6学生| 少妇被粗大的猛进出69影院| 国产亚洲欧美精品永久| 精品亚洲成a人片在线观看| 婷婷色综合大香蕉| 国产成人欧美| 欧美日韩视频精品一区| 青春草国产在线视频| 久久精品国产亚洲av高清一级| 91精品伊人久久大香线蕉| 午夜福利,免费看| 国产亚洲午夜精品一区二区久久| 久久久a久久爽久久v久久| 又大又黄又爽视频免费| 欧美亚洲日本最大视频资源| 精品人妻偷拍中文字幕| 777久久人妻少妇嫩草av网站| 叶爱在线成人免费视频播放| 色播在线永久视频| 久久女婷五月综合色啪小说| 亚洲色图综合在线观看| 国产一区二区三区综合在线观看| 黄色怎么调成土黄色| 国产不卡av网站在线观看| 高清av免费在线| 国产亚洲av片在线观看秒播厂| 黄片无遮挡物在线观看| 妹子高潮喷水视频| 香蕉国产在线看| 亚洲精品第二区| 精品国产乱码久久久久久男人| 在线观看三级黄色| 在线观看免费高清a一片| av网站在线播放免费| 大片电影免费在线观看免费| 精品午夜福利在线看| 国精品久久久久久国模美| 成年人午夜在线观看视频| 成人二区视频| 亚洲欧美色中文字幕在线| 人妻 亚洲 视频| 美女高潮到喷水免费观看| 91午夜精品亚洲一区二区三区| 一级毛片 在线播放| 精品卡一卡二卡四卡免费| 国产一级毛片在线| 美女中出高潮动态图| 26uuu在线亚洲综合色| 欧美成人午夜精品| 一级毛片黄色毛片免费观看视频| 亚洲婷婷狠狠爱综合网| 国产精品.久久久| 久久久久人妻精品一区果冻| 久久狼人影院| 可以免费在线观看a视频的电影网站 | 2021少妇久久久久久久久久久| www.av在线官网国产| 久久影院123| 香蕉精品网在线| 国产高清不卡午夜福利| 国产精品久久久久久av不卡| 久久久精品免费免费高清| 亚洲美女黄色视频免费看| 九色亚洲精品在线播放| 人成视频在线观看免费观看| 五月天丁香电影| 叶爱在线成人免费视频播放| videossex国产| 国产白丝娇喘喷水9色精品| 国产成人av激情在线播放| av视频免费观看在线观看| 亚洲国产欧美在线一区| 国产又爽黄色视频| 大码成人一级视频| 在线观看一区二区三区激情| 少妇的丰满在线观看| 久热久热在线精品观看| 欧美人与性动交α欧美精品济南到 | 精品一区二区三卡| 欧美精品国产亚洲| 青春草视频在线免费观看| 视频在线观看一区二区三区| 欧美国产精品一级二级三级| 青春草国产在线视频| 大香蕉久久网| 精品少妇久久久久久888优播| 亚洲精品一二三| 一级毛片电影观看| 国产成人午夜福利电影在线观看| 久久ye,这里只有精品| 精品人妻在线不人妻| 一级片'在线观看视频| 午夜福利视频在线观看免费| 各种免费的搞黄视频| 涩涩av久久男人的天堂| 成人国语在线视频| 午夜影院在线不卡| 久久久国产一区二区| 国产一区有黄有色的免费视频| 99热网站在线观看| 日本欧美视频一区| 免费av中文字幕在线| 午夜福利乱码中文字幕| 丰满乱子伦码专区| 黄片小视频在线播放| 成人影院久久| 国产成人一区二区在线| 亚洲精品久久午夜乱码| 黄色一级大片看看| 好男人视频免费观看在线| 国产高清不卡午夜福利| 免费在线观看视频国产中文字幕亚洲 | 两个人看的免费小视频| 91精品三级在线观看| 欧美日韩视频高清一区二区三区二| 黄片小视频在线播放| 国产成人av激情在线播放| 久久精品国产亚洲av涩爱| 国精品久久久久久国模美| 亚洲中文av在线| 久久国产亚洲av麻豆专区| 亚洲成色77777| 亚洲婷婷狠狠爱综合网| 国产有黄有色有爽视频| 99九九在线精品视频| 国产精品一区二区在线观看99| 国产精品久久久久久av不卡| 免费女性裸体啪啪无遮挡网站| 五月天丁香电影| 伊人亚洲综合成人网| 午夜激情av网站| 久久久亚洲精品成人影院| 一边摸一边做爽爽视频免费| 国产一区二区三区av在线| 另类精品久久| 最黄视频免费看| 狠狠精品人妻久久久久久综合| 久久精品久久久久久噜噜老黄| 免费黄网站久久成人精品| 国产精品秋霞免费鲁丝片| 男女午夜视频在线观看| 成人国产av品久久久| 亚洲欧美成人精品一区二区| 亚洲精品久久午夜乱码| 夫妻性生交免费视频一级片| 又黄又粗又硬又大视频| 纵有疾风起免费观看全集完整版| 高清不卡的av网站| 国产淫语在线视频| 欧美另类一区| 欧美人与善性xxx| 日本爱情动作片www.在线观看| 在线天堂中文资源库| 啦啦啦视频在线资源免费观看| 久久久久久久久久久免费av| av不卡在线播放| 永久免费av网站大全| 亚洲一区中文字幕在线| 国产黄色免费在线视频| 老汉色∧v一级毛片| 最黄视频免费看| 精品人妻一区二区三区麻豆| 啦啦啦在线观看免费高清www| 一区福利在线观看| 丰满迷人的少妇在线观看| 精品少妇黑人巨大在线播放| 热re99久久国产66热| 美女脱内裤让男人舔精品视频| 亚洲欧美成人精品一区二区| 亚洲精品久久午夜乱码| 黑丝袜美女国产一区| 国产精品久久久久成人av| 高清视频免费观看一区二区| 久久久久视频综合| 另类精品久久| 国产精品av久久久久免费| 久久久国产一区二区| 一区二区三区激情视频| 久久国产精品大桥未久av| 亚洲欧洲精品一区二区精品久久久 | 国产爽快片一区二区三区| 亚洲国产av影院在线观看| 波多野结衣av一区二区av| 2018国产大陆天天弄谢| 亚洲第一青青草原| 热re99久久国产66热| 欧美xxⅹ黑人| 少妇熟女欧美另类| 久久精品国产自在天天线| 精品人妻一区二区三区麻豆| 多毛熟女@视频| 99re6热这里在线精品视频| 久久韩国三级中文字幕| 成人毛片60女人毛片免费| 国产黄色视频一区二区在线观看| 国产精品一国产av| 在线观看人妻少妇| 欧美精品亚洲一区二区| 国产精品 国内视频| 国产亚洲一区二区精品| 免费播放大片免费观看视频在线观看| 巨乳人妻的诱惑在线观看| 精品一区在线观看国产| 久久久久国产网址| 春色校园在线视频观看| 亚洲精品自拍成人| 自线自在国产av| 日韩三级伦理在线观看| 久久av网站| 毛片一级片免费看久久久久| 亚洲av日韩在线播放| 99热全是精品| 人人妻人人澡人人看| 国产免费又黄又爽又色| 青春草亚洲视频在线观看| 岛国毛片在线播放| 亚洲四区av| 18在线观看网站| 在线亚洲精品国产二区图片欧美| 久久久久国产一级毛片高清牌| 另类亚洲欧美激情| 一二三四中文在线观看免费高清| 成年美女黄网站色视频大全免费| 激情视频va一区二区三区| 极品人妻少妇av视频| 日韩欧美一区视频在线观看| 久久 成人 亚洲| 亚洲第一区二区三区不卡| 精品少妇一区二区三区视频日本电影 | 成人毛片a级毛片在线播放| 激情视频va一区二区三区| 美女国产视频在线观看| 欧美变态另类bdsm刘玥| av卡一久久| 90打野战视频偷拍视频| 久久久国产一区二区| 青春草亚洲视频在线观看| 亚洲国产精品国产精品| 大香蕉久久成人网| 亚洲一区中文字幕在线| 国产av精品麻豆| 看免费av毛片| 巨乳人妻的诱惑在线观看| 蜜桃在线观看..| 亚洲美女黄色视频免费看| 一级a爱视频在线免费观看| 亚洲人成77777在线视频| 一区二区三区四区激情视频| 欧美老熟妇乱子伦牲交| 日本猛色少妇xxxxx猛交久久| 国产野战对白在线观看| 亚洲欧美成人综合另类久久久| 亚洲av综合色区一区| 汤姆久久久久久久影院中文字幕| 美女国产高潮福利片在线看| 熟女电影av网| 丝袜美足系列| 九草在线视频观看| 啦啦啦视频在线资源免费观看| 亚洲精品美女久久久久99蜜臀 | 丰满饥渴人妻一区二区三| 最近最新中文字幕大全免费视频 | 国产1区2区3区精品| 精品福利永久在线观看| 国产精品蜜桃在线观看| 在线观看三级黄色| 欧美激情极品国产一区二区三区| 亚洲精品日本国产第一区| 亚洲色图 男人天堂 中文字幕| 在线观看人妻少妇| 国产成人av激情在线播放| 寂寞人妻少妇视频99o| 啦啦啦啦在线视频资源| 日韩大片免费观看网站| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 成人午夜精彩视频在线观看| 卡戴珊不雅视频在线播放| 精品福利永久在线观看| 女人被躁到高潮嗷嗷叫费观| 精品一区二区免费观看| 久久亚洲国产成人精品v| 黑人欧美特级aaaaaa片| 色94色欧美一区二区| 日韩 亚洲 欧美在线| 人人妻人人澡人人看| 热99久久久久精品小说推荐| 美国免费a级毛片| 大香蕉久久成人网| 巨乳人妻的诱惑在线观看| 亚洲精品av麻豆狂野| 交换朋友夫妻互换小说| 国产深夜福利视频在线观看| 男女国产视频网站| 亚洲成人av在线免费| 性色av一级| 可以免费在线观看a视频的电影网站 | 色94色欧美一区二区| 秋霞在线观看毛片| 日韩三级伦理在线观看| 岛国毛片在线播放| 亚洲精品第二区| 一本—道久久a久久精品蜜桃钙片| 亚洲男人天堂网一区| 五月天丁香电影| 亚洲欧美成人综合另类久久久| 18+在线观看网站| 性色avwww在线观看| 两性夫妻黄色片| 国产免费又黄又爽又色| 在线天堂最新版资源| 激情视频va一区二区三区| 欧美精品国产亚洲| 国产免费现黄频在线看| 少妇熟女欧美另类| 久久久久国产一级毛片高清牌| 美女高潮到喷水免费观看| 少妇熟女欧美另类| 在线观看三级黄色| 亚洲经典国产精华液单| 人妻系列 视频| 国产成人精品婷婷| 日韩熟女老妇一区二区性免费视频| 最近的中文字幕免费完整| 少妇人妻久久综合中文| 亚洲人成网站在线观看播放| 在线观看美女被高潮喷水网站| 男女免费视频国产| 天天躁夜夜躁狠狠躁躁| 成人漫画全彩无遮挡| 国产免费福利视频在线观看| 自线自在国产av| 可以免费在线观看a视频的电影网站 | 中文字幕人妻丝袜制服| 老汉色∧v一级毛片| 男女高潮啪啪啪动态图| 欧美激情高清一区二区三区 |