吳 俊,丁金鴻,何炎平,趙永生,劉亞東
(上海交通大學(xué) 船舶海洋與建筑工程學(xué)院 海洋工程國家重點實驗室,上海 200240)
海上浮式風(fēng)機(jī)氣動性能數(shù)值模擬
吳 俊,丁金鴻,何炎平,趙永生,劉亞東
(上海交通大學(xué) 船舶海洋與建筑工程學(xué)院 海洋工程國家重點實驗室,上海 200240)
采用計算流體動力學(xué)(CFD)方法,基于RANS方程和SST k-ω湍流模型,對OC3-Hywind Spar浮式平臺支撐的NREL 5 MW風(fēng)機(jī)進(jìn)行氣動性能模擬。對固定式風(fēng)機(jī)的數(shù)值模型做網(wǎng)格無關(guān)性驗證,同時考慮垂直風(fēng)切變的影響,并將數(shù)值結(jié)果與NREL設(shè)計數(shù)據(jù)進(jìn)行對比以驗證模型的有效性。在FLUENT軟件中,設(shè)定嵌入式滑移網(wǎng)格和用戶定義程序(UDF)來模擬風(fēng)機(jī)葉輪隨平臺的周期運(yùn)動,分別研究浮式平臺的縱蕩、縱搖和首搖運(yùn)動對風(fēng)機(jī)氣動荷載的影響。數(shù)值結(jié)果表明平臺的縱蕩和縱搖運(yùn)動對輸出功率影響較大,且平臺運(yùn)動幅值越大周期越低,其氣動荷載變化越劇烈。合理控制平臺的運(yùn)動幅值對提高浮式風(fēng)機(jī)的發(fā)電性能和疲勞強(qiáng)度有很大作用。
海上浮式風(fēng)機(jī);計算流體動力學(xué);氣動性能;六自由度運(yùn)動
Abstract:Computational fluid dynamic (CFD) method is used to simulate the aerodynamic performance of floating offshore wind turbine (FOWT) experiencing platform motions.Based on the RANS equations and the k-ω shear-stress transport (SST) turbulence model,aerodynamic simulations for NREL 5MW turbine combined with OC3-Hywind spar buoy are studied.Grid independence studies are performed in fixed type offshore wind turbine,considering the effect of vertical wind shear,and the simulation results are compared with NREL published data to verify the numerical model.Furthermore,embedded moving mesh technique and user-defined functions (UDF) are adopted in FLUENT software to model the periodical motions of the rotor,and the effects of typical surge,pitch and yaw motions of the platform on turbine aerodynamic loads are investigated.The simulation results reveal that the surge and pitch motions have a greater impact on the fluctuation of the output power,and more significant variation of the aerodynamic loads would be introduced by larger amplitude and shorter period of the motion.The aerodynamic performance of the turbine and the fatigue strength of the structures would be significantly improved by reasonable controlling of the platform motions.
Keywords:floating offshore wind turbine (FOWT); computational fluid dynamics; aerodynamic performance; six-degrees-of-freedom motions
海上浮式風(fēng)機(jī)在風(fēng)浪流的聯(lián)合作用下產(chǎn)生六自由度運(yùn)動,使風(fēng)機(jī)周圍的流場發(fā)生劇烈變化,其復(fù)雜程度遠(yuǎn)遠(yuǎn)超出了陸上和離岸固定式風(fēng)機(jī)的流場[1]。其中平臺的縱搖和首搖運(yùn)動將導(dǎo)致葉輪附近出現(xiàn)非軸向或扭曲的流場,且風(fēng)機(jī)葉片也會與尾流相互作用,使葉片的氣動荷載計算變得更加復(fù)雜。同時平臺的縱搖運(yùn)動使葉輪產(chǎn)生有效風(fēng)剪切,故葉輪表面均勻風(fēng)速的假設(shè)不再適用[2]??v蕩和縱搖運(yùn)動引起的附加風(fēng)速與入流風(fēng)速疊加將改變?nèi)~片的相對入流速度以及葉輪-尾流之間的耦合作用。
目前大型風(fēng)機(jī)氣動性能計算方法主要有:葉素動量理論;渦格法(VLM)和CFD方法。葉素動量理論將葉素切片理論與簡單動量方法相結(jié)合,并引入一些修正因子,包括動態(tài)失速效應(yīng),Glauert修正系數(shù)以及Prandtl葉尖損失因子等,該方法廣泛地用到葉片設(shè)計和氣動性能計算中。但對于浮式風(fēng)機(jī),由于高聳于平臺上部的風(fēng)機(jī)隨平臺產(chǎn)生劇烈運(yùn)動,使風(fēng)機(jī)處于風(fēng)車和螺旋槳的瞬態(tài)變化狀態(tài)中[3],這種狀態(tài)無法用傳統(tǒng)的BEM理論來模擬。特別當(dāng)風(fēng)機(jī)往下風(fēng)向縱搖時,葉輪與尾部湍流相互作用將產(chǎn)生垂直于葉輪的螺旋形回流,Sebastian[3]將這種瞬態(tài)氣動效應(yīng)定義為渦環(huán)狀態(tài) (VRS)。當(dāng)風(fēng)機(jī)處于渦環(huán)狀態(tài)時,BEM理論中的動量方程將不再守恒[2]。還有一種方法稱為渦格法,其是基于勢流理論提出的,并在直升機(jī)旋翼和螺旋槳分析中得到廣泛應(yīng)用,Jeon等[4]曾使用該方法研究浮式風(fēng)機(jī)在平臺縱搖運(yùn)動下的氣動性能響應(yīng),但目前該方法在風(fēng)機(jī)氣動性能模擬方面應(yīng)用較少。而CFD作為風(fēng)機(jī)氣動性能分析的新一代工具,能精確模擬浮式風(fēng)機(jī)由于平臺運(yùn)動引起的復(fù)雜流場。目前,如Chow[5],Bazilevs[6]和劉強(qiáng)等[7]成功運(yùn)用CFD方法研究了NREL 5 MW大型風(fēng)機(jī)的氣動性能和尾流特性。Tran等[8]用UBEM、CFD和FAST三種方法模擬了浮式平臺的縱搖運(yùn)動對風(fēng)機(jī)氣動荷載的影響并對三種方法進(jìn)行對比。同時,斯圖加特大學(xué)的研究團(tuán)隊利用FLOWer軟件和重疊網(wǎng)格技術(shù)研究NREL 5 MW浮式風(fēng)機(jī)在指定的縱搖運(yùn)動下的非穩(wěn)態(tài)氣動響應(yīng)[9]。任年鑫等[10]基于Fluent軟件中的滑移網(wǎng)格技術(shù),實現(xiàn)了浮式風(fēng)機(jī)葉片在平臺縱蕩下與周圍流場的耦合模擬;同時利用VOF方法和滑移網(wǎng)格,Ren等[11]成功建立了浮式風(fēng)機(jī)與風(fēng)-浪耦合流場之間的流固耦合模型。
這里利用嵌入式滑移網(wǎng)格和UDF模擬NREL 5 MW風(fēng)機(jī)的旋轉(zhuǎn)及隨浮式平臺的典型周期性運(yùn)動。首先對模型做網(wǎng)格無關(guān)性驗證,考慮垂直風(fēng)切變的影響,并將無平臺運(yùn)動的數(shù)值結(jié)果與NREL數(shù)據(jù)對比以驗證數(shù)值模型。分別模擬浮式風(fēng)機(jī)在平臺縱蕩、縱搖和首搖運(yùn)動下的氣動荷載響應(yīng),并探討不同運(yùn)動幅值和周期對風(fēng)機(jī)發(fā)電量和推力的影響,得出了平臺運(yùn)動對浮式風(fēng)機(jī)氣動性能的影響規(guī)律。
1.1控制方程
基于雷諾時均的三維黏性不可壓Navier-Stokes方程的連續(xù)性方程和動量方程分別為:
1.2湍流模型
采用SST k-ω湍流模型,該模型結(jié)合了k-ω模型在近壁區(qū)域計算的魯棒性和精確性等優(yōu)點以及k-ε模型在遠(yuǎn)場計算的優(yōu)點,其輸送方程可寫為:
2.1浮式風(fēng)機(jī)模型
研究對象選用美國可再生能源實驗室(NREL)所開發(fā)的5 MW離岸風(fēng)機(jī)[12],具體幾何參數(shù)如表1所示。沿葉片展向,截面的翼型不同葉厚的DU翼型以及NACA-64618翼型。下部支撐平臺為Offshore Code Comparison Collaboration (OC3)研究計劃所選用的OC3-Hywind Spar式浮式平臺。
表1 NREL 5 MW海上風(fēng)機(jī)總體參數(shù)Tab.1 The overall parameters of the NREL 5 MW offshore wind turbine
采用實尺度模型計算風(fēng)機(jī)的氣動性能,為提高計算效率,模型不包括塔架和浮式平臺。整個計算域劃分為外流場域、球形旋轉(zhuǎn)域和葉片旋轉(zhuǎn)域,如圖1所示。其中球形旋轉(zhuǎn)域用于模擬在平臺轉(zhuǎn)動下整個葉片旋轉(zhuǎn)域的轉(zhuǎn)動,而葉片旋轉(zhuǎn)域用來定義葉輪相對球形旋轉(zhuǎn)域的自轉(zhuǎn)。每一時間步迭代前,都需用UDF定義旋轉(zhuǎn)域的運(yùn)動速度,由于葉片旋轉(zhuǎn)域存在嵌套轉(zhuǎn)動,故需要使用嵌入式滑移網(wǎng)格以定義其運(yùn)動。兩個區(qū)域彼此相互接觸的面都設(shè)為交界面,交界面之間存在相對滑移并傳遞流場信息。葉片表面設(shè)為無滑移壁面,外部流場分別設(shè)置為速度入口和壓力出口,其他四周均為對稱壁面。
圖1 計算模型示意Fig.1 Sketch of the whole computational domain
2.2網(wǎng)格劃分
采用結(jié)構(gòu)化網(wǎng)格,加密旋轉(zhuǎn)域和葉片附近的網(wǎng)格,且對葉片賦予一定厚度的邊界層。圖2所示為葉片表面與周圍流場網(wǎng)格分布以及葉片展向2/3R處的網(wǎng)格截面圖。
圖2 網(wǎng)格劃分示意Fig.2 Illustration of the mesh
采用FLUENT商業(yè)軟件,選取SST k-ω湍流模型,采用壓力基求解器,壓力速度的耦合選取PISO算法,壓力項采用PRESTO!格式進(jìn)行離散。擴(kuò)散項為中心差分格式,對流項、湍流動能方程以及湍流耗散率均采用二階迎風(fēng)格式。
3.1網(wǎng)格無關(guān)性驗證
為確保數(shù)值模擬的精確性,需進(jìn)行網(wǎng)格無關(guān)性驗證。其中計算域?qū)挾扰c高度均取10倍葉輪半徑,上風(fēng)向長度為6倍半徑,為滿足壓力出口條件,下風(fēng)向取20倍半徑。對三種不同網(wǎng)格方案模型,在額定風(fēng)速下進(jìn)行氣動荷載模擬,并將結(jié)果與設(shè)計值對比,如表2所示。由表可知方案1的網(wǎng)格數(shù)量最少,但模擬結(jié)果偏差較大;而方案2的網(wǎng)格數(shù)量較適中,且功率和推力的偏差與方案3較接近,為了提高計算效率,取方案2,最小單元尺寸為2 cm,網(wǎng)格總量為832萬。
表2 不同網(wǎng)格精度的對比Tab.2 The comparison of different grid sizes
3.2考慮垂直風(fēng)切變的影響
5 MW風(fēng)機(jī)尺度巨大,輪轂高度距海平面90 m,沿高度方向的風(fēng)速存在較大梯度,故需考慮垂直風(fēng)切變的影響。根據(jù)API-RP-2A-WSD規(guī)范,采用對數(shù)風(fēng)剖面模擬海上風(fēng)速沿高度的變化:
其中,U0為海平面10 m高度處的1小時平均風(fēng)速(m/s)。
將風(fēng)速梯度編制成UDF,初始化流場速度入口,以模擬在額定風(fēng)速下風(fēng)機(jī)氣動荷載的變化。由于越往高處,風(fēng)速越大,轉(zhuǎn)至高處的葉片受到的推力與扭矩比處于低處的葉片要大,而我們所關(guān)心的風(fēng)機(jī)總體氣動荷載是對三枚葉片求和得到的。如圖3所示,雖然葉輪輸出功率和推力存在一定波動,以葉輪轉(zhuǎn)1/3圈為周期類似簡諧曲線變化,但總體波動很小,在0.2%~0.4%之間,其中平均功率相對均勻風(fēng)的工況降低了1.2%??傮w來說,垂直風(fēng)切變對風(fēng)機(jī)總體氣動性能影響較小,為了簡化,以下工況均取速度入口為均勻風(fēng)。
圖3 垂直風(fēng)切變對風(fēng)機(jī)總體氣動性能的影響Fig.3 The effect of vertical wind shear on overall aerodynamic performance of wind turbine
圖4 風(fēng)機(jī)后方不同位置截面的流場云圖Fig.4 Contour of velocity from different sections behind the rotor
3.3數(shù)值模型驗證
根據(jù)NREL 5 MW風(fēng)機(jī)轉(zhuǎn)速隨來流風(fēng)速的變化情況,分別模擬三個低風(fēng)速工況、一個額定風(fēng)速以及兩個高風(fēng)速工況。首先采用旋轉(zhuǎn)參考坐標(biāo)系法(MRF)進(jìn)行穩(wěn)態(tài)模擬,當(dāng)收斂精度達(dá)到10-4的且氣動荷載變化較小后,即認(rèn)為流場穩(wěn)定。而瞬態(tài)計算是在穩(wěn)態(tài)計算的基礎(chǔ)上采用滑移網(wǎng)格法進(jìn)行模擬,當(dāng)葉輪旋轉(zhuǎn)4圈后,推力和扭矩基本穩(wěn)定。圖4顯示了風(fēng)機(jī)后方穩(wěn)定流場截面的速度云圖,當(dāng)來流剛經(jīng)過風(fēng)機(jī)后,存在明顯的渦流,隨著流動距離不斷加大,漩渦逐漸消失。將以上的數(shù)值結(jié)果與NREL的設(shè)計數(shù)據(jù)進(jìn)行對比,由圖5可知,CFD的模擬結(jié)果略小于NREL設(shè)計數(shù)據(jù)。當(dāng)風(fēng)速較小時,CFD結(jié)果與設(shè)計值相差很小,當(dāng)風(fēng)速高于額定風(fēng)速時,相差越大,其中當(dāng)風(fēng)速達(dá)到15 m/s時,水平推力相差9.4%,而輸出功率相差9.1%。這主要是由于當(dāng)風(fēng)速較大時,葉片中部翼型截面處的流場逐漸進(jìn)入動態(tài)失速狀態(tài),故在有限的網(wǎng)格數(shù)量和所選湍流模型下很難精確模擬出該復(fù)雜流場[10]。鑒于模擬結(jié)果的誤差在可接受范圍內(nèi),從一定程度上也驗證了該數(shù)值模型模擬海上風(fēng)機(jī)氣動荷載的有效性。
圖5 風(fēng)機(jī)推力和輸出功率的對比Fig.5 Comparisons of fixed wind turbine thrust and rotor power
3.4平臺縱蕩的影響
當(dāng)浮式平臺發(fā)生縱蕩時,風(fēng)機(jī)與平臺以相同的速度運(yùn)動。為了簡單起見,這里將縱蕩運(yùn)動簡化為一定周期和幅值的簡諧運(yùn)動,如式(7)所示。對上式求導(dǎo)即為縱蕩速度,當(dāng)運(yùn)動開始時,該速度從零開始增加,故流場不會因為平臺的運(yùn)動而發(fā)生突變。在開始加載縱蕩運(yùn)動前,先計算600步左右的穩(wěn)態(tài)模擬和4個葉片旋轉(zhuǎn)周期的瞬態(tài)模擬,以確保流場已充分發(fā)展并消除瞬態(tài)波動。模擬工況選取額定風(fēng)速為11.4 m/s,葉片旋轉(zhuǎn)速度為12.0 rpm,浮式平臺運(yùn)動周期分別為12 s和20 s,運(yùn)動幅值為2 m和4 m,葉輪推力及輸出功率的變化如圖6和圖7所示。
圖6 不同運(yùn)動幅值下浮式風(fēng)機(jī)氣動性能比較Fig.6 Comparison of blade aerodynamic performance under different surge amplitudes
圖7 不同運(yùn)動周期下浮式風(fēng)機(jī)氣動性能比較Fig.7 Comparison of blade aerodynamic performance under different surge periods
由圖6和圖7可知,風(fēng)機(jī)氣動荷載的響應(yīng)曲線也近似為簡諧曲線,與平臺的運(yùn)動規(guī)律基本一致。由于平臺的縱蕩運(yùn)動產(chǎn)生的附加速度,使風(fēng)機(jī)與入流風(fēng)之間的相對速度改變,從而導(dǎo)致葉片各截面翼型的攻角、升力系數(shù)和阻力系數(shù)發(fā)生周期性變化,最終反映到風(fēng)機(jī)推力和功率的周期性變化。在縱蕩運(yùn)動下,推力和輸出功率的平均值與固定式風(fēng)機(jī)相比降低1%左右,主要原因是氣動荷載的簡諧曲線關(guān)于中心軸不是對稱的,即風(fēng)機(jī)往下風(fēng)向運(yùn)動所減小的氣動荷載值要略高于往上風(fēng)向運(yùn)動所增加的值。對于周期相同而幅值為2 m和4 m的兩種縱蕩工況,風(fēng)機(jī)推力變化幅度分別為10%和18%,而功率變化為22%和68%。該結(jié)果表明在縱蕩運(yùn)動下,平臺運(yùn)動幅值越大,周期越小,氣動荷載響應(yīng)的變化越劇烈,且輸出功率變化較為敏感,故合理控制平臺運(yùn)動幅值對保證風(fēng)力發(fā)電的穩(wěn)定以及風(fēng)機(jī)結(jié)構(gòu)包括塔架、葉片和減速齒輪的疲勞壽命都有重要意義。
下一步分析縱蕩運(yùn)動對每個葉片的影響??紤]到葉輪的對稱性,只取一個葉片作為研究對象,平臺運(yùn)動選取周期為12 s而幅值為4 m的工況。圖8給出了從縱蕩運(yùn)動開始到氣動荷載達(dá)到最大值期間,推力和轉(zhuǎn)矩沿葉片展向的分布情況。當(dāng)t=20 s時,此時縱蕩速度為零,故氣動性能的分布曲線處于中間位置;而當(dāng)t=23 s時,即風(fēng)機(jī)的下風(fēng)向速度達(dá)到最大,此時轉(zhuǎn)矩和推力的分布都處于最低位置;當(dāng)t=26 s時,風(fēng)機(jī)的縱蕩速度又回到零,故與t=20 s的曲線幾乎重合;而當(dāng)t=29 s時,風(fēng)機(jī)的上風(fēng)向速度達(dá)到最大,故葉片氣動性能分布曲線也處于最高位置。由圖8可知,葉尖和靠近輪轂部分的氣動荷載變化較小,而變化最劇烈的范圍集中在0.5R~0.9R之間,故此處需著重考慮葉片的結(jié)構(gòu)和疲勞強(qiáng)度。
圖8 在縱蕩運(yùn)動下氣動荷載沿葉片展向的分布Fig.8 The spanwise distributions of aerodynamic loads along the blade experiencing surge motion
3.5平臺縱搖的影響
將平臺的縱搖角位移簡化為簡諧運(yùn)動,根據(jù)OC3-Hywind spar結(jié)構(gòu),取輪轂以下90 m作為縱搖中心。對于錨泊式浮式風(fēng)機(jī),其典型縱搖運(yùn)動的頻率接近入射波浪的頻率,故這里選取周期為10 s且角位移幅值分別為2°和4°的兩種縱搖工況進(jìn)行分析。圖9顯示了浮式風(fēng)機(jī)縱搖過程的尾流變化情況,當(dāng)風(fēng)機(jī)縱搖處于平衡位置時,葉片與后方流場相互干擾較小,故尾流相對穩(wěn)定。而當(dāng)風(fēng)機(jī)縱搖至上風(fēng)向和下風(fēng)向時,由于葉片的一部分受到尾流的影響,同時由于葉片的存在對流場產(chǎn)生一定擾動,故葉輪與尾流之間的耦合作用使尾流變化更劇烈。圖10給出了在兩種工況下風(fēng)機(jī)氣動荷載的變化。由圖10可知,縱搖角度越大所引起氣動荷載的波動也越劇烈。與無平臺運(yùn)動的情況相比,在幅值為2°和4°的縱搖運(yùn)動下推力的平均值分別降低2.7%和5.2%,而兩者的功率平均值基本一致,均降低4.2%。其原因可能是縱搖運(yùn)動使風(fēng)機(jī)在入流方向的投影面減小,縱搖幅值越大投影面越小,從而受到的水平推力也就越低。對于縱搖角度為2°和4°的運(yùn)動,水平推力的變化幅度分別為17.5%和35.3%,而輸出功率變化幅度分別為23.8%和65.9%。與縱蕩運(yùn)動類似,縱搖運(yùn)動產(chǎn)生的氣動荷載的劇烈波動也會對浮式風(fēng)機(jī)的機(jī)艙控制系統(tǒng)和結(jié)構(gòu)疲勞造成一定影響。
當(dāng)風(fēng)機(jī)發(fā)生縱搖時,風(fēng)輪盤面存在的附加速度差會引起有效風(fēng)剪切[3],如圖11所示。為了研究這種效應(yīng)對風(fēng)機(jī)氣動荷載的影響,分別計算每個葉片上的荷載響應(yīng)。圖12給出了三個葉片在縱搖運(yùn)動下的水平推力的響應(yīng)曲線,其中葉片#1的初始位置在Z軸正方向,葉片#2和#3與Z軸分別成±120°。由于葉輪的旋轉(zhuǎn)作用,三個葉片的氣動荷載曲線存在相位差,其中葉片#1比#3超前2/3π相位,比#2落后2/3π相位。由于葉片#1的截面到縱搖中心的垂直距離最長,相應(yīng)其附加速度的變化也是最大的,故如圖12所示,作用在葉片#1上的推力的變化幅值比其他葉片要大。然而這種差別低于5%,故由于縱搖引起的風(fēng)剪切效應(yīng)對風(fēng)機(jī)葉片氣動荷載的影響并不大。
圖9 浮式風(fēng)機(jī)縱搖至不同位置的尾流速度圖Fig.9 Velocity contours of wake flow during different pitch positions of floating wind turbine
圖10 不同縱搖幅值下風(fēng)機(jī)的氣動性能對比Fig.10 Comparison of blade aerodynamic performance under different pitch amplitudes
圖11 縱搖運(yùn)動所引起的風(fēng)輪盤面的有效風(fēng)剪切Fig.11 Effective wind shear across the rotor due to pitching motion
圖12 作用在每個葉片上的水平推力Fig.12 The aerodynamic thrust force for each blade
3.6平臺首搖的影響
與縱搖類似,平臺首搖運(yùn)動也會在葉輪盤面處產(chǎn)生風(fēng)剪切,并改變相對入流速度,同時也造成葉片槳距角的改變,即葉片不同截面翼型處的攻角也相應(yīng)發(fā)生變化。在附加速度的影響以及葉片槳距角的改變的共同作用,分析風(fēng)機(jī)在首搖運(yùn)動下的氣動荷載是非常復(fù)雜的。文中研究了風(fēng)機(jī)在周期為10 s、角幅值為2°的首搖運(yùn)動下的氣動性能,圖13給出了風(fēng)機(jī)在該運(yùn)動下的總體氣動荷載變化以及葉片#1的推力和扭矩的變化。由圖可知,除了初始階段的數(shù)值波動外,風(fēng)機(jī)的總體性能相對較穩(wěn)定,而單獨(dú)每個葉片的氣動荷載存在較大的波動。為了研究葉片翼型截面在首搖作用下的氣動性能,借助BEM理論進(jìn)行定性分析,如圖14所示。以葉片#1為例,當(dāng)首搖運(yùn)動開始時(t=10 s),葉片繞Z軸的旋轉(zhuǎn)力臂為零,即槳距角和附加速度都從零開始增加,故此時葉片的每個截面的攻角都沒有改變。顯然,附加速度與首搖角速度和轉(zhuǎn)動力臂成正比,附加速度增加會導(dǎo)致翼型攻角和氣動荷載的增大,而增大逆時針方向的槳距角會降低翼型攻角和氣動荷載。當(dāng)t處于10~11 s之間時,雖然由于槳距角的增大會減小攻角,但附加速度的增加占主導(dǎo)地位,故此階段推力和轉(zhuǎn)矩都增大。過了11 s后,由于首搖角速度減小使附加速度的增幅放慢,而此時槳距角的增大占主導(dǎo)地位,故葉片氣動荷載下降。到了1/4T(t=12.5 s)時,首搖角速度減為零,即附加速度為零,同時逆時針方向的槳距角也達(dá)到了最大值,故此時葉片扭矩降到最低值,而由于升力在推力方向上的分量增加所帶來的補(bǔ)償,故水平推力并沒有降到最低值而是略低于正常工況。
圖13 在首搖運(yùn)動下風(fēng)機(jī)的氣動性能Fig.13 The aerodynamic performance of the rotor experiencing yaw motion
圖14 利用BEM理論分析平臺首搖的影響Fig.14 Analysis of the effect of yaw motion using BEM theory
1)在模型的網(wǎng)格無關(guān)性驗證基礎(chǔ)上,模擬垂直風(fēng)切變的工況,結(jié)果表明風(fēng)機(jī)總體氣動性能變化很小可以忽略。同時不同風(fēng)速工況的模擬結(jié)果表明CFD的模擬結(jié)果略小于NREL設(shè)計數(shù)據(jù)。在低風(fēng)速下,兩者相差很小,而在高風(fēng)速下,相差略大,然而誤差在可接受范圍內(nèi),一定程度上驗證了該數(shù)值模型的有效性。
2)在平臺縱蕩運(yùn)動下,浮式風(fēng)機(jī)的推力和輸出功率的平均值相比固定式減少了1%。平臺運(yùn)動幅值越大,周期越小,氣動荷載變化越劇烈,同時功率的變化較推力值更為敏感。當(dāng)平臺縱蕩時,葉片氣動荷載變化最劇烈的部位集中在0.5R~0.9R之間。
3)平臺縱搖角度越大,其氣動荷載波動也越劇烈,且輸出功率的變化比推力更敏感,同時由于縱搖引起的風(fēng)剪切效應(yīng)可忽略不計。在縱搖運(yùn)動下,浮式風(fēng)機(jī)的推力和輸出功率的均值較固定式風(fēng)機(jī)要低,且運(yùn)動幅值越大推力的均值越低。
4)在平臺首搖運(yùn)動下,風(fēng)機(jī)的總體性能相對穩(wěn)定,而每個葉片的氣動荷載波動較大。由于首搖角速度產(chǎn)生的附加速度以及葉片槳距角的改變,兩者的共同作用使風(fēng)機(jī)的氣動性能預(yù)報變得更加復(fù)雜。
[1] SEBASTIAN T,LACKNER M.Analysis of the induction and wake evolution of an offshore floating wind turbine[J].Energies,2012,5(12):968-1000.
[2] SEBASTIAN T,LACKNER M A.Characterization of the unsteady aerodynamics of offshore floating wind turbines[J].Wind Energy,2013,16(3):339-352.
[3] SEBASTIAN T,LACKNER M.A comparison of First-order aerodynamic analysis methods for floating wind turbines[C]//Proceedings of the 48th AIAA Aerospace Sciences Meeting.2010.
[4] JEON M,LEE S,LEE S.Unsteady aerodynamics of offshore floating wind turbines in platform pitching motion using vortex lattice method[J].Renewable Energy,2014,65:207-212.
[5] CHOW R,VAN DAM C P.Verification of computational simulations of the NREL 5 MW rotor with a focus on inboard flow separation[J].Wind Energy,2012,15(8):967-981.
[6] BAZILEVS Y,HSU M C,AKKERMAN I,et al.3D simulation of wind turbine rotors at full scale.Part I:Geometry modeling and aerodynamics[J].International Journal for Numerical Methods in Fluids,2011,65(1-3):207-235.
[7] 劉強(qiáng),楊科,黃宸武,等.5 MW 大型風(fēng)力機(jī)氣動特性計算及分析[J].工程熱物理學(xué)報,2012,33(7):1155-1159.(LIU Qiang,YANG Ke,HUANG Chengwu,et al.Simulation and analysis of the aerodynamic characteristics of a 5 MW wind turbine[J].Journal of Engineering Thermophysics,2012,33(7):1155-1159.(in Chinese) )
[8] TRAN T,KIM D,SONG J.Computational fluid dynamic analysis of a floating offshore wind turbine experiencing platform pitching motion[J].Energies,2014,7(8):5011-5026.
[9] MATHA D,SCHLIPF M,CORDLE A,et al.Challenges in simulation of aerodynamics,hydrodynamics,and mooring-line dynamics of floating offshore wind turbines[R].National Renewable Energy Laboratory,US Department of Energy,Office of Energy Efficiency and Renewable Energy,2011.
[10] 任年鑫,李玉剛,歐進(jìn)萍.浮式海上風(fēng)力機(jī)葉片氣動性能的流固耦合分析[J].計算力學(xué)學(xué)報,2014,31(1):91-95.(REN Nianxin,LI Yugang,OU Jinping.The fluid-structure interaction analysis of aerodynamic performance of floating offshore wind turbine blade[J].Chinese Journal of Computational Mechanics,2014,31(1):91-95.(in Chinese) )
[11] REN N X,LI Y G,OU J P.Coupled wind-wave time domain analysis of floating offshore wind turbine based on computational fluid dynamics method[J].Journal of Renewable and Sustainable Energy,2014,6(2):23106.
[12] JONKMAN J,BUTTERFIELD S,MUSIAL W,et al.Definition of a 5 MW reference wind turbine for offshore system development[R].National Renewable Energy Laboratory Golden,CO,2009.
Numerical analysis of aerodynamic performance of floating offshore wind turbine
WU Jun,DING Jinhong,HE Yanping,ZHAO Yongsheng,LIU Yadong
(State Key Laboratory of Ocean Engineering,School of Naval Architecture,Ocean and Civil Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)
P753; TM614
A
10.16483/j.issn.1005-9865.2016.03.005
1005-9865(2016)03-0038-09
2015-04-30
國家重點基礎(chǔ)研究發(fā)展計劃(973 計劃)項目(2014CB046200);高等學(xué)校博士學(xué)科點專項科研基金新教師類資助課題(20120073120014)
吳 俊(1990-),男,浙江湖州人,碩士,主要從事海上風(fēng)機(jī)的氣動荷載模擬。E-mail:wujun2009110@sjtu.edu.cn
丁金鴻。E-mail:ahaha@sjtu.edu.cn