吳繼忠,吳 瑋
?
基于GPS-IR的美國中西部地區(qū)NDVI時(shí)間序列反演
吳繼忠,吳 瑋
(南京工業(yè)大學(xué)測繪科學(xué)與技術(shù)學(xué)院,南京211816)
基于AVHRR(advanced very high resolution radiometer)、MODIS(moderate-resolution imaging spectroradiometer)等衛(wèi)星遙感影像獲取的歸一化植被指數(shù)(normalized difference vegetation index,NDVI)存在大氣噪聲、土壤背景、飽和度等固有問題。GPS(global positioning system)衛(wèi)星播發(fā)的L波段信號對土壤和植被水分含量變化較為敏感,GPS-IR(GPS-interferometric reflectometry)利用測地型接收機(jī)和天線記錄GPS反射信號的變化,進(jìn)而反演測站環(huán)境參數(shù)。該文研究了利用GPS-IR反演區(qū)域NDVI時(shí)間序列的方法。采用4個(gè)GPS參考站2007-2015年近9 a的連續(xù)觀測數(shù)據(jù),由偽距和相位觀測值計(jì)算了歸一化微波反射指數(shù)(normalized microwave reflection index,NMRI),傅立葉變換顯示NMRI具有明顯的周期特性,其中年周期和半年周期分量普遍較為突出。利用三角多項(xiàng)式擬合剔除NMRI中由積雪和降雨引起的粗差點(diǎn)后,其波動(dòng)與同時(shí)間段內(nèi)MODIS NDVI的趨勢一致。一元線性回歸結(jié)果顯示NMRI與NDVI之間存在顯著線性相關(guān),相關(guān)系數(shù)在0.697~0.818(<0.001),NDVI反演誤差的均方根誤差在0.059~0.079,表明GPS-IR反演區(qū)域NDVI時(shí)間序列是可行的,該研究為獲取準(zhǔn)實(shí)時(shí)、低成本和高時(shí)間分辨率的NDVI提供了新的思路。
模型;植被;遙感;GPS-IR;歸一化植被指數(shù);歸一化微波反射指數(shù);反演;相關(guān)分析
歸一化植被指數(shù)(normalized difference vegetation index,NDVI)可以反映植被生長情況、覆蓋情況、生物量情況和植被種類情況,已廣泛用于全球植被狀態(tài)的定量化研究和應(yīng)用[1-7]。迄今為止,NDVI都是基于衛(wèi)星遙感影像來獲取,常用的NDVI來源于AVHRR(advanced very high resolution radiometer)、MODIS(moderate-resolutionimaging spectroradiometer)等遙感數(shù)據(jù)產(chǎn)品。然而,NDVI也存在固有缺陷,特別是:1)受傳感器自身因素和大氣條件的影響,NDVI數(shù)據(jù)包含較大的噪聲影響[8-12];2)NDVI數(shù)據(jù)易受土壤質(zhì)地、土壤水分含量等土壤背景噪聲的影響[13-14];3)在植被覆蓋較高的條件下,NDVI數(shù)值易迅速飽和[15-17]。
全球定位系統(tǒng)(global positioning system,GPS)是一種無線電導(dǎo)航定位系統(tǒng),GPS衛(wèi)星發(fā)射的載波信號位于微波的波段,能穿透植被,且對于植被和土壤含水量的變化較為敏感,經(jīng)地表植被和土壤反射后的載波信號可被GPS接收機(jī)接收并記錄。GPS-IR(GPS -interferometric reflectometry)是近些年來發(fā)展的一種新方法,其主要思想是分析反射信號物理參數(shù)的變化,進(jìn)而反演出環(huán)境變化信息,尤其是與地表土壤和植被相關(guān)的信息。Larson等研究利用GPS反射信號用于測量地表積雪厚度,提出了積雪厚度的正演模模型[18-19]。Chew等研究了GPS反射信號與土壤水分含量的回歸模型[20-22]。Small等最早研究了GPS反射信號(或多路徑信號)與植被狀態(tài)之間的關(guān)系,大量實(shí)驗(yàn)結(jié)果表明,GPS偽距多路徑均方根誤差(root mean square error,RMS)與植被高度、植被含水量間都存在良好的負(fù)相關(guān)性[23]。Wan等研究建立了GPS信噪比數(shù)據(jù)振幅與草類植物含水量之間的線性回歸模型,利用這一模型反演植物含水量誤差小于1 kg/m2[24]。Larson等以GPS偽距和相位觀測值為基礎(chǔ),提出了歸一化微波反射指數(shù)(normalized microwave reflection index,NMRI),發(fā)現(xiàn)NMRI與植被水分含量之間存在較好的相關(guān)性[25]。上述研究已發(fā)現(xiàn)GPS反射信號與植被水分含量之間存在相關(guān)性,能否利用GPS反射信號來反演NDVI數(shù)據(jù)則未見相關(guān)研究成果。本文研究目的在于分析NMRI的時(shí)頻分布特性,評價(jià)NMRI與NDVI的相關(guān)性,探索利用GPS-IR反演NDVI的可行性。論文利用4個(gè)不同區(qū)域的GPS參考站上長時(shí)間觀測數(shù)據(jù)進(jìn)行了驗(yàn)證和分析,其結(jié)論為區(qū)域NDVI數(shù)據(jù)獲取提供了新的思路。
1.1 反射區(qū)與歸一化微波反射指數(shù)計(jì)算
GPS-IR使用的觀測設(shè)備是常規(guī)的測量型接收機(jī)及天線,不需要兩幅天線,也無需更改天線的朝向。若GPS接收機(jī)天線高為,反射信號覆蓋區(qū)域可用第一菲涅耳區(qū)進(jìn)行描述,其形狀是由短半軸和長半軸定義的橢圓
圖1 第一菲涅耳區(qū)
Fig.1 First Fresnel zones
NMRI是評價(jià)反射信號振幅變化的一個(gè)綜合性指標(biāo),其核心是計(jì)算1載波上偽距多路徑指標(biāo)MP1的RMS(root mean square)值,MP1的表示為[26]
式中1是1載波上偽距觀測值,m;11575.42 MHz,21227.60 MHz;10.19 m,20.24 m;1和2是1、2載波相位觀測值,周。與導(dǎo)航定位計(jì)算不同,計(jì)算MP1的RMS值不需要使用對應(yīng)整周模糊度的真實(shí)值,在無周跳的情況下整周模糊度保持常數(shù)不變,其真值的絕對大小不影響RMS的計(jì)算,因此周跳的探測處理非常關(guān)鍵。采用經(jīng)過改進(jìn)的TurboEdit方法[27]將每顆單日觀測數(shù)據(jù)周跳探測處理,得到重新劃分的若干個(gè)“干凈”弧段,將每個(gè)弧段的MP1做去均值化處理后進(jìn)行弧段合并,計(jì)算每顆衛(wèi)星單日MP1的RMS值并作加權(quán)平均,最終得到單日MP1的RMS值。NMRI的計(jì)算以MP1的RMS值為基礎(chǔ),其計(jì)算方法如下
(3)
式中RMSMP1是單日MP1的RMS值,max(RMSMP1)是RMSMP1序列數(shù)值由大到小排列前5%的RMSMP1的平均值,因此NMRI絕大部分值在0~1之間,有少數(shù)值為負(fù)數(shù)。
1.2 歸一化植被指數(shù)計(jì)算
歸一化植被指數(shù)由可見光波段和近紅外波段二者反射率的反差來表征植被生物量的測度,其計(jì)算公式為
式中ch1、ch2分別為紅光波段和近紅外波段經(jīng)過大氣校正的地面反射率。紅光波段(波長620~670 nm)處于入射輻射的光譜吸收區(qū),近紅外波段(波長841~876 nm)處于入射輻射的光譜反射區(qū)。NDVI的數(shù)值范圍是[-1,1],數(shù)值越大則綠色植被越密集。
2.1 數(shù)據(jù)來源與計(jì)算
GPS數(shù)據(jù)使用了美國板塊邊緣觀測計(jì)劃(Plate Boundary Observatory,PBO)中的4個(gè)參考站自2007-2015年近9 a的觀測數(shù)據(jù),數(shù)據(jù)采樣間隔為30 s,衛(wèi)星截止高度角為5°。由于PBO參考站用途是用于地殼運(yùn)動(dòng)監(jiān)測,其觀測環(huán)境較好,所用測站周邊都是草地覆蓋且沒有高大障礙物的影響,部分參考站的觀測環(huán)境視圖如圖2所示。
4個(gè)參考站的概略情況如表1所示。P042和P048在2007-2015年間使用的是Trimble NETRS接收機(jī)。P041在2007-2012年使用的是Trimble NETRS接收機(jī),2013年2月更換成Trimble NETR9接收機(jī),由于不同型號接收機(jī)對多路徑信號的處理性能不同,為保持?jǐn)?shù)據(jù)一致性,P041站僅使用2007-2012年的數(shù)據(jù),類似的原因,P054使用2012-2015年的數(shù)據(jù)。將4個(gè)參考站在上述時(shí)間段內(nèi)的觀測數(shù)據(jù)下載后,按照式(3)計(jì)算單日RMSMP1。
表 1 GPS 參考站概況
目前MODIS NDVI被公認(rèn)為數(shù)據(jù)質(zhì)量較高的植被指數(shù)產(chǎn)品之一,本文使用的NDVI數(shù)據(jù)來自于美國地質(zhì)調(diào)查局陸地過程分布式數(shù)據(jù)中心的MODIS植被指數(shù)產(chǎn)品MOD13Q1,其空間分辨率為250 m,時(shí)間分辨率為16 d。利用ENVI軟件處理2007-2015年間的影像,各個(gè)參考站NDVI值取以測站為中心的3′3像素NDVI的均值。
2.2 數(shù)據(jù)分析
圖3給出了4個(gè)參考站的RMSMP1時(shí)間序列,可以看出RMSMP1序列總體上具有明顯的周期特性,這是植被生長隨季節(jié)變化的體現(xiàn);同時(shí)還可以看到圖上也有明顯偏離趨勢線的粗差點(diǎn),這些粗差點(diǎn)主要是受積雪、降雨等天氣的影響而產(chǎn)生的[25]。由圖3中P042和P054的變化還可以發(fā)現(xiàn),2012年內(nèi)有部分RMSMP1數(shù)值相對于其他年份明顯偏大,且持續(xù)時(shí)間較長,這一現(xiàn)象極有可能是2012年美國中西部地區(qū)遭遇極端嚴(yán)重的干旱氣候所造成的[28],圖4給出了各個(gè)參考站2007-2015年間各年份內(nèi)累計(jì)降雨量,其中2012年的降雨量分別是前5年平均降雨量的68%、46%、103%、72%,可見P041、P042和P054 3個(gè)站在2012年的降雨量均低于往年的平均值,相應(yīng)的RMSMP1數(shù)值也明顯高于往年,這一特點(diǎn)在圖上有清晰地體現(xiàn),其直接原因是在干旱條件下,地表土壤和植被水分含量很低,偽距多路徑效應(yīng)增大,從而造成RMSMP1值增加[23]。
為揭示RMSMP1序列在頻率域的分布規(guī)律,利用快速傅立葉變換將離散時(shí)間序列轉(zhuǎn)換為離散頻譜,圖5是快速傅立葉變換后得到的頻譜圖,由頻譜圖可以看出,RMSMP1序列中普遍存在明顯的周期信號,P041、P048和P054三個(gè)站上有年周期信號和半年周期信號,P041和P054兩個(gè)站的年周期信號比半年周期信號突出,而P048站的半年周期信號比年周期信號突出,振幅高出20%;P042站上僅有明顯的年周期信號,其最大振幅對應(yīng)的信號頻率為1.02 a-1,周期約為358 d。
由于RMSMP1容易受到積雪、降雨等影響,在計(jì)算NMRI之前需要預(yù)處理。最直接的方法是參照氣象觀測記錄,將降雨降雪時(shí)間段的數(shù)據(jù)直接剔除,這種方法只能人工進(jìn)行,工作量較大??紤]到RMSMP1序列顯著的周期性,用三角多項(xiàng)式對RMSMP1序列進(jìn)行擬合,將擬合殘差大于2倍中誤差的觀測值剔除,再次進(jìn)行擬合并進(jìn)行反復(fù)迭代,直到擬合殘差無超限為止,圖6顯示了經(jīng)過誤差點(diǎn)檢測后的RMSMP1序列,對比圖3可看出粗差點(diǎn)有明顯的減少。圖7顯示了P042站上的NMRI,由式(3)可知NMRI與RMSMP1是線性相關(guān),因此NMRI和RMSMP1具有相同的周期特性。
NMRI的時(shí)間分辨率為1 d,高于NDVI的時(shí)間分辨率。為便于對比,需將二者的采樣率進(jìn)行統(tǒng)一。為此將采樣率高的NMRI進(jìn)行插值處理,用三角多項(xiàng)式插值的方法獲得與NDVI采樣完全同步的NMRI數(shù)據(jù)。圖8a-8d分別顯示了4個(gè)參考站上NMRI和NDVI的散點(diǎn)分布圖。
從圖8可以看出,二者在時(shí)域內(nèi)的總體變化趨勢基本一致,NMRI和NDVI的峰值、谷值出現(xiàn)的時(shí)間吻合較好,可初步判定兩者間存在相關(guān)性,這一特征說明由NMRI來反演NDVI是可行的。
2.3 反演模型的建立和驗(yàn)證
為便于模型驗(yàn)證,以時(shí)間順序?qū)⒃囼?yàn)數(shù)據(jù)的前60%用于建模,后40%用于模型檢驗(yàn)。根據(jù)上述思路,分別將4個(gè)參考站的NMRI為自變量,NDVI為因變量,進(jìn)行一元線性回歸,表2給出了回歸分析的結(jié)果。
表2 回歸分析結(jié)果
由表2可以看出不同測站上的回歸系數(shù)是不一樣的,這與數(shù)據(jù)量有關(guān),還與參考站硬件處理反射信號的方式有關(guān),硬件的類型乃至固件的版本都會引起RMSMP1數(shù)值的尺度變化[29-30],圖3中不同測站上RMSMP1振幅的差異也能印證這一結(jié)論,但不同參考站上相關(guān)系數(shù)沒有明顯差異,介于0.697~0.818之間,在顯著性水平選擇為0.001的條件下,檢驗(yàn)全部通過,表明NMRI和NDVI之間存在顯著相關(guān)。考慮到一元線性回歸的檢驗(yàn)、檢驗(yàn)和檢驗(yàn)的等價(jià)性,檢驗(yàn)和檢驗(yàn)也必定通過。
將NMRI數(shù)據(jù)的后40%代入表2中建立的回歸模型,得到計(jì)算的NDVI,將從遙感影像獲取的NDVI值作為真實(shí)值,計(jì)算每個(gè)站上NDVI的反演誤差的均方根誤差,其大小分別為0.059、0.061、0.079、0.069,其數(shù)值與回歸分析殘差的均方根誤差基本接近。為分析誤差的區(qū)間分布規(guī)律,計(jì)算NDVI反演相對誤差(即反演誤差與真實(shí)值的比值),以20%的間隔統(tǒng)計(jì)每個(gè)區(qū)間內(nèi)相對誤差所占的比例,其統(tǒng)計(jì)結(jié)果見圖9。
從圖9可以看出,NDVI相對誤差較小的所占比例較大,以±20%以內(nèi)的相對誤差為例,4個(gè)站上所占比例分別為60%、75%、70%、81%,隨著相對誤差的增大,其比例越來越小,誤差分布總體上接近于正態(tài)分布,說明反演模型是有效的。
NDVI作為一種重要的遙感參數(shù),迄今為止均來源于AVHRR、MODIS等遙感數(shù)據(jù)產(chǎn)品,難以克服大氣噪聲、土壤背景和飽和度等固有缺陷。本文研究了利用GPS-IR(GPS- interferometric reflectometry)反演區(qū)域NDVI數(shù)據(jù),并通過長時(shí)間的實(shí)測數(shù)據(jù)進(jìn)行了檢驗(yàn)和分析,主要結(jié)論為:
1)基于GPS-IR生成的NMRI具有明顯的周期性,其中年周期和半年周期較為突出;
2)在干旱氣候條件下土壤和植被水分含量低,造成反射信號振幅增大,NMRI值相應(yīng)變??;
3)NMRI和NDVI在時(shí)域內(nèi)波動(dòng)趨勢趨于一致,峰值、谷值出現(xiàn)的時(shí)間吻合較好,依此建立了NDVI反演的一元線性回歸模型,相關(guān)系數(shù)在0.728~0.776(<0.05),NDVI擬合殘差的均方根誤差在0.056~0.091;
由于NMRI的獲取更為便捷,利用GPS-IR反演區(qū)域NDVI時(shí)間序列具備可行性。與遙感衛(wèi)星大尺度大范圍的影像獲取不同,GPS-IR記錄的是測站周圍地表反射信號的特征參數(shù),其作用范圍是以測站為中心的圓形區(qū)域,有效面積為數(shù)千平方米。目前,以GPS為代表的GNSS連續(xù)運(yùn)行參考站已經(jīng)成為一種空間信息基礎(chǔ)設(shè)施,參考站的數(shù)量和密度在不斷增加,GPS-IR可獲取的觀測范圍也在不斷增大,全球范圍內(nèi)大量分布的參考站可望成為潛在的NDVI傳感器,且具有低成本、準(zhǔn)實(shí)時(shí)、高時(shí)間分辨率的優(yōu)點(diǎn),不受傳感器自身因素和大氣條件的影響,但GPS-IR受雨雪、地形條件的影響,GPS-IR與土壤、植被間相互作用的物理機(jī)制尚不完全明確,上述問題還需要在后續(xù)工作中進(jìn)一步深入探索。
[1] 邊金虎,李愛農(nóng),宋孟強(qiáng),等. MODIS 植被指數(shù)時(shí)間序列Savitzky-Golay濾波算法重構(gòu)[J]. 遙感學(xué)報(bào),2010,14(4):725-741.
Bian Jinhu, Li Ainong, Song Mengqiang, et al. Reconstruction of NDVI time-series datasets of MODIS based on Savitzky-Golay filter[J]. Journal of Remote Sensing, 2010, 14(4): 725-741. (in Chinese with English abstract)
[2] Steven M, Malthus T, Baret F, et al. Intercalibration of vegetation indices from different sensor systems[J]. Remote Sensing of Environment, 2003, 88(4): 412-422.
[3] Lunetta R, Knight J, Edirwickrema J, et al. Land-cover change detection using multi-temporal MODIS NDVI data[J]. Remote Sensing of Environment, 2006, 105(2): 142-154.
[4] Montandon L, Small, E. The impact of soil reflectance on the quantification of the green vegetation fraction from NDVI[J]. Remote Sensing of Environment, 2008, 112(4): 1835-1845.
[5] Leon J, van L, Casady G. Using MODIS-NDVI for the modeling of post-wildfire vegetation response as a function of environmental conditions and pre-fire restoration treatments[J]. Remote Sensing, 2012, 4(3): 598-621.
[6] 杜加強(qiáng),趙晨曦,賈爾恒·阿哈提,等. 近30 a新疆月NDVI動(dòng)態(tài)變化及其驅(qū)動(dòng)因子分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(5):172-181.
Du Jiaqiang, Zhao Chenxi, Jiaerheng Ahati, et al. Analysis on spatio-temporal trends and drivers in monthly NDVI during recent decades in Xinjiang, China based two datasets [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(5): 172-181. (in Chinese with English abstract)
[7] Otto M, H?pfner C, Curio J, et al. Assessing vegetation response to precipitation in northwest Morocco during the last decade: an application of MODIS NDVI and high resolution reanalysis data[J]. Theoretical and Applied Climatology, 2016, 123(1): 23-41.
[8] Roerink G J, Menenti M,Verhoef W. Reconstructing cloud free NDVI composites using Fourier analysis of time series[J]. International Journal of Remote Sensing, 2000, 21(9): 1911-1917.
[9] Atzberger C, Eilers P. Evaluating the effectiveness of smoothing algorithms in the absence of ground reference measurements [J]. International Journal of Remote Sensing, 2011, 32(13): 3689-3709.
[10] Chen J, J?nssonc P, Tamurab M, et al. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golayfilter[J]. Remote Sensing of Environment, 2004, 91: 332-344.
[11] Jennifer N, Gregory J. Noise reduction of NDVI time series: An empirical comparison of selected techniques [J]. Remote Sensing of Environment, 2009, 113(1): 248-258.
[12] 吳文斌,楊鵬,唐華俊,等. 兩種NDVI 時(shí)間序列數(shù)據(jù)擬合方法比較[J]. 農(nóng)業(yè)工程學(xué)報(bào),2009,25(11):183-188.
Wu Wenbin, Yang Peng, Tang Huajun, et al.Comparison of two fitting methods of NDVI time series datasets [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(11): 183-188. (in Chinese with English abstract)
[13] Cheng Tao, Rivard B, Sanchez-Azofeifa A. Spectroscopic determination of leaf water content using continuous wavelet analysis [J]. Remote Sensing of Environment, 2011, 115(2): 659-670.
[14] Libonati R, Dacamara C, Pereira C, et al. On a new coordinate system for improved discrimination of vegetation and burned areas using MIR/NIR information [J]. Remote Sensing of Environment, 2011, 115(6): 1464-1477.
[15] 齊述華,王長耀,牛錚. 利用溫度植被旱情指數(shù)(TVDI)進(jìn)行全國旱情監(jiān)測研究[J]. 遙感學(xué)報(bào),2003,7(5):420-427.
Qi Shuhua, Wang Changyao, Niu Zheng. Evaluating soil moisture status in china using the temperature/vegetation dryness index (TVDI)[J]. Journal of Remote Sensing, 2003, 7(5): 420-427. (in Chinese with English abstract)
[16] Sandholt I, Rasmussen K, Andersen J. A simple interpretation of the surface temperaturevegetation index space for assessment of surface moisture status[J]. Remote Sensing of Environment, 2002, 79(2): 213-224.
[17] Liu Fang, Qin Qiming, Zhan Zhiming. A novel dynamic stretching solution to eliminate saturation effect in NDVI and its application in drought monitoring[J]. Chinese Geographical Science, 2012, 22(6): 683-694.
[18] Larson K, Nievinski F. GPS snow sensing: Results from the earthscope plate boundary observatory[J]. GPS Solutions, 2013, 17(3): 41-52.
[19] Nievinski F, Larson K. Forward modeling for near-surface reflectometry and positioning applications[J]. GPS Solution, 2014, 18(6): 309-322.
[20] Chew C, Small E, Larson K, et al. Effects of near-surface soil moisture on GPS snr data: Development of a retrieval algorithm for volumetric soil moisture[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1): 537-543.
[21] Larson K, Small E, Gutmann E, et al. Using GPS multipath to measure soil moisture fluctuations: initial results[J]. GPS Solutions, 2008, 12(3): 173-177.
[22] 敖敏思,朱建軍,胡友健,等. 利用SNR觀測值進(jìn)行GPS 土壤濕度監(jiān)測[J]. 武漢大學(xué)學(xué)報(bào):信息科學(xué)版,2015,40(1):117-120.
Ao Minsi, Zhu Jianjun, Hu Youjian, et al. Comparative experiments on soil moisture monitoring with GPS SNR observations[J]. Geomatics and Information Science of Wuhan University, 2015, 40(1): 117-120. (in Chinese with English abstract)
[23] Small E, Larson K, Braun J. Sensing vegetation growth with reflected GPS signals[J]. Geophysical Research Letters, 2010, 37(12): 1-5.
[24] Wan Wei, Larson K. Using geodetic GPS receivers to measure vegetation water content[J]. GPS Solution, 2015, 19(2): 237-248.
[25] Larson K, Small E. Normalized microwave reflection index, part 1: A vegetation measurement derived from GPS networks[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(5): 1501-1511.
[26] Estey L, Meertens C. TEQC: The multi-purpose toolkit for GPS/GLONASS data[J]. GPS Solutions, 1999, 3(1): 42-49.
[27] 吳繼忠,施闖,方榮新. TurboEdit單站GPS數(shù)據(jù)周跳探測方法的改進(jìn)[J]. 武漢大學(xué)學(xué)報(bào):信息科學(xué)版,2011,36(1):29-33.
Wu Jizhong, Shi Chuang, Fang Rongxin. Improving the single station data cycle slip detection approach turboedit[J]. Geomatics and Information Science of Wuhan University, 2011, 36(1): 29-33. (in Chinese with English abstract)
[28] Mallya G, Zhao L, Song X, et al. 2012 Midwest drought in the United States[J]. Journal of Hydrologic Engineering, 2013, 18(7): 737-745.
[29] Bilich A, Larson K. Mapping the GPS multipath environment using the signal-to-noise ratio (SNR)[J]. Radio Science, 2007, 42(6): 1-16.
[30] Vázquez G, Bennett R, Spinler J. Assessment of pseudorange multipath at continuous GPS stations in Mexico[J]. Positioning, 2013, 4(3): 253-265.
Retrieving NDVI in midwestern America using GPS-interferometric reflectometry
Wu Jizhong, Wu Wei
(,,211816)
the NDVI (normalized difference vegetation index) data, routinely derived from the AVHRR (advanced very high resolution radiometer) or MODIS (moderate resolution imaging spectroradiometer) imagery, is a key indicator of vegetation status and a useful parameter in studies of terrestrial vegetation cover, it has been widely used in remote sensing studies to reflect regional and global vegetation dynamics. However, the inherent defects of NDVI, including the atmospheric noise, soil effects and saturation problems are unavoidable, and thus impede further analysis and have a risk to generating erroneous results. Global Positioning System-Interferometric Reflectometry (GPS-IR) is a bistatic radar remote sensing technique that relates temporal changes in reflected GPS signals to changes in environmental parameters surrounding a ground-based GPS site. All GPS satellites transmit signals at L-band, which is similar to those used in active microwave radar applications. L-band signals have a higher correlation with vegetation water content, therefore GPS reflections will be sensitive to water within and on the surface of vegetation, as well as water in soil and snow. The sensing footprint of GPS-IR is on the order of a thousand square meters, which depends on the antenna height and satellite elevation angle. Other than specially-designed antenna or receiver in order to estimate environmental parameters, GPS-IR utilizes geodetic-quality GPS receivers and antennas, which are currently used at many of the already-existing GPS stations. This article presents a new method to retrieve regional NDVI data using NMRI (normalized microwave reflection index), which is an index derived from GPS observations. An experiment was conducted to evaluate the feasibility of the NDVI retrieval using NMRI. In the experiment, continuous GPS observations of four plate boundary observatory GPS reference stations in midwestern America during the interval 2008-2012 and MOD13Q1 product within the same time from MODIS were used. In the first step, the NMRI time series were calculated with the GPS pseudoranges and carrier phase observations preprocessed with an improved Turboedit method, and then NDVI time series were extracted from MOD13Q1 product. In the second step, NMRI and NDVI were compared and analyzed. The temporal fluctuations of NMRI showed a clear periodicity as well as sudden drops, which were not compatible with the gradual process of vegetation change. Fast Fourier transform revealed that the annual and semi-annual periodicities exhibited dominant amplitude. To obtain cleaned NMRI data, trigonometric polynomial fitting method was adopted to remove outliers. A relatively high correlation coefficient between NMRI and NDVI was found, the coefficients of determination varied from 0.697 to 0.818 (with a significance level of<0.001), showing a near linear relationship involving these variables. With regression analysis, a linear retrieve model for NDVI could be established on each reference station, the root mean square of NDVI retrieve errors varied from 0.059 to 0.079. The outcomes of this study suggested that GPS-IR would be almost equally capable of retrieving regional NDVI data, in contrast, GPS-IR had the potential to be in near real time, with low price and high temporal resolution, and what’s more, existing GPS networks around the world had the potential to be the NDVI sensors, which could be regarded as a new opportunity to obtain NDVI data.
models; vegetation; remote sensing; GPS-interferometric reflectometry; normalized microwave reflection index; normalized difference vegetation index; retrieve; correlation analysis
10.11975/j.issn.1002-6819.2016.24.024
P228.4; P237.9
A
1002-6819(2016)-24-0183-06
2016-05-01
2016-11-29
國家自然科學(xué)基金資助項(xiàng)目(41504024);江蘇省測繪地理信息科研項(xiàng)目(JSCHKY201413)
吳繼忠,男,湖北紅安人,博士,副教授,碩士生導(dǎo)師,主要從事衛(wèi)星導(dǎo)航定位應(yīng)用研究。南京 南京工業(yè)大學(xué)測繪科學(xué)與技術(shù)學(xué)院,211816。Email:jzwumail@163.com