• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of some parameters on the performance of anchor impellers for stirring shear-thinning fluids in a cylindrical vessel*

    2016-10-18 01:45:36HouariAMEUR

    Houari AMEUR

    Institut des Sciences et Technologies, Centre Universitaire Salhi Ahmed, CUN-SA, BP 66, Naama 45000, Algeria,E-mail: houari_ameur@yahoo.fr

    ?

    Effect of some parameters on the performance of anchor impellers for stirring shear-thinning fluids in a cylindrical vessel*

    Houari AMEUR

    Institut des Sciences et Technologies, Centre Universitaire Salhi Ahmed, CUN-SA, BP 66, Naama 45000, Algeria,E-mail: houari_ameur@yahoo.fr

    The 3-D hydrodynamics of shear thinning fluids in a stirred tank with an anchor impeller were numerically simulated. By using a computational fluid dynamics code (CFX 13.0), the obtained results give a good prediction of the hydrodynamics such as the velocity fields and cavern size. The multiple reference frames (MRF) technique was employed to model the rotation of the impellers. The rheology of the fluid was approximated using the Ostwald model. To validate the CFD model, some predicted results were compared with the experimental data and a satisfactory agreement was found. The effects of impeller speed, fluid rheology, and some design parameters on the flow pattern, cavern size and power consumption were explored.

    CFD, computer simulation, stirred tank, anchor impeller, shear thinning fluid

    Introduction

    Mixing operations with non-Newtonian fluids are frequently employed in areas such as the paint, polymer, food or pharmaceutical industries. Additional difficulties for the optimization of processes often occur with such fluids. Shear thinning fluids are a common class of non-Newtonian fluids, the agitation of such fluids results in the formation of well-mixed zone (known as cavern) around the impeller with essentially stagnant and/or slow moving fluids elsewhere. The formation of the stagnant regions gives rise to poor mass and heat transfer rates, which lead to poor quality of the end products[1]. Thus, the mixing of such fluids is a difficult operation and considered as a key step in the chemical industry. It is desirable to eliminate these stagnant regions by a proper mixing design[2-5].

    Low viscosity mixing applications can usually be performed with impeller systems consisting of one or more turbines and propellers. The close-clearance impellers are highly recommended for the mixing of highly viscous fluids, especially for shear thinning fluids, in the laminar regime[6]. For instance, in polymerization reactors, it is desirable to ensure efficient mixing to prevent phenomena like hot spots, to control the molecular weight distribution of the final product,and to avoid the dead zones[7].

    Triveni et al.[7]reported that if turbine impellers are used with highly viscous liquids, flow velocities rapidly decay to low values away from the impeller affecting the blending quality. Turbine impellers are therefore not recommended for use in the laminar regime. For such conditions, close-clearance impellers such as anchors are commonly used. Chhabra and Richardson[8]reported that the flow pattern generated by an anchor agitator is tangential and the anchor is suitable for mixing of viscous Newtonian and non-Newtonian fluids. It has been shown that, at higher impeller rotational speeds, an anchor impeller creates secondary axial and radial flows as well[9]. Nagata[10]revealed by experiments that there exists an axial temperature profile within the vessel. Bertrand et al.[11]and Savreux et al.[12]simulated the 2-D laminar mixing of non-Newtonian fluids with an anchor impeller and they confirmed the finding of Nagata that the anchor is inefficient in the laminar regime. Akiti et al.[13]also studied the behavior of an anchor agitated vessel of 2 L and 4 L capacity using CFD and they observedthat the anchor impeller produces little flow and turbulence in the area beneath the impeller irrespective of the reactor configuration. Karray et al.[14]investigated the performance of the anchor for turbulent Newtonian fluid flow. They found that the use of the classical anchor in turbulent flow yields an important deformation of the anchor arm. To solve this problem,they suggested using an anchor blade. Tanguy et al.[15]measured the power consumption of an anchor agitator for the homogenization of non-Newtonian fluids and they showed that the constant Ksdefined by Metzner and Otto[16]do not vary strongly with the power law index(n). Espinosa-Solares et al.[17]studied the combined effect of bottom clearance and wall clearance on the power consumption rate and they proposed a numerical correlation. They have observed that the power consumption decreases as the bottom and wall clearance increase, which is due to the change in the flow pattern.

    By experiments, Triveni et al.[18]studied the mixing of Newtonian and non-Newtonian fluids in an anchor-agitated vessel. They observed an increase in the fraction of the well-mixed region from 0.7 to 0.95 with increase in impeller speed for both Newtonian and non-Newtonian fluids but the increase is small for viscous fluids. Anne-Archard et al.[19]studied numerically the hydrodynamics and power consumption in a stirred vessel by helical and anchor agitators. They discussed the Metzner-Otto correlation for yield stress fluids.

    By CFD simulations, Prajapati and Ein-Mozaffari[6]investigated the mixing of yield stress fluids for an anchor agitator. They found that the optimum values for the impeller width-to-tank diameter and impeller clearance-to tank diameter ratios were 0.102 and 0.079, respectively. The mixing time and the specific power consumption results for different operating conditions showed that a four-blade anchor impeller is more efficient than a two-blade anchor impeller.

    Our search of the literature shows that a little space has been reserved to the prediction of 3-D hydrodynamics of power-law fluids in a tank equipped with an anchor impeller, through CFD modeling. Thus,the purpose of this paper is to simulate the 3-D flow fields generated by an anchor impeller in the agitation of power-law fluids in a cylindrical tank through the CFD technique and to search another design giving better performance.

    The effects of fluid rheology, agitator speed, impeller blade width, number of blades and some other design parameters on the flow pattern, cavern size and power consumption were evaluated. 0.3 m, height:H/ D=1) fitted with an anchor agitator of 0.006 m×0.012 m blade width which is mounted on a shaft of 0.018 m of diameter(ds). The liquid level is kept equal to the vessel height. The impeller is placed at a clearance(c)from the vessel base equal to 0.02 m.

    Fig.1 Simulated system

    The effect of blade diameter(d )is investigated,four geometrical configurations are realized for this purpose, which are:d/ D=0.57, 0.65, 0.73 and 0.82 respectively.

    2. Mathematical modeling

    The fluid simulated has a shear thinning behavior modeled by the Oswald law. Table 1 resumes the fluid properties (fluid density(ρ), power law index(n)and consistency index(m)) according to the measure of Triveni et al.[7].

    Table 1 Properties of the non-Newtonian fluid studied

    For non-Newtonian fluids, the apparent viscosity(η ) is taken as[2,20]

    The average shear rate is

    where Ksis the shear rate constant andNis the impeller rotational speed.

    1. Simulated system

    Details of the simulated system are shown in Fig.1. It consists of a stirred vessel (diameter:D=

    The generalized Reynolds number (Reg)for non-Newtonian fluids is defined as

    Most of the published literature on shear rate constant had considered the dependency of Kson flow behavior n. But Tanguy et al.[15]reported that Ksis independent ofn . Though the variation in term [(3n+1)/ 4n]n(n-1)is from 0.78 to 0.87 for a range innfrom 0.9 to 0.1, the percentage deviation in Ksis 21.8% and 12.3% respectively. So we have considered the dependence ofKsonnin the calculations.

    Power(P)per unit volume(V)is an important approach for scaling up of an agitated vessel as this parameter ensures a constant specific interfacial area. It can be calculated by integration of the viscous dissipation in all the vessel volume

    where Qvis the viscous dissipation.

    The power number(N p)is calculated as

    3. CFD simulations

    A commercial CFD package (CFX 13.0) was employed to solve the momentum and continuity equations using the finite volume method. A pre-processor(ANSYS ICEM CFD 13.0) was used to discretize the flow domain with an unstructured tetrahedral mesh. A mesh test is performed in order to ensure the accuracy of our predicted results. The original 3-D mesh of the stirred system had 130 451 computational cells. Then,this number was increased by a factor of about 2, until to 260 902 cells. The additional cells changed the power number by more than 3%. Thus, the number of cells was increased again until 521 804 cells. The last mesh did not change the power number by more than 2.5%, therefore, the mesh with 260 902 cells was employed in this investigation. For further details, please refer to our previous work[21]. The simulations were considered converged when the scaled residuals for each transport equations were below 10-6. Most simulations required about 2 000 iterations for convergence. The computations were performed on a 3.60 GHz Intel Pentium IV CPU having 2.00 GB of RAM. The computational time was about 5 h-6 h.

    4. Validation of the cfd model

    The performance of the anchor impeller has been evaluated based on cavern size and power consumption. First, we have seen necessary to validate the CFD model. For this purpose, we have referred to the work of Prajapati and Ein-Mozaffari[6]. We note that the same geometrical conditions undertaken by these authors have been considered. The variation of power number versus Reynolds number is presented in Fig.2. The comparison of our predicted results with the experimental data given by Prajapati and his co-worker shows a satisfactory agreement.

    Fig.2 Impeller power number versus Reynolds number

    On the other hand, we remark that the power number data fall along the line with the slope of -1 at Reg<30, indicating that the flow is laminar. At Reg>30, the data start deviating from the line with the slope of -1. This means that the flow within the mixing tank is in the transitional regime.

    5. Results and discussion

    Results of the 3-D hydrodynamics in the whole vessel volume are presented in this section. Figure 3(a)shows the variations of tangential and radial velocities along the dimensionless vessel radiusR?, where R?=2R/ D,Ris the radial coordinate. We note that the dimensionless tangential velocityand thedimensionless radial velocityare defined as:andrespectively.

    Fig.3 For 1 % CMC,,Z?=0.5,D/ d=0.57

    From Fig.3(a), it is observed that both components reach up their maximum at the impeller blade tip,and begin to decay continuously until becoming negligible at the immediate contact with the side vessel wall. In comparison between the two velocity components, the tangential one is the dominant (Fig.3(b)). These results agree well with the finding of Chhabra and Richardson[8].

    Fig.4 Streamlines for 1 % CMC,Z?=0.5,d/ D =0.57

    5.1 Effect of Reynolds number

    The mixing performance is a function of the flow pattern generated by the impeller. Parameters such as impeller geometry, rotational speed and fluid rheology affect the flow pattern generated by the impeller in the mixing tank. In our study, different parameters have been investigated, we begin the test by searching the effects of impeller rotational speed.

    It would be very useful to improve the knowledge of hydrodynamics, particularly the sheared/unsheared region distribution, in order to provide a predictive tool for designers. Figure 4 presents the streamlines for different Reynolds numbers at the middle height of vessel (Z?=Z/ D=0.5,Zis the vertical coordinate). The important remark from these slices is the formation of dead zones at the outside corner of the vertical arm. These dead zones can be eliminated by increasing the impeller rotational speed.

    5.2 Effect of fluid rheology

    The influence of fluid rheology is discussed in this section. We recall that the CMC (sodium carboxymethyl cellulose) solution is simulated in this study which has a shear thinning behavior. Two concentrations of CMC have been used and all the fluid properties are reported in Table 1.

    Streamlines are presented in Fig.5 for the two CMC concentrations at a location upper the horizontal arm of the anchor impeller. For a laminar regime(Reg=20)and due to the insufficient impeller rotational speed, two vortices are formed at the blade tip. These vortices are detached from the blade tip going away to the vessel wall with the increase of CMC percentage.

    Fig.5 Streamlines for the classical anchor,Z?=0.2,d/ D =0.57

    Fig.6 Power number for the classical anchor (Case 1),d/ D= 0.57

    The power number is calculated also for the two cases, as show in Fig.6, this parameter is greater with increase of viscosity. On the other hand, the continuous increase of the impeller rotation speed permits a reduction in the power required. However, for Reg>30(transitional regime), the decrease ofNp is slight when compared with the laminar regime.

    5.3 Effect of blade diameter

    A mixing operation can be defined as an artificial creation of the fluid flow to decrease its heterogeneity,to accelerate its transfer and to achieve a certain degree of homogeneity. These factors are related to the impeller design and the flow behavior. For this purpose, we have taken into account the impeller shape and some design parameters.

    In this section, we investigate the influence of impeller blade diameter(d). For the same number of blades(α=2), four geometrical configurations are realized and which are:d/ D=0.57, 0.65, 0.73 and 0.82, respectively. Figure 7 gives an insight about the flow pattern generated by changing the ratiod/ D. For low Reynolds numbers(Reg=20), the formation of recirculation loops is observed at each corner of the blade. Reducing the little space between the impeller blade and vessel wall can participate to eliminate these dead zones. On the other hand, the power required(Table 2) is increased, and this is due to the wall effects and inertial forces.

    Fig.7 Streamlines for, 1% CMC,Z?=0.5,α=2

    Table 2 Power number for Reg=20, 1% CMC,α=2

    5.4 Effect of blade number

    Another parameter which can touch the performance of agitated system is the impeller blade number(α). For this end, three geometrical configurations have been tested, which are:α=2, 4 and 6, respectively.

    For an angular position θ=90o, the variation of mean velocity along the vessel height for different impeller blade numbers is presented in Fig.8. The observation of this figure indicates that there is a great difference between the first case and second one, and just a slight difference between the second and third cases. For the two blades impeller, the fluid motion is less intense which is marked by the formation of a recirculation zone at the blade corner (Fig.9). At the same Reynolds number, these dead zones are eliminated in the second and third cases.

    Fig.8 Mean velocity for Reg=20, 1% CMC,d/ D  =0.57,R?=0.3,θ=90o

    Fig.9 Flow fields for Reg=20, 1% CMC,d/ D =0.57,Case 1

    The agitation of shear thinning fluids results in the formation of zone of intense motion near the impeller (called cavern) with essentially stagnant zone elsewhere. Fig.9 (Line 2) presents the cavern size for the three cases studied, as illustrated: the increase in blade number enlarges the cavern size and enhances the mixing performances. Nevertheless, it is penalizing in terms of power consumption (Table 3). From all of these remarks, and since the dead zones can be elimi-nated by the impeller with four blades, thus α=4can be chosen as a sufficient number.

    Table 3 Power number for Reg=20, 1% CMC,d/ D=

    5.5 Effect of impeller design

    In laminar mixing of highly viscous fluids, the mixing is obtained by a sequence of stretching, folding and breaking mechanisms and not by highly energetic eddies, which makes the design of an optimal mixing device very challenging[22-24].

    Here, we tried to add arm blades at different heights and positions (horizontal and/or vertical), four cases have been investigated and summarized in Fig.10. Values of the power number obtained for all cases studied are summarized in Table 4.

    Fig.10 Cavern size for Reg=20, 1% CMC

    Table 4 Power number for Reg=20, 1% CMC

    The classical anchor is inefficient at low Reynolds numbers (Case 1) and the well stirred region is limited at the tank bottom. Mixing may be enhanced at the upper part of the vessel by adding an horizontal arm in this region (Case 2), and a better enhancement of the axial circulation may be obtained if this arm is placed vertically (Case 3) but with additional power cost.

    6. Conclusion

    In this study, the CFD technique was used to investigate the agitation of CMC solution, which is a shear thinning fluid, with an anchor impeller. The cavern size and the specific power consumption results for different operating conditions showed that the insufficient impeller rotational speed and little blade diameter permit the formation of dead zones at the upper corner of blade. For Reg>20, the decrease of power consumption continues but very slightly. The classical anchor is found inefficient in the laminar regime, thus to eliminate the dead zone, to increase the cavern size and to avoid the deformation of blade we suggest the use of arms (horizontal and vertical). The increase of blade number is also important, based on the comparison made previously we can choose the four bladed as sufficient for obtaining the best performance.

    References

    [1] AMANULLAH A., HJORTH S. A. and NIENOW A. W. Cavern sizes generated in highly shear thinning viscous fluids by Scaba 3SHP1 impeller[J]. Food and Bioproducts Processing, 1997, 75(4): 232-238.

    [2] WOZIWODZKI S., BRONIARZ-PRESS L. and OCHOWIAK M. Transitional mixing of shear-thinning fluids in vessels with multiple impellers[J]. Chemical Engineering and Technology, 2010, 33(7): 1099-1106.

    [3] MAA? S., EPPINGER T. and ALTWASSER S. et al. Flow field analysis of stirred liquid-liquid systems in slim reactors[J]. Chemical Engineering and Technology,2011, 34(8): 1215-1227.

    [4] IRANZO A., BARBERO R. and DOMINGO J. et al. Numerical investigation of the effect of impeller design parameters on the performance of a multiphase bafflestirred reactor[J]. Chemical Engineering and Technology, 2011, 34(8): 1271-1280.

    [5] WOZIWODZKI S. Unsteady mixing characteristics in a vessel with forward-reverse rotating impeller[J]. Chemical Engineering and Technology, 2011, 34(5): 767-774.

    [6] PRAJAPATI P., EIN-MOZAFFARI F. CFD Investigation of the mixing of yield- pseudoplastic fluids with anchor impellers[J]. Chemical Engineering and Technology,2009, 32(8): 1211-1218.

    [7] TRIVENI B., VISHWANADHAM B. and MADHAVI T. et al. Mixing studies of non-Newtonian fluids in an anchor agitated vessel[J]. Chemical Engineering Research and Design, 2010, 88(7): 809-818.

    [8] CHHABRA R. P., RICHARDSON J. F. Liquid mixing: In non Newtonian flow in process industries[M]. Oxford, UK: Butterworth-Heinemann, 1999, 324-391.

    [9] OHTA M., KURIYAMA M. and ARAI K. et al. A twodimensional model for the secondary flow in an agitated vessel with anchor impeller[J]. Journal of Chemical Engineering of Japan,1985,18(1): 81-84.

    [10] NAGATA S. Heat transfer in agitated vessel. In mixing: Principles and applications[M]. New York, USA: Wiley,1975, 385-387.

    [11] BERTRAND F., TANGAY P. A. and BRITO-DE LA FUENTE E. A new perspective for the mixing of yield stress fluids with anchor impellers[J]. Journal of Chemical Engineering of Japan, 1996, 29(1): 51-58.

    [12] SAVREUX F., JAY P. and ALBERT M. Viscoplastic fluid mixing in a rotating tank[J]. Chemical Engineering Science, 2007, 62(8): 2290-2301.

    [13] AKITI O., YEBOAH A. and BAI G. et al. Hydrodynamic effects on mixing and competitive reactions in laboratoryreactors[J]. Chemical Engineering Science, 2005, 60(8-9): 2341-2354.

    [14] KARRAY S., DRISS Z. and KCHAOU H. et al. Hydromechanics characterization of the turbulent flow generated by anchor impellers[J]. Engineering Applications of Computational Fluid Mechanics, 2011, 5(3): 315-328.

    [15] TANGUY P. A., THIBAULT F. and BRITO DE LA FUENTE E. A new investigation of the Metzner-Otto concept for anchor mixing impellers[J]. Canadian Journal of Chemical Engineering, 1996, 74(2): 222-228.

    [16] METZNER A. B., OTTO R. E. Agitation of non-Newtonian fluids[J]. AIChE Journal, 1957, 3(1): 3-10

    [17] ESPINOSA-SOLARES T., BRITO-DE LA FUENTE E. and THIBAULT F. et al. Power consumption with anchor mixers-effect of bottom clearance[J]. Chemical Engineering Communications, 1997, 157(1): 65-71.

    [18] TRIVENI B., VISHWANADHAM B. and VENKATESHWAR S. Studies on heat transfer to Newtonian and non-Newtonian fluids in agitated vessel[J]. Heat Mass Transfer, 2008, 44: 1281-1288.

    [19] ANNE-ARCHARD D., MAROUCHE M. and BOISSON H. C. Hydrodynamics and Metzner-Otto correlation in stirred vessels for yield stress fluids[J]. Chemical Engineering Journal, 2006, 125(1): 15-24.

    [20] MURTHY S. S., JAYANTI S. Mixing of power-law fluids using anchors: Metzner-Otto concept revisited[J]. AIChE Journal, 2003, 49(1): 30-40.

    [21]AMEUR H., BOUZIT M. and HELMAOUI M. Numerical study of fluid flow and power consumption in a stirred vessel with a Scaba 6SRGT impeller[J]. Chemical and Process Engineering, 2011, 32(4): 351-366.

    [22] IRANSHAHI A., DEVALS C. and HENICHE M. et al. Hydrodynamics characterizations of the Maxblend impeller[J]. Chemical Engineering Science, 2007, 62(14): 3641-3653.

    [23] AMEUR H., BOUZIT M. Mixing in shear thinning fluids[J].Brazilian Journal of Chemical Engineering, 2012,29(2): 349-358.

    [24] AMEUR H., BOUZIT M. and HELMAOUI M. Hydrodynamic study involving a Maxblend impeller with yield stress fluids[J]. Journal of Mechanical Science and Technology 2012, 26(5): 1523-1530.

    10.1016/S1001-6058(16)60671-6

    February 10, 2015, Revised June 13, 2015)

    * Biography: Houari AMEUR (1982-), Male, Ph. D.,Assistant Professor

    2016,28(4):669-675

    国产成人av激情在线播放| 99re在线观看精品视频| 好男人在线观看高清免费视频 | 中出人妻视频一区二区| 好男人电影高清在线观看| 久9热在线精品视频| 999精品在线视频| 在线观看午夜福利视频| 国产精品免费视频内射| 久久久久久久久久久久大奶| 久久精品亚洲精品国产色婷小说| 国产一区二区三区在线臀色熟女| 9色porny在线观看| 精品乱码久久久久久99久播| 国产精品 欧美亚洲| 国产主播在线观看一区二区| 熟女少妇亚洲综合色aaa.| 亚洲国产毛片av蜜桃av| 久久精品国产99精品国产亚洲性色 | 欧美另类亚洲清纯唯美| 少妇被粗大的猛进出69影院| 国产精品永久免费网站| 国产精品久久久人人做人人爽| 欧美日韩亚洲国产一区二区在线观看| 国产高清激情床上av| 国产精品永久免费网站| 久久中文看片网| 国产日韩一区二区三区精品不卡| 日韩欧美一区二区三区在线观看| 丰满人妻熟妇乱又伦精品不卡| 精品国产美女av久久久久小说| 午夜久久久久精精品| 老司机午夜福利在线观看视频| 亚洲一区高清亚洲精品| 最近最新中文字幕大全免费视频| 国产高清激情床上av| 成人av一区二区三区在线看| 9热在线视频观看99| 午夜免费激情av| 精品电影一区二区在线| 中出人妻视频一区二区| 在线永久观看黄色视频| 人人澡人人妻人| 久久久久久久午夜电影| 久久精品亚洲精品国产色婷小说| 大型av网站在线播放| 国产精品亚洲一级av第二区| 欧美日韩瑟瑟在线播放| 久久久久国产精品人妻aⅴ院| 搡老妇女老女人老熟妇| av网站免费在线观看视频| 十八禁人妻一区二区| 久久久久久国产a免费观看| 在线视频色国产色| 亚洲三区欧美一区| 啦啦啦观看免费观看视频高清 | 黑人巨大精品欧美一区二区蜜桃| 欧美成人免费av一区二区三区| av在线播放免费不卡| 亚洲欧美日韩高清在线视频| 国产精品自产拍在线观看55亚洲| 国产精品国产高清国产av| 两性夫妻黄色片| 精品人妻1区二区| 国产精品 欧美亚洲| 色综合站精品国产| 女性被躁到高潮视频| 一区在线观看完整版| 精品久久久久久,| 亚洲情色 制服丝袜| 国内毛片毛片毛片毛片毛片| 一级a爱视频在线免费观看| 久9热在线精品视频| 啦啦啦免费观看视频1| 欧美一级a爱片免费观看看 | 最新在线观看一区二区三区| 在线永久观看黄色视频| 一区二区三区国产精品乱码| 精品免费久久久久久久清纯| 身体一侧抽搐| 亚洲第一欧美日韩一区二区三区| 亚洲第一青青草原| 亚洲午夜理论影院| 色播亚洲综合网| 国产精品综合久久久久久久免费 | 黑人欧美特级aaaaaa片| 黄色视频,在线免费观看| 变态另类成人亚洲欧美熟女 | 国产精品1区2区在线观看.| 久9热在线精品视频| 一a级毛片在线观看| 亚洲精品av麻豆狂野| 69av精品久久久久久| 老熟妇仑乱视频hdxx| 精品久久久久久成人av| 亚洲av日韩精品久久久久久密| 曰老女人黄片| 99久久国产精品久久久| 1024香蕉在线观看| 搞女人的毛片| 成年人黄色毛片网站| 精品一品国产午夜福利视频| 久久 成人 亚洲| 久久天躁狠狠躁夜夜2o2o| 伊人久久大香线蕉亚洲五| 久久伊人香网站| 国产精品一区二区在线不卡| 亚洲第一青青草原| 久久精品亚洲精品国产色婷小说| 波多野结衣一区麻豆| 国产不卡一卡二| 亚洲国产欧美网| 成人手机av| av在线播放免费不卡| 91九色精品人成在线观看| 两性夫妻黄色片| 少妇被粗大的猛进出69影院| 亚洲自偷自拍图片 自拍| 精品熟女少妇八av免费久了| 母亲3免费完整高清在线观看| av天堂在线播放| 国产高清videossex| 国产av精品麻豆| 亚洲国产欧美日韩在线播放| 亚洲国产精品久久男人天堂| 久久久久久久久中文| 欧美 亚洲 国产 日韩一| 久久九九热精品免费| 美女免费视频网站| 欧美日本视频| 午夜精品在线福利| 国产一卡二卡三卡精品| 亚洲一区中文字幕在线| 两人在一起打扑克的视频| 9色porny在线观看| 淫妇啪啪啪对白视频| 中文字幕最新亚洲高清| 一卡2卡三卡四卡精品乱码亚洲| 国产单亲对白刺激| 法律面前人人平等表现在哪些方面| 国产精品自产拍在线观看55亚洲| 国产精品影院久久| 91在线观看av| 日韩一卡2卡3卡4卡2021年| videosex国产| 好男人电影高清在线观看| 精品久久久久久久人妻蜜臀av | 很黄的视频免费| videosex国产| 亚洲精品在线观看二区| 国产精品免费一区二区三区在线| 一区福利在线观看| 波多野结衣av一区二区av| 91成人精品电影| 久久久久亚洲av毛片大全| 嫩草影视91久久| 最好的美女福利视频网| 怎么达到女性高潮| bbb黄色大片| 国产精品日韩av在线免费观看 | 国产在线精品亚洲第一网站| 黄色视频,在线免费观看| 午夜影院日韩av| 天天一区二区日本电影三级 | 久久婷婷成人综合色麻豆| 50天的宝宝边吃奶边哭怎么回事| 午夜福利视频1000在线观看 | 性欧美人与动物交配| 少妇裸体淫交视频免费看高清 | 久久狼人影院| 成人国产综合亚洲| 午夜久久久在线观看| 久久久久国内视频| 宅男免费午夜| 999久久久精品免费观看国产| 黄色丝袜av网址大全| www.www免费av| 国产精品一区二区三区四区久久 | 久久天躁狠狠躁夜夜2o2o| 18禁国产床啪视频网站| 亚洲电影在线观看av| 国产成人av激情在线播放| 99香蕉大伊视频| 亚洲无线在线观看| 乱人伦中国视频| 一本综合久久免费| 女人被狂操c到高潮| 日韩av在线大香蕉| 国产av一区二区精品久久| 亚洲五月色婷婷综合| 国内精品久久久久精免费| 99在线视频只有这里精品首页| 成人亚洲精品一区在线观看| 午夜福利18| 日韩精品中文字幕看吧| 欧美大码av| 精品欧美国产一区二区三| 91成年电影在线观看| 精品电影一区二区在线| 亚洲专区字幕在线| 色av中文字幕| 禁无遮挡网站| 亚洲精品粉嫩美女一区| 亚洲国产高清在线一区二区三 | 国产一区二区三区在线臀色熟女| 无遮挡黄片免费观看| 一二三四在线观看免费中文在| 九色国产91popny在线| 欧美人与性动交α欧美精品济南到| 国产精品九九99| 国产在线观看jvid| 国产精品免费视频内射| 精品国内亚洲2022精品成人| 极品人妻少妇av视频| 精品免费久久久久久久清纯| 久久精品国产清高在天天线| 纯流量卡能插随身wifi吗| 亚洲自偷自拍图片 自拍| 伦理电影免费视频| 日本一区二区免费在线视频| 日本a在线网址| 午夜免费观看网址| 色精品久久人妻99蜜桃| 在线播放国产精品三级| 国产乱人伦免费视频| 两性午夜刺激爽爽歪歪视频在线观看 | 国产一级毛片七仙女欲春2 | 日韩欧美在线二视频| 一边摸一边抽搐一进一小说| 99国产精品免费福利视频| 大型黄色视频在线免费观看| 日韩国内少妇激情av| 久久午夜综合久久蜜桃| 极品人妻少妇av视频| 国产精品久久视频播放| 90打野战视频偷拍视频| 在线观看一区二区三区| 999精品在线视频| 99国产精品一区二区三区| 国产亚洲av高清不卡| 国产蜜桃级精品一区二区三区| 亚洲熟妇中文字幕五十中出| 成在线人永久免费视频| 亚洲国产精品成人综合色| 青草久久国产| 精品久久蜜臀av无| 国产国语露脸激情在线看| 久久精品成人免费网站| 黄色视频,在线免费观看| 美女高潮喷水抽搐中文字幕| 国产一区在线观看成人免费| 亚洲全国av大片| 亚洲中文字幕日韩| 国产免费男女视频| 亚洲精品av麻豆狂野| 午夜久久久久精精品| 狂野欧美激情性xxxx| 在线观看日韩欧美| 国产97色在线日韩免费| 男男h啪啪无遮挡| 日韩精品中文字幕看吧| 成人av一区二区三区在线看| 久久国产精品男人的天堂亚洲| 国产精品,欧美在线| 90打野战视频偷拍视频| 欧美成狂野欧美在线观看| 一个人观看的视频www高清免费观看 | 成人免费观看视频高清| 日韩 欧美 亚洲 中文字幕| 欧美+亚洲+日韩+国产| 亚洲中文字幕一区二区三区有码在线看 | 国产精品爽爽va在线观看网站 | 色综合婷婷激情| 高潮久久久久久久久久久不卡| 精品午夜福利视频在线观看一区| 国产成人av教育| 国产精品av久久久久免费| 99精品欧美一区二区三区四区| 两个人免费观看高清视频| 美女大奶头视频| 老司机靠b影院| 久久国产精品影院| 女性被躁到高潮视频| 成人永久免费在线观看视频| 国产精品野战在线观看| 人人澡人人妻人| 天堂影院成人在线观看| 精品欧美一区二区三区在线| 午夜老司机福利片| 香蕉国产在线看| 99riav亚洲国产免费| 69av精品久久久久久| 午夜亚洲福利在线播放| 琪琪午夜伦伦电影理论片6080| 免费在线观看完整版高清| 国产蜜桃级精品一区二区三区| 亚洲国产看品久久| 91成人精品电影| 婷婷精品国产亚洲av在线| 999久久久国产精品视频| 丝袜在线中文字幕| 欧美日韩黄片免| 国产午夜福利久久久久久| 一边摸一边做爽爽视频免费| av免费在线观看网站| 色婷婷久久久亚洲欧美| av电影中文网址| 亚洲av成人一区二区三| 看黄色毛片网站| 国产成人免费无遮挡视频| 亚洲精品av麻豆狂野| 中文字幕av电影在线播放| 国产成人av激情在线播放| 精品一区二区三区av网在线观看| 久久人妻av系列| 最新美女视频免费是黄的| 久久午夜综合久久蜜桃| 久久影院123| 午夜久久久久精精品| 久久午夜综合久久蜜桃| 91大片在线观看| 久久人人爽av亚洲精品天堂| 亚洲天堂国产精品一区在线| 国产aⅴ精品一区二区三区波| 国产aⅴ精品一区二区三区波| 久久国产精品人妻蜜桃| 人人澡人人妻人| 精品国内亚洲2022精品成人| 日日爽夜夜爽网站| 国产精品电影一区二区三区| 免费在线观看日本一区| 脱女人内裤的视频| 波多野结衣巨乳人妻| 9191精品国产免费久久| 国产成+人综合+亚洲专区| 欧美 亚洲 国产 日韩一| 国产精品国产高清国产av| 国产乱人伦免费视频| 一级黄色大片毛片| 精品国产超薄肉色丝袜足j| 欧美亚洲日本最大视频资源| 国产高清视频在线播放一区| 日韩免费av在线播放| 免费看a级黄色片| 伊人久久大香线蕉亚洲五| 人人妻人人澡欧美一区二区 | 成年人黄色毛片网站| 久久香蕉激情| 美女 人体艺术 gogo| 久久草成人影院| 丰满人妻熟妇乱又伦精品不卡| 精品第一国产精品| 成人欧美大片| 国产亚洲精品综合一区在线观看 | 在线观看一区二区三区| 久久精品国产清高在天天线| 长腿黑丝高跟| 天天添夜夜摸| cao死你这个sao货| 男人的好看免费观看在线视频 | 在线观看舔阴道视频| 亚洲午夜理论影院| 色老头精品视频在线观看| 国产私拍福利视频在线观看| 18禁黄网站禁片午夜丰满| 成人精品一区二区免费| 好男人电影高清在线观看| 国产亚洲欧美在线一区二区| 在线观看日韩欧美| 日日爽夜夜爽网站| 亚洲全国av大片| 久久天堂一区二区三区四区| 欧美激情极品国产一区二区三区| 搡老妇女老女人老熟妇| 久久久国产成人精品二区| 伦理电影免费视频| 波多野结衣巨乳人妻| 成年版毛片免费区| 国产一区二区三区视频了| 国产精品久久久久久亚洲av鲁大| av在线播放免费不卡| 久久精品影院6| 国产精品av久久久久免费| 午夜福利在线观看吧| 久久这里只有精品19| 成人欧美大片| 国产xxxxx性猛交| 午夜免费激情av| 成人18禁高潮啪啪吃奶动态图| 动漫黄色视频在线观看| 岛国视频午夜一区免费看| 后天国语完整版免费观看| 午夜免费鲁丝| 老熟妇仑乱视频hdxx| 亚洲七黄色美女视频| 一卡2卡三卡四卡精品乱码亚洲| 丁香六月欧美| 国产精品国产高清国产av| 亚洲 国产 在线| 91麻豆精品激情在线观看国产| 亚洲精品美女久久av网站| 69av精品久久久久久| 99久久国产精品久久久| 亚洲精品国产色婷婷电影| 色综合婷婷激情| 午夜两性在线视频| 亚洲国产精品999在线| 久久精品影院6| 国产精品 国内视频| 97超级碰碰碰精品色视频在线观看| 91大片在线观看| 国产精品乱码一区二三区的特点 | 亚洲av第一区精品v没综合| 国产熟女午夜一区二区三区| 精品久久蜜臀av无| 高潮久久久久久久久久久不卡| 国产精品国产高清国产av| 久久欧美精品欧美久久欧美| 在线永久观看黄色视频| 欧美激情高清一区二区三区| 好男人在线观看高清免费视频 | 久久久国产成人免费| √禁漫天堂资源中文www| 热re99久久国产66热| 亚洲国产高清在线一区二区三 | 国产片内射在线| 国产亚洲精品一区二区www| 亚洲精品在线美女| 欧美黑人精品巨大| 国产av精品麻豆| 国产熟女午夜一区二区三区| 国内久久婷婷六月综合欲色啪| 久久精品国产综合久久久| 成人特级黄色片久久久久久久| 国产不卡一卡二| 久久中文字幕一级| 女警被强在线播放| 黄片播放在线免费| 国产精品一区二区精品视频观看| av天堂在线播放| 欧美激情极品国产一区二区三区| 99riav亚洲国产免费| 精品久久久久久成人av| 亚洲专区字幕在线| 美女 人体艺术 gogo| 亚洲国产中文字幕在线视频| 无限看片的www在线观看| 99久久久亚洲精品蜜臀av| 亚洲第一青青草原| a级毛片在线看网站| 自拍欧美九色日韩亚洲蝌蚪91| 搡老熟女国产l中国老女人| 悠悠久久av| 日韩欧美一区视频在线观看| 18禁美女被吸乳视频| 很黄的视频免费| 精品久久久久久久人妻蜜臀av | 美女大奶头视频| 俄罗斯特黄特色一大片| 非洲黑人性xxxx精品又粗又长| 国产成人av激情在线播放| 欧美成人午夜精品| 国产精品久久久人人做人人爽| cao死你这个sao货| 色av中文字幕| 欧美精品啪啪一区二区三区| 日韩成人在线观看一区二区三区| 大陆偷拍与自拍| 97超级碰碰碰精品色视频在线观看| 中文字幕高清在线视频| 悠悠久久av| 亚洲精品国产精品久久久不卡| 国产欧美日韩一区二区精品| 欧美一级a爱片免费观看看 | 国产成年人精品一区二区| 十八禁人妻一区二区| 国产人伦9x9x在线观看| 亚洲五月色婷婷综合| 国产欧美日韩一区二区三| 久久久久久久久久久久大奶| 法律面前人人平等表现在哪些方面| 激情在线观看视频在线高清| avwww免费| 中亚洲国语对白在线视频| 法律面前人人平等表现在哪些方面| 91成人精品电影| 夜夜夜夜夜久久久久| av中文乱码字幕在线| 久久香蕉激情| 9热在线视频观看99| 成人av一区二区三区在线看| 十八禁网站免费在线| 叶爱在线成人免费视频播放| 国产精品秋霞免费鲁丝片| 韩国av一区二区三区四区| 午夜福利18| 亚洲aⅴ乱码一区二区在线播放 | 九色亚洲精品在线播放| 国产一卡二卡三卡精品| 国产av又大| 丝袜美足系列| 99国产极品粉嫩在线观看| av在线天堂中文字幕| 欧美中文日本在线观看视频| 天天一区二区日本电影三级 | 国产成人av教育| av电影中文网址| av在线播放免费不卡| 18禁裸乳无遮挡免费网站照片 | 女生性感内裤真人,穿戴方法视频| 国产亚洲欧美98| 国产精品影院久久| 成人国语在线视频| 男人舔女人的私密视频| a在线观看视频网站| 亚洲午夜精品一区,二区,三区| 亚洲av第一区精品v没综合| 中文字幕精品免费在线观看视频| 亚洲七黄色美女视频| 亚洲中文日韩欧美视频| 黄片小视频在线播放| 色av中文字幕| 涩涩av久久男人的天堂| 久久久国产成人免费| 色哟哟哟哟哟哟| 久久精品人人爽人人爽视色| 亚洲欧美精品综合久久99| 一区二区三区激情视频| 露出奶头的视频| 亚洲国产精品久久男人天堂| 丝袜在线中文字幕| 国产亚洲精品久久久久5区| 国产高清videossex| 伊人久久大香线蕉亚洲五| а√天堂www在线а√下载| xxx96com| 久久人人精品亚洲av| a在线观看视频网站| 亚洲国产欧美网| 国产精品香港三级国产av潘金莲| 亚洲五月婷婷丁香| 欧美乱码精品一区二区三区| 午夜a级毛片| 在线观看免费午夜福利视频| 欧美最黄视频在线播放免费| av欧美777| 国产激情久久老熟女| 亚洲 国产 在线| 视频在线观看一区二区三区| 精品福利观看| 久久中文字幕人妻熟女| 男男h啪啪无遮挡| 久久精品影院6| 久久国产精品人妻蜜桃| 午夜福利一区二区在线看| 成熟少妇高潮喷水视频| 一级a爱片免费观看的视频| 欧美一级毛片孕妇| 日本 av在线| 久久久国产成人免费| 国语自产精品视频在线第100页| cao死你这个sao货| 精品高清国产在线一区| 国产欧美日韩一区二区三| 欧美黄色淫秽网站| 久久久久久免费高清国产稀缺| 精品久久久久久久毛片微露脸| 国产片内射在线| 波多野结衣av一区二区av| 国产欧美日韩一区二区精品| 9热在线视频观看99| or卡值多少钱| 50天的宝宝边吃奶边哭怎么回事| 一级a爱片免费观看的视频| 操出白浆在线播放| 国产亚洲av高清不卡| 国产亚洲精品久久久久5区| 国产激情欧美一区二区| 国产亚洲精品av在线| 美女高潮喷水抽搐中文字幕| 色综合欧美亚洲国产小说| 成人国产一区最新在线观看| 母亲3免费完整高清在线观看| 欧美日本视频| 91精品三级在线观看| √禁漫天堂资源中文www| 亚洲精品一区av在线观看| 午夜福利视频1000在线观看 | 久久中文看片网| 美女扒开内裤让男人捅视频| 亚洲少妇的诱惑av| 久久香蕉激情| 夜夜看夜夜爽夜夜摸| 满18在线观看网站| 91九色精品人成在线观看| 啦啦啦 在线观看视频| 9色porny在线观看| 一区二区日韩欧美中文字幕| 久久精品国产99精品国产亚洲性色 | 成人欧美大片| 88av欧美| 91大片在线观看| 久久亚洲精品不卡| 欧美一级毛片孕妇| 最好的美女福利视频网| 一进一出抽搐动态| 免费在线观看影片大全网站| 一级片免费观看大全| 亚洲国产精品合色在线| 亚洲av电影在线进入| 成人欧美大片| www.999成人在线观看| 国产日韩一区二区三区精品不卡| av在线播放免费不卡| 国产区一区二久久|