• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Heat transfer at ice-water interface under conditions of low flow velocities*

    2016-10-18 01:45:26NanLI李楠YoucaiTUO脫友才YunDENG鄧云JiaLI李嘉RuifengLIANG梁瑞峰RuidongAN安瑞冬
    水動力學研究與進展 B輯 2016年4期
    關鍵詞:李嘉李楠

    Nan LI (李楠), You-cai TUO (脫友才), Yun DENG (鄧云), Jia LI (李嘉), Rui-feng LIANG (梁瑞峰),Rui-dong AN (安瑞冬)

    State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065,China, E-mail: linanscu@163.com

    ?

    Heat transfer at ice-water interface under conditions of low flow velocities*

    Nan LI (李楠), You-cai TUO (脫友才), Yun DENG (鄧云), Jia LI (李嘉), Rui-feng LIANG (梁瑞峰),Rui-dong AN (安瑞冬)

    State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065,China, E-mail: linanscu@163.com

    The heat transfer at the ice-water interface is closely related to the hydrodynamic and physical properties of the water body. It affects the ice cover thickness and the water temperature underlying the ice cover. This paper studies the heat transfer from the water to the ice cover. Based on the flume data, a linear relationship between the ice-water heat transfer coefficient and the flow velocity beneath the ice cover is established and the calculated dimensionless ice-water heat transfer coefficient is 1.1×10-3. This empirical relationship can be applied to estimate the ice-water heat transfer of reservoirs, lakes and other freshwater bodies when the flow velocity under the ice cover is in the range of 0.024 m/s-0.110 m/s.

    ice cover, heat exchange, ice-water heat transfer coefficient, low flow velocity, laboratory experiment

    Introduction

    The formation of ice cover is an important phenomenon in cold regions[1,2]. Ice in surface water bodies changes the hydraulic and thermal conditions of rivers, lakes and reservoirs[3,4]. The ice cover influences the operation of water resource projects, leads to reductions in power generation[5,6], causes ice disasters such as ice dam and ice flood[7,8], and hinders energy and mass exchanges between air and water,resulting in adverse effects on biological environment[9].

    The thermal growth and decay of an ice cover is governed by heat-exchanges at the air-ice and icewater interfaces. The ice-water heat transfer coefficient, which reflects the rate of heat exchange between the ice cover and the underlying water, is an important parameter for quantifying the heat flux at the icewater interface, the thickness of ice cover, and the water temperature underneath the ice cover. During the past few decades, the heat-exchanges at the icewater interface in rivers, lakes and oceans were extensively studied. The turbulent heat transfer from the flowing river water to the ice cover is shown to have a significant effect on the thickness of the ice cover,especially during the decay period when the water temperature is above the freezing point[3]. The thermal growth and melting of the lake ice is primarily a vertical one-dimensional heat transfer process[10-12]. It is possible to estimate the heat exchange flux between ice and water by a bulk formula[13]

    in which,ρwis the density of water,cwis the specific heat of water,Chis the dimensionless ice-water heat transfer coefficient,uwis the current speed,Twis the water temperature, and T0is the freezing point.

    With considerations of the surface roughness, the ice thickness, the current and the temperature under ice, Hamblin and Carmack[14]estimated the dimensionless ice-water heat transfer coefficient Chto be(0.8±0.3)×10-3in lakes of Yukon River Basin, which is smaller than that was found in sea ice studies.Shirasawa et al.[15]obtained Chof a value 0.39×10-3from the HANKO and the BALTEX/BASIS experiments and used 2.0×10-3as the value ofChto calculate the ice-water heat flux in Saroma-ko Lagoon. Ji et al.[13]computedChto be(0.16-0.50)×10-3through field observations in Bohai Sea in different periods,and found that the coefficient had a positive relation with the thickness of the ice cover and the roughness of the bottom surface of the ice cover.

    Fig.1 Schematic diagram of the experimental device

    Fig.2 Detailed structures of the plexiglas flume (m)

    However, the ice-water heat transfer coefficient is closely related to the hydrodynamic and physical properties of the water body. When the dimensionless ice-water heat transfer coefficientsChmentioned above are applied to particular situations, it is found that they are not satisfactory for the water body under low flow conditions such as a reservoir.

    The field observation method to study ice-water heat exchange involves many difficulties and various uncontrollable factors. No detailed laboratory study has been made to determine the ice-water heat transfer coefficient. In this study, a laboratory experiment is conducted to investigate the heat exchange from water to ice cover to establish an empirical formula for the ice-water heat transfer coefficient under low flow conditions.

    1. Experimental setup

    1.1 Flume design

    The experiment is conducted in a small plexiglas flume of 4.0 m (length)×3.0 m (width)×2.0 m (height)in a cold room (Fig.1). The flume is wrapped with polyethylene plastic foam to prevent the heat exchange from sidewalls. A screen is installed in the entrance section, which makes the flow uniformly distributed. An ice cover is formed in the flume in each test. Figure 2 shows the detailed structures of the plexiglas flume.

    1.2 Instrumentation

    The measured data in the experiment include the flow velocity, the ice thickness variation, the ice temperature and the water temperature. Figure 3 is a photo of the experimental device and the measuring instruments.

    Fig.3 Photo of the experimental device and measuring instruments

    The flow measuring section is 0.50 m from the entrance (Section 1, Fig.2). A Vectrino velocimeterwith a resolution of 0.001 m/s is used to measure the flow velocity. The velocities at three depths (0.07 m,0.14 m and 0.21 m) are measured before the experiment. The data indicate that the velocities distrubute evenly in depth. Therefore, the flow velocity at the mid-depth is measured in the experiment, which may be taken as the depth-averaged velocity.

    The ice thickness variation measuring section is 1.50 m from the entrance (Section 2, Fig.2). The bottom surface of the ice cover is flat, and the variation of the ice thickness is uniform along the ice cover. The vertical distance between the bottom surface of the ice cover and a fixed point at the beginning of the experiment is h1, and it becomes h220 min later. The measured ice thickness variation is then h2-h1. The vertical distance is measured by a micrometer, of accuracy of 0.0001 m (Fig.4).

    Fig.4 Schematic diagram of ice thickness variation measurement

    The temperature measuring section is 1.60 m from the entrance (Section 3, Fig.2). A LG93-22 temperature recorder is used to measure the water and ice temperatures, with an accuracy of 0.1oC. The ice temperature is measured by No.1 and No.2 temperature probes, and the water temperature is measured by No.3 to No.11 temperature probes. The layout of the temperature probes is shown in Fig.5.

    Fig.5 Layout of temperature probes (m)

    1.3 Experimental procedure

    A flow regime test is made first, under 4 flow conditions with the depth-averaged flow velocities of 0.110 m/s, 0.084 m/s, 0.055 m/s and 0.024 m/s.

    The flow regime test is made by recording the instantaneous velocities (ux,uyand uz) every 0.04 s. The average turbulence intensity under each condition is determined by

    in which,Tuis the instantaneous turbulence intensity,u′x,u′y,u′zare the fluctuating velocities inx,y,z directions,ux,uy,uzare the instantaneous velocities inx,y,zdirections,Tuis the average turbulence intensity, andNis the number of instantaneous turbulence intensities in each test.

    The inflow velocity is stable under all 4 conditions and the calculated average turbulence intensities are 14.7%, 14.4%, 13.7% and 9.8%, respectively. According to Wang et al.[16], the boundary layer under a flat surface is of turbulence when the water turbulence intensity reaches 3.5%. Hence, the flows under these 4 conditions are of turbulence and are valid for the experiment.

    Main steps of the experiment include: (1) Set the temperature in the cold room to -15oC, and freeze an ice cover (about 1.70 m long and 0.02 m thick) in the flume. (2) Stabilize the temperature in the cold room to 0oC, start the pump to make the water flow, and use the valve to control the flow velocity. (3) Start the LG93-22 temperature recorder and measure the vertical distance between the bottom surface of the ice cover and the fixed point, when the flow field in the flume is stable. (4) Repeat Steps (1) to (3) in each experiment.

    1.4 Experimental results

    A total of 22 experiment runs are made by combining these 4 velocity conditions with different inflow temperatures (Table 1). The measured ice thickness reductions at the bottom of the ice cover and the inflow temperature over a 20 min period are given in Table 1. Figure 6 shows the vertical temperature profiles under various velocity conditions. Influenced by the air temperature in the cold room, the ice temperature reaches 0oC gradually. No. 3 to No. 11 temperatureprobes are in the flow where the water temperature is mixed evenly.

    Table 1 Summary of test conditions

    2. Results and analyses

    2.1 Analyses of the heat flux process

    A definition of the heat flux between the ice cover and the flowing water is presented in Fig.7 for analyzing the heat flux process. The air temperature in the cold room is 0oC, and the whole temperature of the ice cover reaches a stable 0oC. Accordingly, there is no conductive heat flux at the air-ice interface and the inner ice. The melting of the bottom surface of the ice cover is caused by the turbulent heat exchange between ice and water, and the heat balance equation at the bottom of the ice cover can be written as

    in which,qwiis the turbulent heat exchange between ice and water,ρiis the ice density,Liis the latent heat of the ice melting, and dh/dtis the rate of the ice thickness variation.

    The melting rate of the bottom surface of the ice cover is related to the water temperature gradient in the thermal boundary layer[17]. The plots of the temperature in Fig.6 show a thermal boundary layer with a sharp temperature gradient close to the ice cover. The heat flux from the water to the ice cover in the boundary layer contributes to the heat flux for the melting of the bottom surface of the ice cover. The heat flux from the water is determined by the temperature gradient at the ice-water interface, which is expressed by the Fourier's law[18,19]

    in which,kwis the thermal conductivity of water,?T/?zis the temperature gradient.

    Fig.6 Vertical temperature profiles under various velocity conditions

    Many processes influence the millimeter thick thermal boundary, and it is difficult to accurately measure the temperature gradient at the ice-water interface.

    The turbulent heat exchange between ice and water can also be expressed by the Newton's law of cooling[20]

    Fig.7 Definition of the heat flux

    Solving Eq.(4) and Eq.(6) for hwi, we have

    Solving Eq.(4) and Eq.(5) for ?z, we have

    in which,?his the ice thickness variation,?tis the duration of each experiment, and

    The calculated ice-water heat transfer coefficients (Table 2) show that the relative error between the coefficients under various conditions and their average value is in the range of -14%-16%, and the standard deviation of the coefficients under each condition is 51.2, 17.7, 21.7 and 10.2, respectively. The calculation error mainly results from the flow water temperature and the instability of the flow field. Besides, this error can be caused by the ice thickness variation measurement. The average values of the velocity, the ice thickness variation and the vertical temperature in experiment runs are used herein for error reduction.

    The calculated thickness of the thermal boundary layer ?z(Table 2) shows that the thickest thermal boundary layer is less than 0.006 m, and it has an inverse relationship with the velocity.

    Table 2 Comparison of calculated results

    Fig.8 Linear fitting for the average ice-water heat transfer coefficient and the flow velocity

    2.2 Correlation analysis

    The influence factors of the heat transfer coefficient include the flow velocity, the salinity, the specific heat capacity, and the density[21]. In this study, the inflow temperature and the flow velocity are variables,and the velocity is the governing factor. Figure 8 shows a linear relationship between the average value of the ice-water heat transfer coefficient under each condition and its flow velocity.

    The result shows a positive linear correlation between the average ice-water heat transfer coefficient and the flow velocity beneath the ice cover. The regression coefficient is 0.9982 and the regression equation is

    in which,hwiis the ice-water heat transfer coefficient,uwis the depth-averaged velocity.

    2.3 Comparison of the dimensionless ice-water heat transfer coefficients

    The bulk formula mentioned above provides a method to determine the dimensionless ice-water heat transfer coefficient Ch. The bulk formula and the empirical formula Eq.(9) describe the same heat transfer process at the ice-water interface. From Eq.(1),Eq.(6) and Eq.(9), the dimensionless ice-water heat transfer coefficient is obtained as

    The comparisons of Chbetween this study and previous researches[13]are shown in Table 3. The value ofChin this paper is 1.1×10-3, which is between the maximum value (3.8×10-3) and the minimum value(0.16×10-3), and similar to theChcalculated by Hamblin and Carmack[14]. The variation of Chin Table 3 may be the results of the hydrodynamics conditions, the properties of water body and the roughness of the ice cover.

    Table 3 Comparison of Chbetween this study and pre-

    3. Conclusion

    In this study, the flume experiment is carried out to determine the ice-water heat transfer coefficient under low flow velocity conditions. Based on the flume data and data analyses, a positive linear correlation between the ice-water heat transfer coefficient and the flow velocity beneath the ice cover is established and an empirical formulais obtained. This empirical formula provides a convenient way to estimate the ice-water heat transfer of reservoirs, lakes and other freshwater bodies when the flow velocity under the ice cover is in the range of 0.024 m/s-0.11 m/s. However, there are still some important issues that should be further studied, such as the icewater heat transfer coefficient under extremely low flow conditions and the verification of this empirical formula in field work.

    References

    [1] HUANG W., LI Z. and LIU X. et al. Effective thermal conductivity of reservoir freshwater ice with attention to high temperature[J]. Annals of Glaciology, 2013, 54(62): 189-195.

    [2] TUO Y., DENG Y. and LI J. et al. Water temperature and ice conditions in Fengman reservoir, winter of 2012-2013[C]. Proceedings of the 22th IAHR International Symposium on Ice. Singapore, 2014, 434-441.

    [3] SHEN H. T. Mathematical modeling of river ice processes[J]. Cold Regions Science and Technology, 2010,62(1): 3-13.

    [4] TUO You-cai, LIU Zhi-guo and DENG Yun et al. Water temperature of the Fengman reservoir with seasonal ice cover[J]. Advances in Water Science, 2014, 25(5): 731-738(in Chinese).

    [5] GEBRE S., ALFREDSEN K. and LIA L. et al. Review of ice effects on hydropower systems[J]. Journal of Cold Regions Engineering, 2013, 27(4): 196-222.

    [6] GEBRE S., TIMALSINA N. and ALFREDSEN K. Some aspects of ice-hydropower interaction in a changing climate[J]. Energies, 2014, 7(3): 1641-1655.

    [7] CHANG J., MENG X. and WANG Z. et al. Optimized cascade reservoir operation considering ice flood control and power generation[J]. Journal of Hydrology, 2014,519: 1042-1051.

    [8] WU Peng, HIRSHFIELD Faye and SUI Jueyi et al. Impacts of ice cover on local scour around semi-circular bridge abutment[J]. Journal of Hydrodynamics, 2014, 26(1): 10-18.

    [9] HAO Hong-sheng, DENG Yun and LI Jia et al. Numerical simulation and experimental study on growth and decay of ice-cover[J]. Chinese Journal of Hydrodynamics, 2009,24(3): 374-380(in Chinese).

    [10] SALORANTA T. M. Modeling the evolution of snow,snow ice and ice in the Baltic Sea[J]. Tellus A, 2000,52(1): 93-108.

    [11] DUGUAY C. R., FLATO G. M. and JEFFRIES M. O. et al. Ice-cover variability on shallow lakes at high latitudes: Model simulations and observations[J]. Hydrological Processes, 2003, 17(17): 3465-3483.

    [12] SALORANTA T. M., ANDERSEN T. MyLake-A multiyear lake simulation model code suitable for uncertainty and sensitivity analysis simulations[J]. Ecological modelling, 2007, 207(1): 45-60.

    [13] JI Shun-ying, YUE Qian-jing and BI Xiang-jun. Heat transfer coefficient between ice cover and water in the Bohai Sea[J]. Marine Science Bulletin, 2002, 21(1): 9-15(in Chinese).

    [14] HAMBLIN P. F., CARMACK E. C. On the rate of heat transfer between a lake and an ice sheet[J]. Cold Regions Science and Technology, 1990, 18(2): 173-182.

    [15] SHIRASAWA K., LEPP?RANTA M. and KAWAMURA T. et al. Measurements and modelling of the water: Ice heat flux in natural waters[C]. Proceedings of the 18th IAHR International Symposium on Ice. Sapporo, Japan,2006, 1: 85-91.

    [16] WANG Jin-jun, LIAN Qi-xiang and XING Yu-shan. Effects of turbulent intensities on the boundary layer development[J]. Journal of Beijing University of Aeronautics and Astronautics, 1996, 22 (2): 193-197(in Chinese).

    [17] YANG Song-song, LIU Ai-lian and CHEN Wu-fen et al. Temperature field distribution detection research at ice and water near the interface by using fiber Bragg grating[J]. Optical Technique, 2014, 40(3): 254-257(in Chinese).

    [18] KIRILLIN G., LEPP?RANTA M. and TERZHEVIK A. et al. Physics of seasonally ice-covered lakes: a review[J]. Aquatic Sciences, 2012, 74(4): 659-682.

    [19] OVEISY A., BOEGMAN L. and IMBERGER J. Threedimensional simulation of lake and ice dynamics during winter[J]. Limnology and Oceanography, 2012, 57(1): 43-57.

    [20] WONG K. F. V. Intermediate heat transfer[M]. New York, USA: Marcel Dekker, Inc., 2003, 4-5.

    [21] ZHAO Zhen-nan. Heat transfer[M]. Beijing, China: Higher Education Press, 2008, 175-177(in Chinese).

    10.1016/S1001-6058(16)60664-9

    October 16, 2014, Revised April 4, 2015)

    * Project supported by the National Natural Science Foundation of China (Grant Nos. 51309169, 51179112).

    Biography: Nan LI (1987-), Male, Ph. D. Candidate

    You-cai TUO,

    E-mail: tuoyoucai@scu.edu.cn

    2016,28(4):603-609

    猜你喜歡
    李嘉李楠
    在研究的路上鐫刻生命的印記
    What Makes You Tired
    Taking Robotics, AI, IoT to the World
    一本書
    ON A MULTI-DELAY LOTKA-VOLTERRA PREDATOR-PREY MODEL WITH FEEDBACK CONTROLS AND PREY DIFFUSION?
    Numerical and experimental study of continuous and discontinuous turbidity currents on a flat slope *
    官相
    故事林(2018年15期)2018-08-13 02:21:46
    Modeling of thermodynamics of ice and water in seasonal ice-covered reservoir *
    Reverse motion characteristics of water-vapor mixture in supercavitating flow around a hydrofoil*
    Adaptive key SURF feature extraction and application in unmanned vehicle dynamic object recognition
    在线观看免费视频日本深夜| 午夜影院日韩av| 日韩国内少妇激情av| 91大片在线观看| 丝袜美足系列| 久久精品国产综合久久久| 黄色怎么调成土黄色| 变态另类成人亚洲欧美熟女 | 亚洲欧美一区二区三区久久| 乱人伦中国视频| 每晚都被弄得嗷嗷叫到高潮| 久久香蕉国产精品| 中亚洲国语对白在线视频| 国产精品亚洲av一区麻豆| 欧美一级毛片孕妇| 国产精品国产高清国产av| 欧美日本中文国产一区发布| 国产精品日韩av在线免费观看 | 国产97色在线日韩免费| 91九色精品人成在线观看| 日韩免费av在线播放| 国产精品一区二区三区四区久久 | 国产一区在线观看成人免费| 最近最新中文字幕大全免费视频| 视频在线观看一区二区三区| 成年女人毛片免费观看观看9| 亚洲第一欧美日韩一区二区三区| 在线国产一区二区在线| 亚洲伊人色综图| 美女高潮到喷水免费观看| tocl精华| 免费一级毛片在线播放高清视频 | 丰满的人妻完整版| 一区二区三区精品91| 国产精品 欧美亚洲| 欧美激情久久久久久爽电影 | 欧美日韩乱码在线| 中出人妻视频一区二区| a级毛片黄视频| 精品久久久久久,| 日韩视频一区二区在线观看| 精品无人区乱码1区二区| 亚洲精品av麻豆狂野| 999久久久精品免费观看国产| 日韩欧美一区视频在线观看| 一级,二级,三级黄色视频| 美女扒开内裤让男人捅视频| 一二三四在线观看免费中文在| 无遮挡黄片免费观看| 大陆偷拍与自拍| 无人区码免费观看不卡| 午夜日韩欧美国产| 国产亚洲精品第一综合不卡| 久久精品国产亚洲av高清一级| 免费在线观看亚洲国产| 无限看片的www在线观看| 女人高潮潮喷娇喘18禁视频| 日本a在线网址| 狂野欧美激情性xxxx| 国产成+人综合+亚洲专区| av中文乱码字幕在线| 露出奶头的视频| 99久久国产精品久久久| av电影中文网址| 人人妻,人人澡人人爽秒播| 90打野战视频偷拍视频| 久久精品国产99精品国产亚洲性色 | 中文字幕另类日韩欧美亚洲嫩草| 99久久国产精品久久久| 91精品国产国语对白视频| 老汉色∧v一级毛片| 亚洲久久久国产精品| 两性夫妻黄色片| 免费观看精品视频网站| 亚洲全国av大片| 女性生殖器流出的白浆| 亚洲人成伊人成综合网2020| 欧美国产精品va在线观看不卡| 日本免费一区二区三区高清不卡 | 欧美色视频一区免费| 亚洲欧美日韩高清在线视频| 女人被躁到高潮嗷嗷叫费观| 亚洲av日韩精品久久久久久密| 波多野结衣一区麻豆| 午夜免费鲁丝| 国产精品影院久久| 丝袜美腿诱惑在线| 国产激情久久老熟女| 欧美日韩精品网址| 久久中文看片网| 嫁个100分男人电影在线观看| 午夜成年电影在线免费观看| 国产99白浆流出| 亚洲熟妇中文字幕五十中出 | 日本五十路高清| 成在线人永久免费视频| 欧美黄色淫秽网站| 变态另类成人亚洲欧美熟女 | 免费看十八禁软件| 在线播放国产精品三级| 精品卡一卡二卡四卡免费| 搡老熟女国产l中国老女人| 两个人免费观看高清视频| 丁香欧美五月| 男女之事视频高清在线观看| 人人妻人人澡人人看| 成人影院久久| 一边摸一边抽搐一进一出视频| 妹子高潮喷水视频| 亚洲国产精品999在线| 天堂动漫精品| 亚洲五月天丁香| 狂野欧美激情性xxxx| 超碰成人久久| 91成人精品电影| 一个人免费在线观看的高清视频| 成人手机av| 欧洲精品卡2卡3卡4卡5卡区| 真人做人爱边吃奶动态| 久久国产精品影院| 丁香欧美五月| 免费高清在线观看日韩| 亚洲一卡2卡3卡4卡5卡精品中文| 一级片'在线观看视频| 女人爽到高潮嗷嗷叫在线视频| 亚洲 欧美 日韩 在线 免费| 国产又爽黄色视频| 国产一区二区三区综合在线观看| 亚洲精品粉嫩美女一区| 一级片免费观看大全| 国产区一区二久久| 亚洲欧美日韩高清在线视频| 一级a爱视频在线免费观看| 新久久久久国产一级毛片| 88av欧美| 亚洲一区二区三区色噜噜 | 中文字幕人妻丝袜一区二区| 亚洲精华国产精华精| 成熟少妇高潮喷水视频| 91九色精品人成在线观看| 天天躁夜夜躁狠狠躁躁| 欧美黑人欧美精品刺激| 欧美成人性av电影在线观看| 丝袜人妻中文字幕| 人人妻人人爽人人添夜夜欢视频| 欧美午夜高清在线| av超薄肉色丝袜交足视频| av网站免费在线观看视频| tocl精华| 中文字幕av电影在线播放| 午夜两性在线视频| 亚洲欧美日韩无卡精品| 国产一区二区在线av高清观看| 精品国产一区二区三区四区第35| 黄频高清免费视频| 精品日产1卡2卡| 美女福利国产在线| 午夜免费成人在线视频| 男女床上黄色一级片免费看| 国产伦人伦偷精品视频| 少妇的丰满在线观看| 男男h啪啪无遮挡| 国产无遮挡羞羞视频在线观看| 午夜福利欧美成人| 欧美日韩乱码在线| 夜夜夜夜夜久久久久| 看黄色毛片网站| 欧美日韩亚洲高清精品| a级片在线免费高清观看视频| 国内毛片毛片毛片毛片毛片| 热99re8久久精品国产| 怎么达到女性高潮| 久久久久久免费高清国产稀缺| 纯流量卡能插随身wifi吗| 久久精品影院6| www.www免费av| 一级片'在线观看视频| 老司机深夜福利视频在线观看| 亚洲专区中文字幕在线| 亚洲精品美女久久久久99蜜臀| 男女下面插进去视频免费观看| av福利片在线| 久久久久久久久免费视频了| 在线观看免费视频日本深夜| 国产蜜桃级精品一区二区三区| 欧美日韩亚洲综合一区二区三区_| 欧美日韩视频精品一区| 久久国产精品人妻蜜桃| 一级黄色大片毛片| 国产不卡一卡二| 在线看a的网站| 欧美中文日本在线观看视频| 久久精品亚洲精品国产色婷小说| 欧美+亚洲+日韩+国产| 老汉色av国产亚洲站长工具| 国产色视频综合| 久久午夜综合久久蜜桃| 女同久久另类99精品国产91| 久久精品国产亚洲av香蕉五月| 久久中文字幕一级| 国产区一区二久久| 麻豆一二三区av精品| 亚洲精品中文字幕在线视频| 国产精品二区激情视频| 99riav亚洲国产免费| 最新美女视频免费是黄的| 变态另类成人亚洲欧美熟女 | 人人妻,人人澡人人爽秒播| 视频区欧美日本亚洲| 99香蕉大伊视频| 国产99久久九九免费精品| 亚洲三区欧美一区| 亚洲男人天堂网一区| 嫁个100分男人电影在线观看| 人妻久久中文字幕网| 超碰成人久久| 久久国产精品男人的天堂亚洲| 淫秽高清视频在线观看| 99香蕉大伊视频| 看片在线看免费视频| 久久久久久人人人人人| 色综合站精品国产| 无人区码免费观看不卡| 欧美日韩国产mv在线观看视频| 天天躁夜夜躁狠狠躁躁| 亚洲av电影在线进入| 极品人妻少妇av视频| netflix在线观看网站| 人人妻,人人澡人人爽秒播| 大陆偷拍与自拍| 狂野欧美激情性xxxx| a级毛片黄视频| 少妇被粗大的猛进出69影院| 桃红色精品国产亚洲av| 精品国产乱子伦一区二区三区| 亚洲三区欧美一区| 国产精品一区二区三区四区久久 | 女性被躁到高潮视频| 亚洲三区欧美一区| 亚洲第一青青草原| 视频区欧美日本亚洲| 99热国产这里只有精品6| 色综合婷婷激情| 新久久久久国产一级毛片| 国产精品 国内视频| 国产激情久久老熟女| 精品国产超薄肉色丝袜足j| 在线免费观看的www视频| 制服诱惑二区| 欧美久久黑人一区二区| 精品一区二区三区视频在线观看免费 | 好男人电影高清在线观看| 日韩三级视频一区二区三区| 国产成人av教育| 精品国产国语对白av| 男女午夜视频在线观看| 在线观看一区二区三区激情| 在线看a的网站| 国产精品永久免费网站| 一边摸一边做爽爽视频免费| 婷婷六月久久综合丁香| 母亲3免费完整高清在线观看| 久久午夜综合久久蜜桃| 久热这里只有精品99| 免费在线观看亚洲国产| 亚洲成人久久性| 一个人观看的视频www高清免费观看 | av福利片在线| 国产精品98久久久久久宅男小说| 免费观看人在逋| 亚洲精品久久午夜乱码| 欧美激情 高清一区二区三区| 精品一区二区三区四区五区乱码| 一区二区三区激情视频| 一个人观看的视频www高清免费观看 | 看免费av毛片| 欧美激情 高清一区二区三区| 欧美丝袜亚洲另类 | 长腿黑丝高跟| 最近最新中文字幕大全电影3 | 欧美 亚洲 国产 日韩一| 久久香蕉国产精品| 免费观看精品视频网站| 亚洲成av片中文字幕在线观看| 久久精品国产99精品国产亚洲性色 | 久久精品亚洲熟妇少妇任你| 国产精品自产拍在线观看55亚洲| 淫妇啪啪啪对白视频| av在线播放免费不卡| 操美女的视频在线观看| 麻豆久久精品国产亚洲av | 久久久久久免费高清国产稀缺| 国产亚洲精品久久久久5区| 日韩大尺度精品在线看网址 | 一个人观看的视频www高清免费观看 | 国产99久久九九免费精品| 日韩欧美一区二区三区在线观看| 老司机午夜福利在线观看视频| 久久久久久人人人人人| 久久香蕉激情| 亚洲成人久久性| 嫁个100分男人电影在线观看| 高清欧美精品videossex| 亚洲中文av在线| 成人18禁高潮啪啪吃奶动态图| 色在线成人网| 国产精品亚洲av一区麻豆| 日韩精品青青久久久久久| 中文欧美无线码| 777久久人妻少妇嫩草av网站| 亚洲狠狠婷婷综合久久图片| 真人做人爱边吃奶动态| 琪琪午夜伦伦电影理论片6080| 色尼玛亚洲综合影院| 国产真人三级小视频在线观看| 国产极品粉嫩免费观看在线| 亚洲专区中文字幕在线| 99久久国产精品久久久| 久久欧美精品欧美久久欧美| 亚洲人成伊人成综合网2020| 亚洲精品在线观看二区| 极品人妻少妇av视频| 午夜视频精品福利| 操出白浆在线播放| 18禁观看日本| 99久久国产精品久久久| 国产深夜福利视频在线观看| 视频区图区小说| 国产一区二区三区视频了| 十八禁人妻一区二区| 少妇 在线观看| 高清黄色对白视频在线免费看| 我的亚洲天堂| 亚洲av成人av| 怎么达到女性高潮| 国产成年人精品一区二区 | 亚洲精品一二三| 高清在线国产一区| 亚洲激情在线av| www.精华液| 在线观看一区二区三区| 亚洲精品国产一区二区精华液| 国产三级在线视频| 国产区一区二久久| 亚洲国产精品999在线| 亚洲免费av在线视频| 欧美+亚洲+日韩+国产| 久99久视频精品免费| 欧美亚洲日本最大视频资源| 如日韩欧美国产精品一区二区三区| 国产免费男女视频| 男女之事视频高清在线观看| 不卡av一区二区三区| 成在线人永久免费视频| 国产免费男女视频| 男女之事视频高清在线观看| 日韩国内少妇激情av| 黄频高清免费视频| 亚洲午夜精品一区,二区,三区| 国内毛片毛片毛片毛片毛片| 久久精品亚洲精品国产色婷小说| 成人免费观看视频高清| svipshipincom国产片| 免费在线观看影片大全网站| 欧美激情高清一区二区三区| 国产亚洲欧美精品永久| 久久婷婷成人综合色麻豆| 精品福利永久在线观看| netflix在线观看网站| 美女午夜性视频免费| 午夜精品在线福利| 激情在线观看视频在线高清| 国产精品爽爽va在线观看网站 | 午夜激情av网站| 亚洲中文av在线| svipshipincom国产片| av天堂在线播放| 桃红色精品国产亚洲av| 欧美 亚洲 国产 日韩一| 一进一出好大好爽视频| av片东京热男人的天堂| 欧美激情久久久久久爽电影 | 美女大奶头视频| 日本免费a在线| 成人影院久久| 亚洲成人精品中文字幕电影 | 亚洲情色 制服丝袜| 涩涩av久久男人的天堂| 女人被狂操c到高潮| 日韩成人在线观看一区二区三区| 欧美丝袜亚洲另类 | 亚洲av成人av| 久久 成人 亚洲| 国产欧美日韩精品亚洲av| 亚洲欧美日韩高清在线视频| 亚洲精品粉嫩美女一区| 国产熟女xx| 性色av乱码一区二区三区2| 女性被躁到高潮视频| 天天躁夜夜躁狠狠躁躁| 日本撒尿小便嘘嘘汇集6| 国产深夜福利视频在线观看| 狂野欧美激情性xxxx| 国产xxxxx性猛交| 亚洲第一欧美日韩一区二区三区| 天天影视国产精品| 十分钟在线观看高清视频www| 黑人巨大精品欧美一区二区蜜桃| 精品久久久久久电影网| 成人国产一区最新在线观看| 欧美中文日本在线观看视频| avwww免费| 久久伊人香网站| 久久中文看片网| 怎么达到女性高潮| 国产一区二区三区在线臀色熟女 | 极品教师在线免费播放| 热99国产精品久久久久久7| 51午夜福利影视在线观看| 久久久久国产精品人妻aⅴ院| 亚洲欧美一区二区三区黑人| 久热爱精品视频在线9| 在线观看免费日韩欧美大片| 男人舔女人的私密视频| 在线av久久热| av视频免费观看在线观看| 国产高清videossex| 国产精品免费一区二区三区在线| 丰满迷人的少妇在线观看| 日本精品一区二区三区蜜桃| 午夜日韩欧美国产| 亚洲av熟女| 九色亚洲精品在线播放| 青草久久国产| 久久久久亚洲av毛片大全| 久久久国产成人精品二区 | 黑人欧美特级aaaaaa片| 欧美日本中文国产一区发布| 精品久久久精品久久久| av网站免费在线观看视频| 亚洲成人免费电影在线观看| 日韩有码中文字幕| 久久人人精品亚洲av| 亚洲avbb在线观看| 国产一卡二卡三卡精品| 可以在线观看毛片的网站| 午夜福利在线免费观看网站| 亚洲一区中文字幕在线| 精品国产一区二区久久| 97人妻天天添夜夜摸| 精品乱码久久久久久99久播| 久久伊人香网站| 久久久国产欧美日韩av| 日韩有码中文字幕| 一区二区三区激情视频| 色精品久久人妻99蜜桃| 国产伦一二天堂av在线观看| 国产一区二区三区综合在线观看| 国产成人一区二区三区免费视频网站| 欧美性长视频在线观看| 90打野战视频偷拍视频| 日日爽夜夜爽网站| 亚洲成人国产一区在线观看| 少妇的丰满在线观看| 国产野战对白在线观看| 成人黄色视频免费在线看| 亚洲中文字幕日韩| 久久久久国内视频| 国产乱人伦免费视频| 欧美成人性av电影在线观看| 欧美乱码精品一区二区三区| 91成年电影在线观看| 亚洲精品久久午夜乱码| 日韩欧美三级三区| 亚洲欧洲精品一区二区精品久久久| 日本 av在线| av天堂久久9| 亚洲久久久国产精品| 亚洲欧美一区二区三区久久| 久久天躁狠狠躁夜夜2o2o| 欧美日韩亚洲高清精品| 可以免费在线观看a视频的电影网站| 亚洲国产看品久久| 黄色怎么调成土黄色| 国产精品爽爽va在线观看网站 | 久久久久国内视频| 一进一出抽搐gif免费好疼 | 男女下面进入的视频免费午夜 | 视频在线观看一区二区三区| 丝袜在线中文字幕| 欧美黄色淫秽网站| 亚洲成人国产一区在线观看| 9191精品国产免费久久| 中国美女看黄片| 国产精品综合久久久久久久免费 | 成人亚洲精品av一区二区 | 一级毛片精品| 久久久久久久精品吃奶| 国产高清视频在线播放一区| 欧美中文日本在线观看视频| 精品乱码久久久久久99久播| 国产亚洲精品一区二区www| av超薄肉色丝袜交足视频| ponron亚洲| av网站在线播放免费| 一二三四社区在线视频社区8| 热re99久久国产66热| 满18在线观看网站| 欧美日韩黄片免| 欧美中文日本在线观看视频| 人人妻人人爽人人添夜夜欢视频| 国产亚洲精品综合一区在线观看 | 国产亚洲av高清不卡| 99精品久久久久人妻精品| 啦啦啦免费观看视频1| 亚洲欧美日韩高清在线视频| 亚洲精品中文字幕一二三四区| 国产乱人伦免费视频| 亚洲一卡2卡3卡4卡5卡精品中文| 无遮挡黄片免费观看| 国产日韩一区二区三区精品不卡| 亚洲精品国产精品久久久不卡| 精品国产国语对白av| 麻豆av在线久日| 久久欧美精品欧美久久欧美| 国产片内射在线| av有码第一页| 国产精品98久久久久久宅男小说| 18美女黄网站色大片免费观看| 999精品在线视频| 亚洲成国产人片在线观看| 美女高潮喷水抽搐中文字幕| 免费在线观看视频国产中文字幕亚洲| 色精品久久人妻99蜜桃| 乱人伦中国视频| 黄色丝袜av网址大全| 淫秽高清视频在线观看| 亚洲精品成人av观看孕妇| 午夜老司机福利片| 村上凉子中文字幕在线| 成人亚洲精品av一区二区 | 老司机福利观看| 1024香蕉在线观看| 精品久久久久久久久久免费视频 | 久久久国产一区二区| 久久精品影院6| 美女国产高潮福利片在线看| 亚洲一卡2卡3卡4卡5卡精品中文| 午夜免费成人在线视频| xxx96com| 在线看a的网站| 欧美一区二区精品小视频在线| 久久久久久亚洲精品国产蜜桃av| 日韩欧美一区视频在线观看| 久久国产亚洲av麻豆专区| 最近最新免费中文字幕在线| 大型黄色视频在线免费观看| 亚洲精品国产色婷婷电影| 天天添夜夜摸| 精品一区二区三区视频在线观看免费 | 日韩一卡2卡3卡4卡2021年| 丰满的人妻完整版| 成人永久免费在线观看视频| 亚洲色图 男人天堂 中文字幕| 精品人妻1区二区| 亚洲情色 制服丝袜| 一夜夜www| 亚洲国产欧美日韩在线播放| www.精华液| 97人妻天天添夜夜摸| 黄色片一级片一级黄色片| 欧美午夜高清在线| 国产免费男女视频| 在线观看日韩欧美| 国产精品久久久人人做人人爽| 91老司机精品| 精品福利永久在线观看| 日本五十路高清| 黄色a级毛片大全视频| 男女之事视频高清在线观看| 日韩免费av在线播放| 黄色丝袜av网址大全| 中文字幕人妻丝袜制服| 身体一侧抽搐| 精品久久久久久成人av| 90打野战视频偷拍视频| 激情视频va一区二区三区| 中出人妻视频一区二区| 色综合站精品国产| 天堂俺去俺来也www色官网| 性欧美人与动物交配| 国产一区二区在线av高清观看| 亚洲va日本ⅴa欧美va伊人久久| 国产色视频综合| 精品一品国产午夜福利视频| 91在线观看av| 久久九九热精品免费| 美女午夜性视频免费| 亚洲国产欧美网| 国产精华一区二区三区| 国产精品香港三级国产av潘金莲| 亚洲欧洲精品一区二区精品久久久| 淫秽高清视频在线观看| 不卡一级毛片| 亚洲精品国产一区二区精华液| 在线天堂中文资源库| 亚洲欧美精品综合一区二区三区| 在线观看日韩欧美| 国产91精品成人一区二区三区| 亚洲av片天天在线观看| 亚洲人成电影观看| 搡老岳熟女国产| 久久青草综合色| 视频在线观看一区二区三区| 国产又爽黄色视频|