• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    1-D coupled non-equilibrium sediment transport modeling for unsteady flows in the discontinuous Galerkin framework*

    2016-10-18 01:45:14FarzamSafarzadehMALEKIAbdulKHAN
    水動力學研究與進展 B輯 2016年4期

    Farzam Safarzadeh MALEKI, Abdul A. KHAN

    1. Engineering Department, Massachusetts Maritime Academy, Buzzards Bay, MA 02532, USA,

    E-mail: fmaleki@maritime.edu

    2. Glenn Department of Civil Engineering, Clemson University, Clemson, SC 29634, USA

    ?

    1-D coupled non-equilibrium sediment transport modeling for unsteady flows in the discontinuous Galerkin framework*

    Farzam Safarzadeh MALEKI1, Abdul A. KHAN2

    1. Engineering Department, Massachusetts Maritime Academy, Buzzards Bay, MA 02532, USA,

    E-mail: fmaleki@maritime.edu

    2. Glenn Department of Civil Engineering, Clemson University, Clemson, SC 29634, USA

    A high-resolution, 1-D numerical model has been developed in the discontinuous Galerkin framework to simulate 1-D flow behavior, sediment transport, and morphological evaluation under unsteady flow conditions. The flow and sediment concentration variables are computed based on the one-dimensional shallow water flow equations, while empirical equations are used for entrainment and deposition processes. The sediment transport model includes the bed load and suspended load components. New formulations for Harten-Lax-van Leer (HLL) and Harten-Lax-van Contact (HLLC) are presented for shallow water flow equations that include the bed load and suspended load fluxes. The computational results for the flow and morphological changes after two dam break events are compared with the physical model tests. Results show that the modified HLL and HLLC formulations are robust and can accurately predict morphological changes in highly unsteady flows.

    dam break flow, sediment transport modeling, Harten-Lax-van Leer (HLL) and Harten-Lax-van Contact (HLLC) flux functions, discontinuous Galerkin scheme

    Introduction

    Sediment transport modeling is of great importance in investigating morphological changes in rivers,coastal areas, and estuaries under steady and unsteady flows. Significant morphological changes occur during major flood events and highly unsteady flows, such as dam break floods. Floods resulting from dam break are not uncommon, Graham and Major[1]compiled a list of floods resulting from dam failures in the United States that cause major damage. Over the last decade,several numerical models[2-4]have been developed for solving shallow water flow equations over fixed bed. However, the strong entrainment/deposition capability of transient flows in such events, which leads to major morphological changes, cannot be ignored. As pointed out by Wu and Wang[5], in earlier studies either the coupling between flow, sediment transport, and bed change was ignored, or the assumption of local equilibrium of sediment transport with the flow conditions was used. Cao et al.[6]studied both the equilibrium and non-equilibrium models for fluvial sediment transport and found that for the bed load sediment transport the differences between equilibrium and non-equilibrium models were essentially negligible, while non-equilibrium modeling was critical for suspended sediment transport. However, in the case of highly unsteady flow,such as resulting from a dam break, the assumption of equilibrium sediment transport may not be valid[7]. Fraccarollo and Capart[8]examined the sudden erosional flow initiated by the release of a dam break wave over a loose sediment bed. However, due to the assumption of constant sediment concentration at lower level, the applicability of the model is limited to low concentration cases.

    Cao et al.[9]presented a dam break flow model on a mobile bed with non-equilibrium sediment transport and morphological evolution. The model over-predicted channel erosion[5]. Simpson and Castelltort[10]introduced a model that coupled water flow and sediment transport dynamics. The model was based on theshallow water flow equations, conservation of sediment concentration, and empirical functions for bed friction, beds erosion, and deposition. Wu and Wang[5]developed a 1-D model for dam break flows over movable bed based on the upwind scheme of Ying et al.[11,12]. Physical model tests of dam break flows over mobile bed were used to validate the numerical model. Abderrezzak and Paquier[13]proposed a 1-D mathematical model that accounted for changes in channel cross sectional geometry with time by incorporating various approaches for updating cross-sectional shape.

    To date, there is no specific study of coupled flow and sediment transport modeling using the discontinuous Galerkin framework. In this paper, the flow and morphological evolution after dam failure is investigated. The Harten-Lax-van Leer (HLL) and Harten-Lax-van Contact (HLLC) formulations are modified to include the treatment of numerical fluxes associated with suspended and bed load sediment transport. Additionally, the performance of the two approximate Riemann solvers is investigated.

    1. Sediment transport

    Sediment transport in natural environment can be classified as bed load and suspended load[14]. The sediment transport can be assumed to be in equilibrium state or non-equilibrium state. In equilibrium state, sediment transport is assumed to be always at equilibrium (also called capacity) and governed by the local flow conditions. In contrast, the non-equilibrium treatment accounts for the time and space required for sediment particles to adapt to its potential equilibrium state[5]. Several researchers[15,16]have used equilibrium sediment transport concept in their models, while other researchers[7,14]used non-equilibrium sediment transport concept.

    Although the equilibrium sediment transport assumption is valid for long term simulations, the lag effects in highly unsteady flow events, such as dam break flows and flash floods, cannot be ignored[17]. In non-equilibrium sediment transport, the adaptation length and suspended load adaptation coefficient play an important role in determining the eventual bed profile. Many researchers have proposed different formulations for non-equilibrium adaptation length[5,9,13]. However, it is well established[14]that these two parameters are case dependent and calibration for a particular scenario should be considered.

    2. Mathematical model

    The generalized form of 1-D shallow water flow equations for the unsteady water-sediment mixture are the mass and momentum conservation equations as given by Eqs.(1) and (2)[5]. The source terms in these equations account for the interaction of flow and sediment, and bed change. In these equationst is time,A is the flow area,Qis the discharge of the watersediment mixture,xis the longitudinal coordinate,P is the porosity of the bed material,B is the width of the channel at the water surface,D andEare sediment deposition and entrainment,Lis the non-equilibrium adaptation length for the total load,Qb*is the equilibrium bed-load transport rate and can be defined by empirical formulae[18],Q is the actual bed load transport,g is the gravitational acceleration,Zis the water surface elevation,nis the Manning's roughness coefficient,R is the hydraulic radius,hlis the local flow depth,ρis the density of water and sediment mixture and is given by ρ=ρw(1-Ct)+ ρsCt,Ctis the volumetric concentration of total sediment load,ρwis the density of water, and ρsis the density of sediment.

    In the mass conservation equation, Eq.(1), the source term (right hand side of the equation) represents the change in bed elevation due to change in suspended load through entrainment and/or deposition. In the momentum equation, Eq.(2), there are two additional terms compared to the clear water flow equations. The second term on the right hand side of the equation reflects the effect of spatial variation of mixture density[9]. The last term on the right hand side of the equation represents the momentum interactions between the water columns and the erodible bed.

    Suspended and bed load transport rate can be mathematically defined by Eqs.(3) and (4)[5], respectively, whereC is cross section averaged volumetric concentration of suspended load and ubis the velocity of the bed load (usually approximated by the average flow velocity). The total load transport rate,Qt, and the volumetric concentration of total load sediment,Ct, can be defined by Eq.(5).

    The sediment deposition and entrainment are described by Eq.(6). In this equation,ωs=ωso(1-Ct)mis the settling velocity in water-sediment mixture,where ωsois the fall velocity of a single particle in clear water andm is a parameter taken as 4.0 in this study. The actual and equilibrium near bed concentration of suspended load are given by ca(=Cα)and ca*, respectively. Among many empirical formulas for ca*, equations proposed by Van Rijn[18]and Zyserman and Freds?e[19]are tested in this study and are given by Eq.(7). In Eq.(7),d is the sediment size,T is the transport stage number,δ=max(2d,0.005h)is the reference level with h being the flow depth, andwithνbeing the kinematic viscosity. The transport stage number is defined as, whereβis a calibration factor, u*is the bed shear velocity, and u*cris the critical bed shear velocity based on the Shield's diagram. The effect of the bed slope is considered in the critical bed shear velocity[14], however, the results with and without the bed slope effect were the same for the tests conducted in this study. The non-equilibrium adaptation coefficient of suspended load (α) is defined as α=min[αo,(1-P)/C], where αois a parameter that needs to be calibrated for determining the non-equilibrium adaptation coefficient[5]. The settling velocity,ωso, is given by Eq.(8)[14].

    The adaptation length for the total-load sediment transport,L , is given by Eq.(9), where Lbis the non-equilibrium adaptation length for the bed load, andu is the average flow velocity[5]. Equilibrium bed-load transport rate,Qb*, is defined by Eq.(10).

    The porosity of the bed material, P , is given by Eq.(11)[20].

    Fig.1 Illustration of discontinuities at element boundaries in the discontinuous Galerkin formulation

    3. Numerical scheme

    The system of hyperbolic equations can be written in the conservative form as given by Eq.(12). In this system,U,F(xiàn), andS are the vectors of unknown variables, fluxes, and source terms, respectively, and are described in Eqs.(13) and (14). In the continuous finite element approach, the field variables(U)are forced to be continuous across the boundary,

    In discretizing the governing equations, numerical integration for the terms containing spatial derivatives can be written in a general form as ?(?ψ/?x)(such as 1st and 2nd terms in the source term of the momentum equation) and can be approximated using Eq.(16), where C1and C2are considered constants during integration[24,25].

    As explicit time stepping schemes are used, each equation is integrated and solved independently. The integral forms of the mass and momentum equations are shown in Eqs.(7) and (8), respectively, where x1and x2are the end coordinates of an element and νi(i=1,2)are linear test or weight functions. In these equations, the flux terms are integrated by parts,where P( x, t)=Qis the flux term for the continuity equation andG( x, t)=Q2/Ais the flux function for the momentum equation. These flux functions at the element boundaries are calculated using approximate Riemann solvers. The approximate variablesandaswell as any functionare given by Eq.(9), whereνj(j=1,2)are linear shape or interpolating functions. For the Galerkin method, the test and shape functions are the same. To perform the integration, the global coordinates in Eqs.(7) and (8) are transformed to local coordinates.

    Fig.2 Wave structure for the approximate Riemann problem,where SLand SRare shock/rarefaction waves and S*is a contact wave

    Table 1 Parameters involved in HLL and HLLC flux functions

    Fig.3 Water level(h)and volume flow rate(Q)for the Taipei case over fixed bed at 0.303 s

    Fig.4 Water surface (WS) and bed elevation (BE) profiles for the Taipei case after the dam break

    To close the system of equations, the bed deformation must be determined in each time step based on the combination of deposition/entrainment as well as equilibrium/non-equilibrium bed load transport rate difference as given by Eq.(21). The expression on the right hand side of the equation is evaluated at the previous time step.

    4. Model performance

    The accuracy of the developed model is examined in fixed and erodible bed dam break cases. Two sets of laboratory experiments are selected to verify the performance of the model in simulating flow and morphological changes after dam break event. Capart and Young[30]reported an experiment results for dam break flow over erodible bed in University of Taiwan,called Taipei case. Fraccarollo and Capart[8]presented another similar laboratory experimental data conducted in the University of Louvain, called Louvain case. Both experiments were performed in horizontal, rectangular cross section flumes. The Taipei case was conducted in a 1.2 m long, 0.2 m wide, and 0.7 m deepflume using sediment particles of 6.1×10-3m in3diameter. The density of sediment was 1 048 kg/m and settling velocity was 7.6×10-2m/s. In the Louvain case,sediment particles of 3.53×10-3m in diameter with density of 1 540 kg/m, and settling velocity of 0.18 m/s were used. A 2.5 m long, 0.1 m wide, and 0.25 m deep flume was used for the test. In both cases,before the removal of the dam, the water depth upstream of the dam was 0.1 m and the downstream bed was dry. The dams were located at mid-length and spanned the whole width of the channel. The dams are placed at x=0for simulating these tests.

    Fig.5 Water surface (WS) and bed elevation (BE) profiles for the Louvain case after the dam break

    To simulate the Taipei and Louvain cases, the domains are discretized using element sizes of 5× 10-3m, 2.5×10-3m, and 10-3cm, and time steps of 0.001 s, 0.000375 s, and 0.0001 s, respectively. The stability of explicit scheme is subject to the Courant-Friedrichs-Lewy (CFL) condition, the maximum CFL criteria of 0.38 for Taipei case and 0.24 for Louvain case are used. The sensitivity of the simulated results to element and time step sizes is investigated by considering three different time steps/element size. Results showed that by restricting the maximum CFL criteria, the model is not sensitive to time step/element size. In order to simulate the dry bed, two different approaches are tested[11,22]. In the first method, for the initial dry bed downstream of the dam a small depth (ε= 10-6m) and zero discharge are specified. During simulation, if the computed depth at a node is less than ε, the depth is set toεand discharge is set to zero at that node. In the second approach, a small depth,ε,is used as a check to track wet/dry front. The water depth is set to zero for the dry bed area. If the computed water depth at a node is less thanε, the velocity and discharge are set to zero. Both approaches provided same level of accuracy for tests conducted in this paper. However, the results shown are based on the second approach. In both tests, Van Rijn's formulation is used for determining equilibrium near bed concentration for suspended load. The comparison between the Van Rijn's and Zyserman-Freds?e's formulations for the equilibrium near bed concentration is provided later. Figure 3 shows the water surface as well as the volume flow rate for the Taipei test over fixed bed at 0.30 3 safte r the removal of thedam.The measured data forthewatersurfaceprofileforthefixedbedisnot available. The test was conducted using HLL and HLLC flux functions and provided similar results for the water surface profile and volume flow rate. The aim of the test is to show that scheme can model the dam break flow accurately without any oscillations.

    Fig.6 Total load sediments concentration

    Fig.7 Comparison of two empirical formulas for the equilibrium near bed concentration of suspended load

    Figure 4 shows the simulated and measured bed and water surface profiles for the Taipei case at three different times after the removal of the dam using the HLLC flux function. The calibration factor,β, is found to be 2.1 for this case. The non-equilibrium adaptation length for the bed load,Lb, is found to be 0.25 m and the non-equilibrium adaptation coefficient is determined usingαovalue of 2.0. The values for the calibration factor, non-equilibrium adaptation length, andαoare determined to achieve the best fit with the measured data. As shown in Fig.4, the bed deformations are simulated accurately, however the simulated hydraulic jumps are located upstream compared to the measured data. The predicted water surface profiles agree better with the measured data at later stages of the test.

    In Fig.5, the simulated results for the Louvain test are compared with the measured data at three different times after the dam removal using the HLLC flux function. In this case, the calibration factor,β,is found to be 1.2. Similar to the Taipei test, the values for the non-equilibrium adaptation length for the bed load and αoare found to be 0.25 m and 2.0, respectively. The hydraulic jump locations in this test are approximately at the dam location and are simulated accurately. The bed profiles are predicted accurately especially at later stages. The water surface profiles upstream and downstream of the jump are predicted accurately. At the jump locations, which are predictedat the points of maximum bed scour, the predicted water depth are lower than the measured data.

    The total load sediment concentrations for both tests are shown in Fig.6. The smooth profiles of the sediment concentration are in good agreement with other simulated results[5,8]and indicate the stability of the scheme. The simulated results for water surface profiles, bed profiles, and sediment concentration using the discontinuous Galerkin framework are similar to that reported by other researchers using the finite volume method with Godunov scheme for flux approximation[5]and Riemann techniques developed in gas dynamics for modeling homogenous hyperbolic equations[8].

    The HLL flux function was also evaluated for the two test cases and the results were found to be similar to that with the HLLC flux function. The simulations were also performed using the Zyserman-Freds?e's formulation for equilibrium near bed concentration for suspended load. The simulated results are shown in Fig.7 and compared with the measured results at 0.303 s after the dam removal. The results show that maximum bed scour location and location of the hydraulic jump moves downstream with the use of Zyserman-Freds?e's formulation. Except at the location of the hydraulic jump, the water surface profiles based on Van Rijn's and Zyserman-Freds?e's formulations are similar. The bed elevation is over predicted using Zyserman-Freds?e's formulation when compared to the van Rijn's formulation.

    5. Conclusion

    A 1-D shallow water flow and sediment transport model in discontinuous Galerkin framework has been developed. Coupled continuity, momentum, suspended load, bed load, and bed changes are explicitly solved using non-equilibrium sediment transport formulations. The HLL and HLLC flux functions for the 1-D shallow water flow equations are extended to include the suspended sediment and bed load flux terms. Two well-known experimental test cases (Taipei and Louvain cases) are simulated using the developed model. The two flux functions provide similar accuracy. The results show that bed profiles can be predicted accurately, albeit with the modification of the current sediment transport formulae for highly unsteady flows. The computed water surface profiles are in good agreement with the measured data except at the location of the hydraulic jump. Two empirical formulas for the equilibrium near bed concentration for suspended load are considered, results show that Zyserman-Freds?e's formula provide better accuracy by moving the hydraulic jump location to downstream, however,the bed profile is over predicted.

    References

    [1] GRAHAM W. J., MAJOR U. S. dam failures: Their cause,resultant losses, and impact on dam safety programs and engineering practice[C]. Great River History Symposium at World Environmental and Water Resources Congress. Kansas City, Missouri, USA, 2009.

    [2] COZZOLINO L., MORTE R. D. and GIUDICE G. D. et al. A well-balanced spectral volume scheme with the wetting-drying property for the shallow-water equations[J]. Journal of Hydroinformatics, 2012, 14(3): 745-760.

    [3] DüBEN P. D., KORN P. and AIZINGER V. A discontinuous/continuous low order finite element shallow water model on the sphere[J]. Journal of Computational Physics, 2012, 231(6): 2396-2413.

    [4] KHAN A. A., BARKDOLL B. Two-dimensional depthaveraged models for flow simulation in river bends[J]. International Journal of computational Engineering Science, 2001, 2(3): 453-467.

    [5] WU W., WANG S. S. One-dimensional modeling of dambreak flow over movable beds[J]. Journal of Hydraulic Engineering, ASCE, 2007, 133(1): 48-58.

    [6] CAO Z., LI Z. and PENDER G. et al. Non-capacity or capacity model for fluvial sediment transport[J]. Proceedings of the ICE-Water Management, 2012, 165(4): 193-211.

    [7] WU W., VIEIRA D. and WANG S. One-dimensional numerical model for nonuniform sediment transport under unsteady flows in channel networks[J]. Journal of Hydraulic Engineering, ASCE, 2004, 130(9): 914-923.

    [8] FRACCAROLLO L., CAPART H. Riemann wave description of erosional dam-break flows[J]. Journal of Fluid Mechanics, 2002, 461: 183-228.

    [9] CAO Z., PENDER G. and WALLIS S. et al. Computational dam-break hydraulics over erodible sediment bed[J]. Journal of Hydraulic Engineering, ASCE, 2004, 130(7): 689-703.

    [10] SIMPSON G., CASTELLTORT S. Coupled model of surface water flow, sediment transport and morphological evolution[J]. Computers and Geosciences, 2006, 32(10): 1600-1614.

    [11] YING X., KHAN A. A. and WANG S. S. Y. An upwind method for one-dimensional dam break flows[C]. Proceedings of XXX IAHR Congress. Thessaloniki, Greece,2003.

    [12] YING X., KHAN A. A. and WANG S. S. Y. Upwind conservative scheme for the Saint Venant equations[J]. Journal of Hydraulic Engineering, ASCE, 2004, 130(10): 977-987.

    [13] ABDERREZZAK K. E., PAQUIER A. One-dimensional numerical modeling of sediment transport and bed deformation in open channels[J]. Water Resources Research,2009, 45(5): 641-648.

    [14] WU W. Computational river dynamics[M]. Abingdon,UK: CRC Press, Taylor and Francis Group, 2007.

    [15] CUI Y., PAOLA C. and PARKER G. Numerical simulation of aggradation and downstream fining[J]. Journal of Hydraulic Research, 1996, 34(2): 185-204.

    [16] GOUTIèRE L., SOARES-FRAZ?O S. and SAVARY C. et al. One-dimensional model for transient flows involving bed-load sediment transport and changes in flow regimes[J]. Journal of Hydraulic Engineering, ASCE, 2008,134(6): 726-735.

    [17] ZHANG S. Numerical study of sediment transport under unsteady flow[D]. Doctoral Thesis, Tucson, USA: The University of Arizona, 2011.

    [18] Van RIJN L. Sediment transport, Part II: Suspended load transport[J]. Journal of Hydraulic Engineering, ASCE,1984, 110(11): 1613-1641.

    [19] ZYSERMAN J., FREDS?E J. Data analysis of bed concentration of suspended sediment[J]. Journal of Hydraulic Engineering, ASCE, 1994, 120(9): 1021-1042.

    [20] WU W., WANG S. Formulas for sediment porosity and settling velocity[J]. Journal of Hydraulic Engineering,ASCE, 2006, 132(8): 858-862.

    [21] ZHOU J. G., CAUSON D. M. and MINGHAM C. G. et al. The surface gradient method for the treatment of source terms in the shallow-water equations[J]. Journal of Computational Physics, 2001, 168(1): 1-25.

    [22] LAI W., KHAN A. A. Discontinuous Galerkin method for 1-D shallow water flow in nonrectangular and nonprismatic channels[J]. Journal of Hydraulic Engineering,ASCE, 2012, 138(3): 285-296.

    [23] LAI W., KHAN A. A. A discontinuous Galerkin method for two-dimensional shallow water flows[J]. International Journal of Numerical Methods in Fluids, 2012,70(8): 939-960.

    [24] LAI Wencong, KHAN Abdul A. Modeling dam-break flood over natural rivers using discontinuous Galerkin method[J]. Journal of Hydrodynamics, 2012, 24(4): 467-478.

    [25] LAI W., KHAN A. A. Discontinuous Galerkin method for 1D shallow water flows in natural rivers[J]. Engineering Applications of Computational Fluid Mechanics, 2012,6(1): 74-86.

    [26] HARTEN A., LAX P. and Van LEER B. On upstream differencing and Godunov type methods for hyperbolic conservation laws[J]. SIAM Review, 1983, 25(1): 35-61.[27] TORO E. F. Riemann solvers and numerical methods for fluid dynamics: A practical introduction[M]. Dordrecht, The Netherlands: Springer Science+ Business Media, 2009.

    [28] MALEKI Farzam Safarzadeh, KHAN Abdul A. Effect of channel shape on selection of time marching scheme in the discontinuous galerkin method for 1-D open cha- nnel flow[J]. Journal of Hydrodynamics, 2015, 27(3): 413-426.

    [29] KHAN A. A., LAI W. Modeling shallow water flows using the discontinuous Galerkin method[M]. Abingdon,UK: CRC Press, Taylor and Francis Group, 2014.

    [30] CAPART H., YOUNG D. L. Formation of a jump by the dam-break wave over a granular bed[J]. Journal of Fluid Mechanics, 1998, 372: 165-187.

    10.1016/S1001-6058(16)60658-3

    January 23, 2015, Revised September 11, 2015)

    * Biography: Farzam Safarzadeh MALEKI (1983-),Male, Ph. D., Assistant Professor

    Corresponging author: Abdul A. KHAN,E-mail: abdkhan@clemson.edu

    2016,28(4):534-543

    亚洲av免费高清在线观看| 舔av片在线| 久久女婷五月综合色啪小说 | 毛片一级片免费看久久久久| 舔av片在线| 欧美一区二区亚洲| 美女xxoo啪啪120秒动态图| 国国产精品蜜臀av免费| 免费播放大片免费观看视频在线观看| 久久久久久久久久人人人人人人| 亚洲av中文字字幕乱码综合| 精品一区二区三卡| 亚洲精品一区蜜桃| 成人二区视频| 精品99又大又爽又粗少妇毛片| 久久精品国产a三级三级三级| 久热久热在线精品观看| 亚洲精品国产av蜜桃| 久久久久久久大尺度免费视频| 亚洲精品456在线播放app| 国产精品久久久久久精品电影小说 | 大香蕉久久网| 老女人水多毛片| 别揉我奶头 嗯啊视频| 欧美成人午夜免费资源| 中文乱码字字幕精品一区二区三区| 水蜜桃什么品种好| 99热这里只有是精品在线观看| 午夜精品国产一区二区电影 | 欧美激情国产日韩精品一区| 在线精品无人区一区二区三 | 国产有黄有色有爽视频| 国产熟女欧美一区二区| 免费观看在线日韩| 久久久久久九九精品二区国产| 亚洲av欧美aⅴ国产| 自拍偷自拍亚洲精品老妇| 男人舔奶头视频| 亚洲精品成人久久久久久| 搡女人真爽免费视频火全软件| 草草在线视频免费看| 亚洲综合色惰| 自拍欧美九色日韩亚洲蝌蚪91 | 国产高清三级在线| 国产探花在线观看一区二区| 成人一区二区视频在线观看| 国产伦精品一区二区三区四那| 色5月婷婷丁香| 91狼人影院| 国产精品一区二区三区四区免费观看| 久久久久久久久久久免费av| 全区人妻精品视频| 三级国产精品欧美在线观看| 神马国产精品三级电影在线观看| 深夜a级毛片| 精品久久久久久电影网| 国产欧美另类精品又又久久亚洲欧美| 国产精品爽爽va在线观看网站| 久久97久久精品| 男人和女人高潮做爰伦理| 少妇熟女欧美另类| 成人亚洲精品av一区二区| 精品亚洲乱码少妇综合久久| 可以在线观看毛片的网站| 国产成人freesex在线| 欧美区成人在线视频| 91午夜精品亚洲一区二区三区| 成人黄色视频免费在线看| 免费不卡的大黄色大毛片视频在线观看| 偷拍熟女少妇极品色| 97热精品久久久久久| 秋霞在线观看毛片| 狠狠精品人妻久久久久久综合| 联通29元200g的流量卡| 不卡视频在线观看欧美| 欧美区成人在线视频| 亚洲av国产av综合av卡| 精华霜和精华液先用哪个| 我的女老师完整版在线观看| 久久久精品94久久精品| 国产成人免费无遮挡视频| 午夜福利视频1000在线观看| 韩国av在线不卡| 国产精品伦人一区二区| 日本三级黄在线观看| 午夜精品一区二区三区免费看| 免费av观看视频| 亚洲成人av在线免费| 黄色配什么色好看| av天堂中文字幕网| av在线蜜桃| 2021天堂中文幕一二区在线观| 九九久久精品国产亚洲av麻豆| 国产成人福利小说| 青青草视频在线视频观看| 高清欧美精品videossex| 婷婷色av中文字幕| 国产 一区 欧美 日韩| 成人午夜精彩视频在线观看| 九草在线视频观看| 欧美日韩综合久久久久久| 1000部很黄的大片| 国产极品天堂在线| 国产一区二区在线观看日韩| 成人国产av品久久久| 黑人高潮一二区| 国产成人精品婷婷| 啦啦啦在线观看免费高清www| 久久影院123| 久久午夜福利片| 欧美xxxx性猛交bbbb| 欧美3d第一页| 伊人久久国产一区二区| 国产精品国产av在线观看| 国产黄片美女视频| 男的添女的下面高潮视频| 国产精品无大码| 日日撸夜夜添| 久久ye,这里只有精品| 欧美xxxx黑人xx丫x性爽| 国产淫片久久久久久久久| 久久精品久久久久久久性| 午夜精品国产一区二区电影 | 一级毛片黄色毛片免费观看视频| 亚洲国产高清在线一区二区三| 国产精品福利在线免费观看| 久久99热这里只有精品18| 国产亚洲最大av| 久久久久九九精品影院| 热re99久久精品国产66热6| 老女人水多毛片| 人人妻人人爽人人添夜夜欢视频 | 国产亚洲91精品色在线| xxx大片免费视频| 久久久精品欧美日韩精品| 一区二区三区免费毛片| 精品一区二区三区视频在线| 麻豆精品久久久久久蜜桃| 中文字幕人妻熟人妻熟丝袜美| 亚洲av中文字字幕乱码综合| 国产成人freesex在线| 欧美区成人在线视频| 亚洲天堂av无毛| 亚洲内射少妇av| 女人十人毛片免费观看3o分钟| 国产精品嫩草影院av在线观看| 欧美极品一区二区三区四区| 免费人成在线观看视频色| 国产伦在线观看视频一区| 欧美xxⅹ黑人| 国产一区二区在线观看日韩| 亚洲精品国产成人久久av| 丝袜美腿在线中文| 亚洲人与动物交配视频| 久久精品国产a三级三级三级| 小蜜桃在线观看免费完整版高清| 插逼视频在线观看| 久久99蜜桃精品久久| 成人黄色视频免费在线看| av一本久久久久| 欧美xxxx黑人xx丫x性爽| 国产乱来视频区| 成人综合一区亚洲| 在线a可以看的网站| 国产精品福利在线免费观看| 大片电影免费在线观看免费| 亚洲国产最新在线播放| 丝瓜视频免费看黄片| 国产成人一区二区在线| 亚洲欧美日韩无卡精品| 欧美性感艳星| 国产亚洲av嫩草精品影院| 色视频www国产| 在线观看一区二区三区激情| 欧美激情久久久久久爽电影| 久久精品人妻少妇| 国产精品一及| 亚洲,一卡二卡三卡| 干丝袜人妻中文字幕| 波多野结衣巨乳人妻| 亚洲精品亚洲一区二区| 亚洲精品国产色婷婷电影| 少妇熟女欧美另类| 秋霞伦理黄片| 午夜福利在线观看免费完整高清在| 国产一区二区在线观看日韩| 久久精品综合一区二区三区| 成人无遮挡网站| 干丝袜人妻中文字幕| 中文字幕久久专区| 大陆偷拍与自拍| 亚洲伊人久久精品综合| 97精品久久久久久久久久精品| 欧美3d第一页| 国产一区有黄有色的免费视频| 岛国毛片在线播放| 日产精品乱码卡一卡2卡三| 日本猛色少妇xxxxx猛交久久| 春色校园在线视频观看| 欧美日韩亚洲高清精品| 小蜜桃在线观看免费完整版高清| 天堂中文最新版在线下载 | 亚洲av一区综合| 最近的中文字幕免费完整| 99热这里只有是精品50| 三级经典国产精品| 日韩欧美精品v在线| av一本久久久久| 久久久色成人| 高清毛片免费看| 97超碰精品成人国产| 边亲边吃奶的免费视频| 亚洲精品乱久久久久久| 少妇猛男粗大的猛烈进出视频 | 91久久精品电影网| 我的女老师完整版在线观看| 69av精品久久久久久| 女人被狂操c到高潮| 日韩欧美一区视频在线观看 | 精品久久久久久久末码| 久久99热6这里只有精品| 精品一区二区三卡| 三级男女做爰猛烈吃奶摸视频| 26uuu在线亚洲综合色| 欧美zozozo另类| 亚洲精品中文字幕在线视频 | 久久久久久伊人网av| 校园人妻丝袜中文字幕| 麻豆精品久久久久久蜜桃| 午夜视频国产福利| 午夜福利网站1000一区二区三区| 各种免费的搞黄视频| 一区二区三区乱码不卡18| 国产欧美日韩一区二区三区在线 | 91午夜精品亚洲一区二区三区| 五月玫瑰六月丁香| 亚洲va在线va天堂va国产| av在线app专区| 人体艺术视频欧美日本| 国产精品国产三级国产av玫瑰| 成人无遮挡网站| 国产美女午夜福利| 久久这里有精品视频免费| 国内少妇人妻偷人精品xxx网站| 国产男女内射视频| 国产亚洲av嫩草精品影院| 内地一区二区视频在线| 久久精品国产亚洲av涩爱| av在线观看视频网站免费| av一本久久久久| 国产乱来视频区| 亚洲精品一二三| 国产精品国产三级专区第一集| 国产男女内射视频| 下体分泌物呈黄色| 精品视频人人做人人爽| 身体一侧抽搐| 亚洲国产欧美在线一区| 国产精品熟女久久久久浪| 亚洲av成人精品一区久久| 插逼视频在线观看| 九九久久精品国产亚洲av麻豆| 91精品伊人久久大香线蕉| 美女视频免费永久观看网站| 久久久久国产网址| 自拍偷自拍亚洲精品老妇| 99九九线精品视频在线观看视频| 麻豆乱淫一区二区| 精品久久久久久久人妻蜜臀av| 久久精品人妻少妇| 精品久久国产蜜桃| 51国产日韩欧美| 亚洲人成网站在线观看播放| 亚洲一区二区三区欧美精品 | 小蜜桃在线观看免费完整版高清| 免费高清在线观看视频在线观看| 美女xxoo啪啪120秒动态图| 香蕉精品网在线| 精品酒店卫生间| 亚洲综合色惰| 国产亚洲av嫩草精品影院| 又爽又黄a免费视频| 欧美三级亚洲精品| 又粗又硬又长又爽又黄的视频| 亚洲最大成人手机在线| 黄色欧美视频在线观看| 永久网站在线| 丰满人妻一区二区三区视频av| 一级毛片我不卡| 一级爰片在线观看| 欧美xxⅹ黑人| 男女边吃奶边做爰视频| 51国产日韩欧美| 国产精品人妻久久久久久| 日产精品乱码卡一卡2卡三| 99九九线精品视频在线观看视频| 久久人人爽人人片av| 中国美白少妇内射xxxbb| 国产真实伦视频高清在线观看| 少妇猛男粗大的猛烈进出视频 | 精品久久久久久电影网| 一级毛片我不卡| 中文字幕久久专区| 亚洲激情五月婷婷啪啪| 噜噜噜噜噜久久久久久91| 晚上一个人看的免费电影| 夜夜看夜夜爽夜夜摸| 久久久国产一区二区| 建设人人有责人人尽责人人享有的 | 国产有黄有色有爽视频| 菩萨蛮人人尽说江南好唐韦庄| 男插女下体视频免费在线播放| 黄色欧美视频在线观看| 亚洲精品自拍成人| 久久99热这里只频精品6学生| 久久精品国产鲁丝片午夜精品| 1000部很黄的大片| 少妇裸体淫交视频免费看高清| 亚洲不卡免费看| 国产高潮美女av| 少妇裸体淫交视频免费看高清| 别揉我奶头 嗯啊视频| 午夜福利高清视频| 超碰av人人做人人爽久久| 直男gayav资源| 日韩av在线免费看完整版不卡| 欧美zozozo另类| 男人添女人高潮全过程视频| 国产午夜精品久久久久久一区二区三区| 毛片一级片免费看久久久久| 一级毛片aaaaaa免费看小| 日本午夜av视频| 国产亚洲精品久久久com| av在线亚洲专区| 一本色道久久久久久精品综合| 狂野欧美激情性bbbbbb| 亚洲av欧美aⅴ国产| 老司机影院成人| 高清午夜精品一区二区三区| 免费观看的影片在线观看| av天堂中文字幕网| 国语对白做爰xxxⅹ性视频网站| 国产黄片美女视频| 久久午夜福利片| 成人亚洲精品一区在线观看 | 国内精品宾馆在线| 国内精品美女久久久久久| 婷婷色综合www| 人体艺术视频欧美日本| 国产亚洲av嫩草精品影院| 国产精品久久久久久久电影| 99久国产av精品国产电影| 高清午夜精品一区二区三区| 大香蕉97超碰在线| 纵有疾风起免费观看全集完整版| 下体分泌物呈黄色| 男人舔奶头视频| 51国产日韩欧美| 精品人妻偷拍中文字幕| 久久久久网色| 成人毛片a级毛片在线播放| 热99国产精品久久久久久7| 欧美三级亚洲精品| 麻豆成人午夜福利视频| 精品人妻偷拍中文字幕| 少妇 在线观看| 亚洲精品日韩在线中文字幕| 国产69精品久久久久777片| 国产精品福利在线免费观看| 国产精品久久久久久久久免| 视频区图区小说| 九九爱精品视频在线观看| 日韩不卡一区二区三区视频在线| 高清在线视频一区二区三区| 黑人高潮一二区| 天堂网av新在线| 啦啦啦在线观看免费高清www| 午夜精品一区二区三区免费看| 亚洲国产欧美在线一区| 国产伦精品一区二区三区四那| 亚洲国产欧美人成| 熟女av电影| 欧美一区二区亚洲| 黄色配什么色好看| 69人妻影院| 国产成人精品福利久久| 嫩草影院入口| 免费观看在线日韩| 麻豆成人午夜福利视频| 亚洲一区二区三区欧美精品 | 一区二区av电影网| 观看免费一级毛片| 国产男女内射视频| 日日摸夜夜添夜夜添av毛片| 国产高清有码在线观看视频| 夫妻性生交免费视频一级片| 美女cb高潮喷水在线观看| av.在线天堂| 少妇猛男粗大的猛烈进出视频 | 热99国产精品久久久久久7| 制服丝袜香蕉在线| av女优亚洲男人天堂| 在线观看av片永久免费下载| 国产精品一二三区在线看| 国产真实伦视频高清在线观看| 欧美 日韩 精品 国产| 26uuu在线亚洲综合色| 久久精品国产亚洲av天美| 美女国产视频在线观看| 国产成人a区在线观看| 高清av免费在线| 波多野结衣巨乳人妻| 亚洲av电影在线观看一区二区三区 | 日韩大片免费观看网站| 一级毛片aaaaaa免费看小| 国产视频首页在线观看| 免费看光身美女| 久久韩国三级中文字幕| 日本免费在线观看一区| 亚洲成人久久爱视频| 免费高清在线观看视频在线观看| 18禁动态无遮挡网站| 九九久久精品国产亚洲av麻豆| 乱码一卡2卡4卡精品| 国产欧美另类精品又又久久亚洲欧美| 日韩欧美一区视频在线观看 | 久久久国产一区二区| 精品久久久久久久人妻蜜臀av| 激情 狠狠 欧美| 99re6热这里在线精品视频| 亚洲,一卡二卡三卡| 国产男女超爽视频在线观看| 中文乱码字字幕精品一区二区三区| 久久这里有精品视频免费| 国产精品人妻久久久影院| av在线app专区| 欧美精品国产亚洲| 国产成人午夜福利电影在线观看| 亚洲色图综合在线观看| 在线天堂最新版资源| 国产淫片久久久久久久久| 亚洲av中文av极速乱| 亚洲成人一二三区av| 日韩不卡一区二区三区视频在线| 成人美女网站在线观看视频| 久久久精品94久久精品| 久久鲁丝午夜福利片| 国产精品久久久久久av不卡| 亚洲av日韩在线播放| 水蜜桃什么品种好| 哪个播放器可以免费观看大片| 久久精品国产亚洲av天美| 国产精品一及| 国产在线男女| av国产精品久久久久影院| 久久久久久久久久人人人人人人| 国产淫片久久久久久久久| 国产黄色免费在线视频| 蜜桃亚洲精品一区二区三区| 久久久久久伊人网av| 精品视频人人做人人爽| 综合色丁香网| 国产高清不卡午夜福利| 水蜜桃什么品种好| 婷婷色综合大香蕉| 国产亚洲av片在线观看秒播厂| 有码 亚洲区| 欧美+日韩+精品| 久久午夜福利片| 永久网站在线| 美女高潮的动态| 日韩精品有码人妻一区| 日韩视频在线欧美| av在线天堂中文字幕| 色综合色国产| 2021少妇久久久久久久久久久| 日韩av不卡免费在线播放| 蜜桃亚洲精品一区二区三区| 中国三级夫妇交换| 亚洲精品一二三| 久久韩国三级中文字幕| 成人毛片60女人毛片免费| 久久精品久久久久久久性| 国产精品秋霞免费鲁丝片| 国产成人a区在线观看| 男女国产视频网站| 免费大片黄手机在线观看| 精品久久久精品久久久| 亚洲精品乱码久久久久久按摩| 晚上一个人看的免费电影| 一本色道久久久久久精品综合| 看黄色毛片网站| 免费观看性生交大片5| 三级国产精品欧美在线观看| 在线免费观看不下载黄p国产| 国产一区二区在线观看日韩| 国产色婷婷99| 日本爱情动作片www.在线观看| 九九在线视频观看精品| 久久久久性生活片| 国产精品久久久久久精品电影| 秋霞伦理黄片| 69av精品久久久久久| 在线看a的网站| 国产精品一二三区在线看| 日韩制服骚丝袜av| 秋霞伦理黄片| 久久97久久精品| 大话2 男鬼变身卡| 国产一级毛片在线| 777米奇影视久久| 欧美激情国产日韩精品一区| 午夜老司机福利剧场| 亚洲av国产av综合av卡| 亚洲人成网站在线播| 大码成人一级视频| 特级一级黄色大片| 久久久久九九精品影院| 国产精品偷伦视频观看了| 欧美高清性xxxxhd video| 国产亚洲91精品色在线| 欧美+日韩+精品| 高清欧美精品videossex| 神马国产精品三级电影在线观看| 亚洲精品一区蜜桃| 搡老乐熟女国产| 白带黄色成豆腐渣| 色婷婷久久久亚洲欧美| 免费看a级黄色片| 新久久久久国产一级毛片| 亚洲精品国产色婷婷电影| 波野结衣二区三区在线| av女优亚洲男人天堂| 少妇被粗大猛烈的视频| 欧美97在线视频| 啦啦啦中文免费视频观看日本| 欧美日韩一区二区视频在线观看视频在线 | 成人美女网站在线观看视频| 日韩成人av中文字幕在线观看| 国产精品.久久久| 熟女人妻精品中文字幕| 国产精品秋霞免费鲁丝片| 少妇的逼水好多| 久久午夜福利片| 日日啪夜夜撸| 乱码一卡2卡4卡精品| 一级二级三级毛片免费看| 国产精品久久久久久久电影| 欧美3d第一页| 啦啦啦在线观看免费高清www| 成人高潮视频无遮挡免费网站| 国产片特级美女逼逼视频| 国产一区二区在线观看日韩| 日韩一区二区视频免费看| 性插视频无遮挡在线免费观看| 亚洲精品视频女| av在线app专区| 国产精品女同一区二区软件| 你懂的网址亚洲精品在线观看| 女人被狂操c到高潮| 亚洲国产欧美在线一区| 国产成人精品福利久久| 51国产日韩欧美| 美女国产视频在线观看| 国产伦在线观看视频一区| 久久久色成人| 久久久久精品久久久久真实原创| 亚洲人成网站在线观看播放| 国语对白做爰xxxⅹ性视频网站| 亚洲欧美精品专区久久| 亚洲三级黄色毛片| 一个人观看的视频www高清免费观看| 国产乱人视频| 国产日韩欧美亚洲二区| 校园人妻丝袜中文字幕| 亚洲av欧美aⅴ国产| 亚洲av在线观看美女高潮| 我要看日韩黄色一级片| 国产午夜福利久久久久久| 中文字幕制服av| 久久久久久久午夜电影| av福利片在线观看| 欧美丝袜亚洲另类| 免费电影在线观看免费观看| 免费看光身美女| 国产美女午夜福利| 国产精品一及| 成人高潮视频无遮挡免费网站| 精品人妻熟女av久视频| 久久久久久久久大av| 搞女人的毛片| 水蜜桃什么品种好| 一级毛片 在线播放| 十八禁网站网址无遮挡 | 亚洲精品国产av成人精品| 97人妻精品一区二区三区麻豆| 国产欧美日韩精品一区二区| 97热精品久久久久久| 亚洲熟女精品中文字幕| 联通29元200g的流量卡| 精品久久久久久久末码| 91aial.com中文字幕在线观看| 亚洲丝袜综合中文字幕| 午夜老司机福利剧场| 国产精品成人在线| 日韩视频在线欧美| 好男人视频免费观看在线| 日日啪夜夜撸| 国产一区有黄有色的免费视频| 超碰av人人做人人爽久久| 91久久精品电影网| 国产在线一区二区三区精| 久久精品综合一区二区三区| 老司机影院毛片| 成人鲁丝片一二三区免费|