王立東,肖志剛
?
氣流粉碎對玉米淀粉結(jié)構(gòu)及理化性質(zhì)的影響
王立東1,2,肖志剛2※
(1. 黑龍江八一農(nóng)墾大學(xué)國家雜糧工程技術(shù)研究中心,大慶163319; 2. 東北農(nóng)業(yè)大學(xué)食品學(xué)院,哈爾濱150030)
為研究氣流粉碎對玉米淀粉結(jié)構(gòu)及理化性質(zhì)的影響,該文以普通玉米淀粉為原料,通過流化床氣流粉碎處理,采用掃描電子顯微鏡、偏光顯微鏡、粒度分析儀、X-射線衍射儀、紅外光譜儀、差示掃描量熱儀、快速黏度分析儀等分析手段研究經(jīng)微細(xì)化處理前后玉米淀粉顆粒形貌、晶體結(jié)構(gòu)、熱力學(xué)特性、糊化特性、溶解度和膨脹度、凍融穩(wěn)定性、持水能力等結(jié)構(gòu)及性質(zhì)的變化。結(jié)果表明,微細(xì)化處理后,淀粉顆粒形變的不規(guī)則,粒徑明顯減小,中位徑(D50)由14.37m減小到5.25m,偏光十字減少,相對結(jié)晶度由33.43%降低至15.46%,淀粉顆粒結(jié)晶結(jié)構(gòu)被破壞,由多晶態(tài)向無定形態(tài)轉(zhuǎn)變,粉碎過程淀粉無新的基團(tuán)產(chǎn)生;熱焓值、糊化溫度均降低,熱糊穩(wěn)定性好;溶解度、膨脹度均升高,持水能力增加,凍融穩(wěn)定性好,產(chǎn)生較好的熱糊穩(wěn)定性和冷糊力學(xué)穩(wěn)定性,該研究為玉米淀粉的深度加工與應(yīng)用提供了理論依據(jù)及技術(shù)支撐。
微觀結(jié)構(gòu);物理性質(zhì);化學(xué)性質(zhì);氣流粉碎;玉米淀粉
淀粉是由直鏈淀粉和支鏈淀粉組成的一種顆粒狀多晶聚合物,顆粒內(nèi)存在結(jié)晶和非晶結(jié)構(gòu)。受制于其多晶體系結(jié)構(gòu),天然淀粉存在不溶于冷水,成膜性、吸附性、抗酸堿能力及抗機(jī)械破壞能力差等缺陷,不適用于現(xiàn)代新技術(shù)、新工藝、新產(chǎn)品的開發(fā)應(yīng)用[1-4]。近年來,隨著粉體微細(xì)化技術(shù)的快速發(fā)展,淀粉微細(xì)化處理的研究受到了普遍關(guān)注,通常采用物理手段改善淀粉顆粒的結(jié)構(gòu)和性能[5]。
當(dāng)前國內(nèi)外相關(guān)研究大多集中于機(jī)械球磨處理對玉米淀粉[6-7]、馬鈴薯淀粉[8]、大米淀粉[9]、木薯淀粉[10-11]、綠豆淀粉[12-13]等性質(zhì)的影響研究,淀粉經(jīng)過超微粉碎處理后其結(jié)構(gòu)和多孔性發(fā)生了顯著變化,顆粒的形貌、粒度和均勻度均發(fā)生改變,晶體結(jié)構(gòu)和淀粉鏈長發(fā)生改變,導(dǎo)致諸如溶解度、膨脹度、分散性、熱力學(xué)性質(zhì)、糊化性質(zhì)和黏度性質(zhì)等發(fā)生改變。而利用氣流粉碎技術(shù)進(jìn)行對淀粉微細(xì)化的研究則相對較少,氣流粉碎技術(shù)是指固體顆粒在高速氣流機(jī)械力的作用下,通過摩擦、碰撞、沖擊作用,使顆粒粉碎,從而改變顆粒的結(jié)構(gòu)和物化性能[14-15]。氣流粉碎技術(shù)作為微細(xì)化處理的有效有段,已被廣泛應(yīng)用于精細(xì)化工、精細(xì)陶瓷、食品、生物醫(yī)藥、納米材料等行業(yè)[16]。因此,本研究以普通玉米淀粉為原料,利用流化床氣流粉碎設(shè)備進(jìn)行處理,得到顆粒較小的微細(xì)化玉米淀粉,并對其微觀結(jié)構(gòu)和理化性質(zhì)進(jìn)行分析,從而確定氣流粉碎微細(xì)化處理對玉米淀粉性質(zhì)的影響,為拓展淀粉資源的理論研究及深度開發(fā)利用提供理論與實踐指導(dǎo)。
1.1 材料與試劑
普通玉米淀粉原料由黑龍江龍鳳玉米開發(fā)有限公司提供,食品級,水分13.5%,細(xì)度(100目分樣篩透過率)99.1%;其他分析純試劑為天津市天大化學(xué)試劑廠和沈陽化學(xué)試劑廠生產(chǎn)。
1.2 儀器與設(shè)備
主要儀器:LHL型流化床式氣流粉碎機(jī),山東濰坊正遠(yuǎn)粉體工程設(shè)備有限公司。
S-3400N掃描電子顯微鏡,日本HITACHI公司;X'Pert PRO X-射線衍射儀,荷蘭帕納科公司;Bettersize 2000激光粒度分布儀,丹東市百特儀器有限公司;Nicolet 6700紅外光譜儀,美國Thermo Fisher Scientific 公司;RVA4500快速黏度分析儀,瑞典Perten公司;DSC1型差示掃描量熱儀,瑞士梅特勒-托利多儀器有限公司;AR2140型分析天平,瑞士梅特勒-托利多儀器有限公司。
1.3 試驗方法
1.3.1 氣流粉碎微細(xì)化玉米淀粉的制備
稱取普通玉米淀粉300 g,開啟分級機(jī)變頻器,設(shè)定變頻器頻率為50 Hz,啟動引風(fēng)機(jī),啟動供氣開關(guān),設(shè)定空氣壓力為0.8 MPa,啟動進(jìn)料變頻機(jī),控制進(jìn)料速度為180 r/min,氣流粉碎90 min,在收集器中收集樣品,密封保存?zhèn)溆谩?/p>
1.3.2 淀粉顆粒形態(tài)與粒度分析
采用掃描電子顯微鏡(scanning electron microscope,SEM)進(jìn)行淀粉顆粒形態(tài)表征,參照王立東等[12]的方法,加速電壓為10 kV;淀粉偏光十字采用偏光顯微鏡(polarizing microscope, PM),以甘油為分散劑,配制1%淀粉乳進(jìn)行觀察;淀粉粒度分布采用激光粒度分布儀(laser particle analyzer, LPA),以去離子水作為分散溶劑測定。
1.3.3 X-射線衍射分析
測試條件參照王立東等[12]和劉天一等[17]的方法:衍射角2,4°~37°;步長,0. 02°;掃描速度,8 °/min;靶型,Cu;管壓、管流,40 kV、30 mA。淀粉相對結(jié)晶度(relative crystallinity,RC)的計算參照Nara等[18]的方法,使用MDI Jade軟件進(jìn)行分析計算,取3次擬合結(jié)果平均值。
1.3.4 紅外光譜分析
紅外光譜(fourier transform infrared,F(xiàn)TIR)測定方法和條件參照Fang等[19]和劉天一等[20]的方法,波長的掃描范圍為400~4 000 cm-1。
1.3.5 熱特性分析
熱特性分析(differential scanning calorimetry,DSC)方法和條件參照Huang等[21]的方法,相變參數(shù)分別用起始溫度(0)、峰值溫度(t)、最終溫度(t)表示,加熱范圍為30~150 ℃,掃描速率10 ℃/min.
1.3.6 糊化特性分析
糊化特性(rapid viscosity analyzier,RVA)測定參照Yao等[22]和王立東等[13]的方法,采用Std1升溫程序,譜圖特征峰值分別用峰值黏度(ν)、谷值黏度(ν)、最終黏度(ν)表示,其中谷值黏度代表熱糊黏度,最終黏度代表冷糊黏度,衰減度(ν=ν?ν)和回生值(ν=ν?ν)表示,黏滯值單位用cP表示。
1.3.7 微細(xì)化淀粉特性研究
以未處理玉米淀粉為參照,進(jìn)行氣流粉碎玉米淀粉溶解度、膨脹度的測定,按照文獻(xiàn)[23]提供的方法進(jìn)行;持水能力測定,按照文獻(xiàn)[24]提供的方法進(jìn)行;凍融穩(wěn)定性測定,按照文獻(xiàn)[25]提供的方法進(jìn)行。
1.3.8 數(shù)據(jù)處理
采用Graphpad Prism 6.0軟件進(jìn)行數(shù)據(jù)處理,測定重復(fù)次數(shù)=3。
2.1 淀粉顆粒形態(tài)與粒度分布
氣流粉碎前后淀粉顆粒形貌變化如圖1所示。由圖1可見,原玉米淀粉的顆粒呈多角形或圓形,表面光滑,結(jié)構(gòu)緊密。淀粉顆粒在機(jī)械力的作用下,表面破裂,發(fā)生變形,部分被撞擊成細(xì)小顆粒,部分被撞擊出凹洞,顆粒呈不規(guī)則形狀,整體粒形變小。
偏光十字是天然淀粉顆粒在偏光顯微鏡下呈現(xiàn)的雙折射特性,當(dāng)天然淀粉顆粒晶體結(jié)構(gòu)受到破壞,由有序結(jié)構(gòu)向無序結(jié)構(gòu)轉(zhuǎn)變時,偏光十字就會消失[26]。從圖2可見,原玉米淀粉顆粒偏光十字效果較好,而氣流粉碎制備的微細(xì)化玉米淀粉由于受到氣流機(jī)械力的作用,表面破裂,粒度明顯減小或呈現(xiàn)孔洞,發(fā)生一定的變形,偏光十字明顯減少,說明氣流粉碎能夠?qū)е碌矸垲w粒非晶化過程的發(fā)生。
微細(xì)化玉米淀粉的中位徑(50)和顆粒分布情況見圖3。由圖3可知,原玉米淀粉的粒徑分布曲線突出顯示一尖峰,說明其粒徑分布較窄,粒度比較集中,主要分布在10~20m范圍內(nèi),中位徑50為14.37m;而微細(xì)化玉米淀粉的粒徑分布曲線峰寬變寬,顆粒向更小粒度均勻分布,主要分布在1~10m范圍內(nèi),含量達(dá)79.34%,中位徑減小到5.25m。這是因為經(jīng)過氣流機(jī)械碰撞后,在沖擊力、摩擦力和碰撞力作用下使淀粉顆粒發(fā)生脆性斷裂,產(chǎn)生一定的形變,導(dǎo)致粒徑減小,粒度向更小范圍集中。這與掃描電鏡觀察顆粒形貌變化現(xiàn)象一致。
a. 原玉米淀粉
a. Raw maize starch
b. 微細(xì)化玉米淀粉
b. Micronized maize starch
注:10、50、90分別表示粒度分布曲線中累計分布為10%、50%、90%時的最大顆粒的平均粒徑。
Note:10,50,90 shows the mean grain size with the largest particles of cumulative distribution in particle size distribution curve at 10%, 50%, 90%.
圖3 原玉米淀粉和微細(xì)化玉米淀粉的粒度分布曲線
Fig.3 Size distribution curve of raw maize starch and micronized maize starch
2.2 X-射線衍射分析
微細(xì)化處理前后玉米淀粉的XRD曲線如圖4所示。由圖可以看出,原玉米淀粉在衍射角2為15°、17°、18°和23°時出現(xiàn)較強(qiáng)的衍射峰特征,為典型的A型結(jié)構(gòu),相對結(jié)晶度為33.43%,具有一定的剛度。經(jīng)過處理得到的微細(xì)化玉米淀粉的衍射圖譜仍為A型結(jié)構(gòu),但吸收峰的強(qiáng)度明顯減弱,相對結(jié)晶度由33.43%降低至15.46%。說明氣流粉碎處理對玉米淀粉的晶型特征沒有明顯影響,但使得淀粉的結(jié)晶度顯著降低,非晶區(qū)增加。
2.3 紅外光譜分析
紅外光譜可表征淀粉顆粒的分子特征,通過圖譜可檢測是否有新的基團(tuán)生成[12]。由圖5可以看出,當(dāng)玉米淀粉顆粒經(jīng)過氣流超微粉碎處理后,沒有新的特征吸收峰出現(xiàn),說明氣流粉碎處理沒有產(chǎn)生新的基團(tuán)。圖5中在3 422 cm-1處為O-H締合氫鍵后的伸縮振動峰,2 930 cm-1處為C-H鍵伸縮振動峰,淀粉經(jīng)過微細(xì)化處理后,兩峰的峰寬變窄,強(qiáng)度增大,說明淀粉分子中的氫鍵由復(fù)雜向單一轉(zhuǎn)化[20]。1 648 cm-1處為H2O的特征峰,無明顯變化。1 082 cm-1處為淀粉結(jié)構(gòu)中C-O-H振動吸收峰,992 cm-1處為淀粉結(jié)構(gòu)C-O-C中C-O的振動吸收峰,且強(qiáng)度減弱,在1 082~992 cm-1之間出現(xiàn)明顯特征峰強(qiáng)度增大,劉天一等[20]認(rèn)為1 047和1 018 cm-1處C-O-H彎曲振動是淀粉中有序結(jié)構(gòu)和無序結(jié)構(gòu)特征峰,圖中吸收峰強(qiáng)度的變化,說明淀粉結(jié)構(gòu)發(fā)生改變。經(jīng)過分析表明,微細(xì)化處理后淀粉中無新的基團(tuán)產(chǎn)生,部分吸收峰強(qiáng)度的變化說明了淀粉已由有序向無序結(jié)構(gòu)轉(zhuǎn)變。
2.4 熱特性分析
從圖6中DSC曲線可以看出,原玉米淀粉存在一個明顯的吸收峰,該吸收峰的熱焓值為22.55 J/g,糊化起始溫度為63.61 ℃,糊化峰值溫度為68.37 ℃,糊化終止溫度為76.02 ℃。而微細(xì)化玉米淀粉吸收峰明顯減弱,熱焓值為14.29 J/g,糊化起始溫度為59.88 ℃,糊化峰值溫度為67.95 ℃,糊化終止溫度為79.92 ℃。相比較可以得出,經(jīng)過微細(xì)化處理后,玉米淀粉的熱焓值、各峰值溫度均存在降低現(xiàn)象,氣流粉碎微細(xì)化處理對玉米淀粉的熱力學(xué)性質(zhì)產(chǎn)生了一定的影響。玉米淀粉顆粒由無定型區(qū)和結(jié)晶區(qū)連結(jié),在發(fā)生水合/溶脹的同時伴隨晶體結(jié)構(gòu)的變化,微細(xì)化處理后玉米淀粉熱焓值和糊化溫度的下降,說明淀粉顆粒內(nèi)部分子鏈有序排列程度下降,淀粉顆粒已由結(jié)晶態(tài)向無定形態(tài)轉(zhuǎn)變[13,27]。
2.5 糊化特性分析
原玉米淀粉與微細(xì)化玉米淀粉的RVA曲線如圖7所示。由圖可以看出,原玉米淀粉與微細(xì)化玉米淀粉的ν值分別為5 216、1 823 mPa·s,ν值分別為2 636、1 324 mPa·s,ν值分別為4 626、2 676 mPa·s,各黏度值均明顯降低,主要是由于淀粉經(jīng)過微細(xì)化處理后,淀粉顆粒受到破壞,淀粉結(jié)晶度低,形成淀粉糊的流動阻力下降,因此各特征黏度值均下降。原玉米淀粉的衰減值ν為微細(xì)化玉米淀粉的5.17倍,回生值ν為微細(xì)化玉米淀粉的1.47倍,微細(xì)化玉米淀粉的熱糊穩(wěn)定性優(yōu)于原玉米淀粉,與劉天一等[17]通過球磨處理玉米淀粉得到的現(xiàn)象一致,且此種淀粉不易老化、回生,提高了淀粉顆粒的冷糊穩(wěn)定性。氣流超微粉碎處理后,使得玉米淀粉具有更好的黏度穩(wěn)定性,更適于應(yīng)用到高黏度的體系中。
2.6 溶解度和膨脹度
圖8為原玉米淀粉和微細(xì)化玉米淀粉的溶解度和膨脹度的變化。
由圖8可以看出,隨著溫度的逐漸升高,淀粉顆粒的溶解度和膨脹度均逐漸增大,且在同一溫度條件下,微細(xì)化玉米淀粉優(yōu)于原淀粉,說明氣流粉碎處理能夠提高淀粉的溶解度和膨脹度。其原因是隨著溫度的逐漸升高,淀粉晶體結(jié)構(gòu)受到破壞,游離水更易滲透到淀粉分子內(nèi)部,提高其溶解度和膨脹度[17,28]。同時,由于氣流粉碎機(jī)械力的作用,淀粉顆粒形貌發(fā)生很大變化,粒度明顯減小,導(dǎo)致比表面積增大,孔隙率增多,因此微細(xì)化玉米淀粉的溶解度和膨脹度高于原淀粉[29]。
2.7 持水能力和凍融穩(wěn)定性
圖9為原玉米淀粉和微細(xì)化玉米淀粉的持水能力和凍融穩(wěn)定性的變化。從圖9可以看出,在持水能力方面,氣流粉碎微細(xì)化玉米淀粉持水能力優(yōu)于原淀粉,為原淀粉的3.7倍,這可能是微細(xì)化處理破壞淀粉的晶體結(jié)構(gòu),水分子更易滲透到淀粉顆粒內(nèi)部與氫鍵結(jié)合,使得淀粉持水能力提高。在凍融穩(wěn)定性方面,凍融穩(wěn)定性與淀粉的析水率負(fù)相關(guān)[30]。從圖中析水率的變化可以看出,氣流粉碎微細(xì)化玉米淀粉析水率低于原淀粉,即微細(xì)化玉米淀粉凍融穩(wěn)定性由于原淀粉,說明經(jīng)過氣流粉碎處理后,淀粉具有更好的凍融穩(wěn)定性。
1)氣流超微粉碎制備微細(xì)化玉米淀粉,由光滑的顆粒被粉碎成形狀不規(guī)則的細(xì)小顆粒,淀粉顆粒偏光十字減少,粒度及中位徑減小,中位徑(D50)減小到5.25m,淀粉顆粒的結(jié)晶結(jié)構(gòu)受到破壞,相對結(jié)晶度由33.43%降低至15.46%,粉碎過程無新的基團(tuán)產(chǎn)生。
2)玉米淀粉經(jīng)過微細(xì)化處理,其熱特性和糊化特性發(fā)生改變,表現(xiàn)為熱焓值和糊化黏度值顯著降低,具有較好的熱糊穩(wěn)定性和冷糊穩(wěn)定性,使得玉米淀粉更適于應(yīng)用到高黏度的體系中。
3)玉米淀粉經(jīng)過微細(xì)化處理,溶解度和膨脹度均較原玉米淀粉大,解決淀粉不易溶解的難題;其持水能力明顯增加,為原玉米淀粉的3.7倍;微細(xì)化玉米淀粉具有更好的凍融穩(wěn)定性,不易凝沉。
[1] Yan H, Gu Z B. Morphology of modified starches prepared by different methods[J]. Food Research International, 2010, 43(3): 767-772.
[2] Zhang Y, Zeng H L, Wang Y, et al. Structural characteristics and crystalline properties of lotus seed resistant starch and its prebiotic effects[J]. Food Chemistry, 2014, 155(19): 311-318.
[3] Liu P L, Zhang Q, Shen Q, et al. Effect of high hydrostatic pressure on modified noncrystalline granular starch of starches with different granular type and amylase content[J]. LWT-Food Science and Technology, 2012, 47(2): 450-458.
[4] Cai J, Cai C, Man J, et al. Crystalline and structural properties of acid-modified lotus rhizome C-type starch[J]. Carbohydrate Polymers, 2014, 102(1): 799-807.
[5] 蔡艷華,馬冬梅,彭汝芳,等. 超音速氣流粉碎技術(shù)應(yīng)用研究新進(jìn)展[J]. 化工進(jìn)展,2008,27(5):671-674,714.
Cai Yanhua, Ma Dongmei, Peng Rufang, et al. New research progress of supersonic speed airflow grinding technology[J]. Chemical Industry and Engineering Progress, 2008, 27(5): 671-674, 714. (in Chinses with English abstract)
[6] Liu T Y, Ma Y, Yu S F, et al. The effect of ball-milling treatment on structure and porosity of maize starch granule[J]. Innovative Food & Emerging Technologies, 2011, 12(4): 586-593.
[7] 吳俊,文慶珍. 微細(xì)化玉米淀粉粒度效應(yīng)及其流變學(xué)行為研究[J]. 高分子材料科學(xué)與工程,2007,23(6):148-151.
Wu Jun, Wen Qingzhen. Study on the granularity effect of micronized starch and its rheological property[J]. Polymer Materials Science & Engineering, 2007, 23(6): 148-151. (in Chinses with English abstract)
[8] Kim Y J, Suzuki T, Hagiwara T, et al. Enthalpy relaxation and glass to rubber transition of amorphous potato starch formed by ball-milling[J]. Carbohydrate Polymers, 2001, 46(3): 1-6.
[9] Zhang Zhengmao, Zhao Siming, Xiong Shanbai. Morphology and physicochemical properties of mechanically activated rice starch[J]. Carbohydrate Polymers, 2010, 79(4): 341-348.
[10] Martinz B F, Lopez S M, SanMartin M E, et al. Effects of high energy milling on some functional properties of Jicama starch and Cassava starch[J]. Journal of Food Engineering, 2007, 78(4): 1212-1220.
[11] 徐中岳,羅志剛,何小維. 濕法超微粉碎對木薯淀粉理化性質(zhì)的影響[J]. 中國粉體技術(shù),2009,15(6):26-29.
Xu Zhongyue, Luo Zhigang, He Xiaowei. Effects of wet micro-comminuting on properties of cassava stcrch[J]. China Powder Science and Technology, 2009, 15(6): 26-29. (in Chinses with English abstract)
[12] 王立東,劉婷婷,寇芳,等. 球磨研磨對綠豆淀粉顆粒結(jié)構(gòu)及性質(zhì)的影響[J]. 中國食品添加劑,2016,149(7):167-172.
Wang Lidong, Liu Tingting, Kou Fang, et al. Effect of ball milling on granule structure and physicochemical property of mung bean Starch[J]. China Food Additives, 2016, 149(7): 167-172. (in Chinses with English abstract)
[13] 王立東,劉婷婷,張麗達(dá),等. 機(jī)械活化處理對綠豆淀粉顆粒結(jié)構(gòu)及性質(zhì)的影響[J]. 中國釀造,2016,35(8):137-141.
Wang Lidong, Liu Tingting, Zhang Lida, et al. Effect of mechanical activation treatment on physicochemical properties of mung bean starch[J]. China Brewing, 2016, 35(8): 137-141. (in Chinses with English abstract)
[14] Boldyrev V V. Mechanical activation of solid and its application to technology. Journal de Chimie Physique, 1986, 83(11/12): 821-829.
[15] 郜俊,單玉海,張建民,等. 流化床式氣流粉碎機(jī)粉碎硅酸鈣試驗研究[J]. 中國非金屬礦工業(yè)導(dǎo)刊,2014,110(3):21-23.
Gao Jun, Shan Yuhai, Zhang Jianmin, et al. Research of grinding calcium silicate experimental through fluidized bed jet mill[J]. China Non-Metallic Mining Industry Herald, 2014, 110(3): 21-23. (in Chinses with English abstract)
[16] 羅文,蔡艷華,郝海濤,等. 超微氣流粉碎技術(shù)的應(yīng)用研究[J]. 重慶文理學(xué)院學(xué)報,2013,32(3):34-38.
Luo Wen, Cai Yanhua, Hao Haitao, et al. Research for application of superfine jet milling technology[J]. Journal of Chongqing University of Arts and Sciences, 2013, 32(3): 34-38. (in Chinses with English abstract)
[17] 劉天一,馬鶯,李德海,等. 非晶化玉米淀粉的理化性質(zhì)[J]. 哈爾濱工業(yè)大學(xué)學(xué)報,2010,42(4):602-607.
Liu Tianyi, Ma Ying, Li Dehai, et al. Physicochemical properties of non-crystalline maize starch[J]. Journal of Harbin Institute of Technology, 2010, 42(4): 602-607. (in Chinses with English abstract)
[18] Nara S, Komiya T. Studies on the relationship between water-satured state and crystallinity by the diffraction method for moistened potato starch[J]. Starch, 1983, 35(12): 407-410.
[19] Fang J M, Fowler P A, Tomkinson J, et al. The Preparation and Characterisation of a Series of Chemically Modified Potato Starches[J]. Carbohydrate Polymers, 2002, 47(3): 245-252.
[20] 劉天一,馬鶯,陳歷水,等. 非晶化玉米淀粉的制備及其結(jié)構(gòu)表征[J]. 哈爾濱工業(yè)大學(xué)學(xué)報,2010,42(2):286-291.
Liu Tianyi, Ma Ying, Chen Lishui, et al. Preparation and structural characterization of non-crystalline maize starch[J]. Journal of Harbin Institute of Technology, 2010, 42(2): 286-291. (in Chinses with English abstract)
[21] Huang Z Q, Lu J P, Li X H, et al. Effect of mechanical activation on physico-chemical properties and structure of cassava starch[J]. Carbohyd Polym, 2007, 68(1): 128-135.
[22] Yao N, Paez A V, White P J. Structure and function of starch and resistant starch corn with different doses of mutant amylase-extender and floury-1 alleles[J]. J Agr Food Chem, 2009, 57(5): 2040-2048.
[23] Clement A O, Vasudeva S. Physico-chemical properties of the flours and starches of two cowpea varieties ((L.) Walp)[J]. Innovative Food Science&Emerging Technologies, 2008, 9(1): 92-100.
[24] Singh N, Singh S K, Kaur M. Characterization of starches separated from Indian chickpea cultivars[J]. Journal of Food Engineering, 2004, 63(4): 441-449.
[25] Kaur M, Singh N, Sandhu K S, et al. Physicochemical, morphological, thermal and rheological properties of starches separated from kernels of Some Indian Mango Cultivars (L.)[J]. Food Chemistry, 2004, 85(1): 131-140.
[26] 劉天一. 籠狀綠豆淀粉的制備及結(jié)構(gòu)與性能研究[D]. 哈爾濱:哈爾濱工業(yè)大學(xué),2014.
Liu Tianyi. Preparation of Clathrate Maize Starch and Its Structures and Properties[D]. Harbin: Harbin Institute of Technology, 2014. (in Chinses with English abstract)
[27] 張本山,徐立宏,高大維. 用差示掃描量熱法研究高交聯(lián)非糊化淀粉的物態(tài)性質(zhì)[J]. 食品科學(xué),2002,23(5):91-93.
Zhang Benshan, Xu Lihong, Gao Dawei.Using differential scanning calorimetry study high crosslinking of state properties of gelatinized starch [J]. Food Science, 2002, 23(5): 91-93. (in Chinses with English abstract)
[28] Santlago M C, Bello-Preza L A,Tecante A. Swelling- solubility characteristics, granule size distribution and rheological behavior of banana (Musa paradisiaca) starch[J]. Carbohydrate Polymers, 2004, 56(1): 65-75.
[29] Brox T, Weickert J. Level set segmentation with multiple regions[J]. IEEE Transactions on Image Processing, 2006, 15(10): 3213-3218.
[30] 黃祖強(qiáng),童張法,胡華宇,等. 機(jī)械活化對木薯淀粉凍融穩(wěn)定性的影響[J]. 食品工業(yè)科技,2006(3):58-60.
Huang Zuqiang, Tong Zhangfa, Hu Huayu, et al. The influence of mechanical activation of cassava starch freeze-thaw stability[J]. Science and Technology of Food Industry, 2006(3): 58-60. (in Chinses with English abstract)
Effect of jet-milling on structure and physicochemical properties of maize starch
Wang Lidong1,2, Xiao Zhigang2※
(1.163319,; 2.150030,)
Jet-milling is one of the effective techniques that can alter structure and properties of starch. In this research, the effect of modification in terms of molecular structure and its physicochemical properties of maize starch was studied by scanning electron microscopy (SEM), laser particle size analyzer (LPA), X-ray diffractometry (XRD), fourier transform infrared (FTIR), differential scanning calorimetry (DSC), rapid visco analyzer (RVA). The properties of starch solubility, swelling power, water binding capacity, freeze-thaw stability, were also studied. The results show that the shape of maize starch granule changed from native polyhedron to anomalistic state through the jet-milling superfine grinding processing. The starch granules were crashed into tiny particles and even part of them fracted. The distribution of starch granules became more concentrated. The distribution of raw maize granules concentrated from 10m to 20m before the milling, whose median diameter was 14.37m. The distribution of micronized maize granules concentrated from 1m to 10m, and the median diameter decreased to 5.25m. Meanwhile, the polarization cross of micronized maize starch graule reduced gradually. Through the jet-milling superfine grinding processing, the feature of peak diffraction in the diffractogram gradually weakened, including the widened half peak width and decreased peak intensity. The micronized starch showed A-type pattern, which displayed the diffraction peak on diffraction angle 2at 15°, 17°, 18° and 23°. The crystal structure was destroyed and the crystallinity decreased from polycrystalline to amorphous state while jet-milling, with relative crystallinity decreasing from 33.43 % to 15.46 %. Through the jet-milling superfine grinding processing, the feature of infrared spectroscopy showed no new characteristic absorption peaks. Vibration band narrowed down and strengthened at 3 422and 2 930 cm-1, while weakened at 1 082 cm-1and 992 cm-1. Meanwhile, the enthalpy and peak temperature changed after the milling. The pasting temperature of micronized maize starch decreased, including initial temperature, peak temperature and final temperature. Enthalpy also decreased from 22.25 to 14.29 J/g. All that made the significant influence of thermodynamic property of micronized starch. The viscosity of micronized maize starch also decreased, including peak viscosity, final viscosity, breakdown viscosity and set back viscosity. Degree of decay and retrogradation value of micronized maize starch were below 2.5 times and 1.47 times respectively for the native maize starch. The solubility and the swelling power of the samples showed a significant increase at the same measuring temperature, and the solubility and swelling power also increased with increasing temperature at the same superfine milling time. Furthermore, the water binding capacity and freeze-thaw stability of the micronized starch changed for the better than the untreated. The results shows that the jet-milling can change microstructure, physical and chemical properties of maize starch. The effect of jet-milling of maize starch exhibited a better both hot stability and cool stability of paste. It is not a simple physical modification method for starch to be processed by superfine grinding with jet-milling. It is a homeostasis process that changes the complex energy conversion and starch properties. This study provides a theoretical basis and technical support for improving deep exploitation and utilization of maize starch, respectively.
microstructure; physical properties; chemical properties; jet-milling; maize starch
10.11975/j.issn.1002-6819.2016.24.037
TS235
A
1002-6819(2016)-24-0276-06
2016-07-12
2016-10-18
國家星火計劃項目 (2015GA670008);黑龍江省科技廳科技特派員項目(GC15B503);大慶市指導(dǎo)性科技計劃項目(S2dfy-2015-53)
王立東,男,黑龍江蘭西人,博士生,助理研究員,主要從事淀粉資源的深度開發(fā)與利用和谷物方便食品研究與開發(fā)。大慶 黑龍江八一農(nóng)墾大學(xué)國家雜糧工程技術(shù)研究中心,163319。Email:wanglidong-521@163.com
肖志剛,男,教授,博士生導(dǎo)師,主要從事農(nóng)產(chǎn)品加工及貯藏工程技術(shù)研究。哈爾濱 東北農(nóng)業(yè)大學(xué)食品學(xué)院,150030。 Email:zhigangx@sina.com