• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Unilateral global bifurcation for fourth-order boundaryvalue problem with non-asymptotic nonlinearity at 0

    2016-09-16 03:00:34SHENWenguo
    浙江大學學報(理學版) 2016年5期
    關(guān)鍵詞:基礎(chǔ)學科四階邊值問題

    SHEN Wenguo

    (Department of Basic Courses, Lanzhou Institute of Technology, Lanzhou 730050, China)

    ?

    Unilateral global bifurcation for fourth-order boundaryvalue problem with non-asymptotic nonlinearity at 0

    SHEN Wenguo

    (Department of Basic Courses, Lanzhou Institute of Technology, Lanzhou 730050, China)

    fourth-orderproblems;unilateralglobalbifurcation;nodalsolutions;non-asymptoticnon-linearityat0

    浙江大學學報(理學版),2016,43(5):525-531

    0 Introduction

    LetEbearealBanachspacewiththenorm‖·‖.Considertheoperatorequation

    u=λBu+H(λ, u),

    (1)

    whereBisacompactlinearoperatorandH:R×E→EiscompactwithH=o(‖u‖)atu=0uniformlyonboundedλintervals.

    Rabinowitz’sglobalbifurcationtheorem[1]hasshownthatifthecharacteristicvalueμofBisofoddmultiplicityand

    thenthereexistsacomponentCμofSthatcontains(μ, 0),whichsatisfies:

    Recently,SHEN[3-4]studiedtheexistenceofnodalsolutionsofthefollowingboundaryvalueproblem:

    (2)

    whereris a positive parameter, under the assumptions:

    (A1) One of the following conditions holds:

    (A2) h(t) ∈C([0, 1], [0, ∞))withh(t)?0onanysubintervalof[0, 1].

    Lemma3[3-4](i)Thelineareigenvalueproblem

    (3)

    hasauniqueinfinitenumberofpositiveeigenvalues

    0<λ1<λ2<…<λk<…→∞,ask→∞,

    andtheeigenfunctionψkcorrespondingtoλkhasexactlyk-1zerosin(0, 1).

    (ii)Foreachk∈N,thealgebraicmultiplicityofλkis1.

    Meanwhile,RABINOWITZ[1]establishedunilateralglobalbifurcationtheory(theorem1.27andtheorem1.40of[1]).However,aspointedoutbyDANCER[2,5]andLPEZ-GMEZ[6],theproofsofthesetheoremscontaingaps.Fortunately,DANCER[2]gaveacorrectedversionoftheunilateralglobalbifurcationtheoremfortheproblem(1)whichhasbeenextendedtotheone-dimensionalp-LaplacianproblembyDAIetal.[7].In2013,DAIetal.[8]establishedaDancer-typeunilateralglobalbifurcationresultforfourth-orderproblemsofthedeformationsofanelasticbeaminequilibriumstatewhichbothendsaresimplysupported.

    Motivatedbytheabovepapers,weshallestablishaDancer-typeunilateralglobalbifurcationresultaboutthecontinuumofsolutionsforthedeformationsofanelasticbeaminequilibriumstatewithfixedbothendpointswhichcanbedescribedbythefourth-orderproblems:

    x′?+kx″+lx=λh(t)x+g(t,x,λ), 0

    x(0)=x(1)=x′(0)=x′(1)=0,

    (4)

    wherehsatisfies (A2), andg:(0, 1)×R2→Rsatisfies the Carathéodory condition in the first two variables, such that

    (5)

    uniformly fort∈ (0, 1) andλon bounded sets.

    Remark 1Since the problem (2) cannot transform into a system of second-order equation, the treatment method of second-order system does not apply to study the problem (2). Thus, existing literature on the problem (2) by bifurcation theory is limited[3-4,9].

    Remark 2For other results on the existence and multiplicity of positive solutions and nodal solutions for other boundary value problems of fourth-order ordinary differential equations based on bifurcation techniques[10-11].

    The rest of this paper is arranged as follows. In section 1, we establish the Dancer-type unilateral global bifurcation theory for problem (4). In section 2, we prove the existence of nodal solutions for the problem (2) under the linear growth condition onf.

    1 Unilateral global bifurcation results

    WedefinethelinearoperatorL:D(L)?E→Y,

    Lx=x′?+kx″+lx, x∈ D(L)

    withD(L)= {x∈C4[0, 1]|x(0)=x(1)=x′(0)=x′(1)=0}.ThenLisaclosedoperatorandL-1:Y→Eiscompletelycontinuous.

    Define the operatorH:R×E→Eby

    H(λ,x)(t):=λL-1(hx)+L-1(g(t,x,λ))=

    Tλ(x)+L-1(g(t,x,λ)).

    It is easy to show thatI-Tλis a nonlinear compact perturbation of the identity. Thus the Leray-Schauder degree deg(I-Tλ,Br(0),0) is well-defined for arbitraryr-ballBr(0) andλ≠λk.

    Lemma 4For anyr>0, we have

    deg(I-Tλ,Br(0),0)=

    ProofSinceTλis compact and linear, by theorem 8.10 of [12],

    deg(I-Tλ,Br(0), 0)=(-1)m(λ),

    wherem(λ) is the sum of algebraic multiplicity of the eigenvaluesλof (3),satisfyλ-1λk<1.

    Ifλ∈ [0,λ1), by lemma 3, then there are no suchλat all, then

    deg(I-Tλ,Br(0), 0)=(-1)0=1.

    Ifλ∈(λk,λk+1) for somek∈N, then

    (λj)-1>1,j∈{1, 2,…,k}.

    By lemma 3, we obtain

    deg(I-Tλ,Br(0), 0)=(-1)k.

    Furthermore, it is clear that problem (4) can be equivalently written as

    x=H(λ,x)(t).

    Clearly,His completely continuous fromR×E→EandH(λ, 0)=0, ?λ∈R.

    Let

    (6)

    (7)

    uniformlyfort∈ (0, 1)andλonboundedsets.

    Theorem1Assume(A1), (A2)and(5)hold.Then

    (i) (λk, 0)isabifurcationpointoftheproblem(4).

    Proof(i)Supposethat(λk, 0)isnotabifurcationpointofproblem(4).Thenthereexistε> 0,ρ0>0suchthatfor|λ-λk|≤εand0<ρ<ρ0thereisnonontrivialsolutionoftheequation

    x-H(λ, x)=0

    with‖x‖=ρ.Fromtheinvarianceofthedegreeunderacompacthomo-topology,weobtainthat

    deg(I-H(λ, ·),Bρ(0), 0)≡constant

    (8)

    forλ∈[λk-ε,λk+ε].

    By takingεsmaller if necessary, we can assume that there is no eigenvalue of (3) inλ∈(λk,λk+ε]. Fixλ∈(λk,λk+ε]. We claim that the equation

    x-(λL-1(hx)+τL-1(g(t,x,λ)))=0

    (9)hasnosolutionxwith‖x‖=ρforeveryτ∈[0, 1]andρsufficientlysmall.Supposeonthecontrary,let{xn}bethesolutionof(9)with‖xn‖→0asn →+∞.

    (10)

    By(7), (10)andthecompactnessofL-1,choosingasubsequenceandrelabelingifnecessary,itfollowsthatyn→y0asn→∞.Thus

    Ly0=λhy0and‖y0‖E=1.

    Thisimpliesthatλisaneigenvalueof(3).Thisisacontradiction.Fromtheinvarianceofthedegreeunderhomo-topologyandlemma4,thenobtain

    deg(I- H(λ, ·),Bρ(0), 0)=

    deg(Ψλ,Bρ(0), 0)=(-1)k.

    (11)

    Similarly, forλ∈[λk-ε,λk), we find that

    deg(I-H(λ, ·),Bρ(0), 0)=(-1)k-1.

    (12)

    Relations (11) and (12) contradicts (8) and hence (λk, 0) is a bifurcation point of problem (4).

    (ii) By (7), we have that

    (13)

    uniformlyt∈(0, 1) andλon bounded sets. Furthermore, by (ii) of lemma 3, applying lemma 2, we can obtain the result.

    (14)

    By(7), (14)andthecompactnessofL-1,weobtainthatforsomeconvenientsubsequenceym→y0asm→+∞.Nowy0verifiestheequation

    Ly0=λjhy0and‖y0‖E=1.

    Hencey0∈SjwhichisanopensetinE,andasaconsequenceforsomemlargeenough, ym∈Sj,andthisisacontradiction.

    Lemma6If(λ, u)isasolutionof(4)andx∈?Sk,thenx≡0.

    ProofBytheproofoftheorem3.1in[13] (seecorollary1.12andtheproofoftheorem2.3togetherwiththeremarkfollowingthatproofin[1]),weeasilyobtaintheresult.

    Bytheorem1andlemma5,wecaneasilydeducethefollowingDancer-typeunilateralglobalbifurcationresult.

    (15)

    (16)

    By(7), (16)andthecompactnessofL-1,weobtainthatforsomeconvenientsubsequencezm→z0asm→+∞.Nowz0verifiestheequation

    Lz0=λjhz0and‖z0‖E=1.

    (17)

    By(7), (17)andthecompactnessofL-1,weobtainthatforsomeconvenientsubsequenceyn→y0≠0asn→+∞.Nowy0verifiestheequation

    Ly0=λ*h(t)y0(t), t∈(0,1)and‖y0‖E=1.

    Inordertotreatthecasef0=∞,weshallneedthefollowinglemma.

    Definition1[14]LetXbeaBanachspaceand{Cn|n=1,2,…}beafamilyofsubsetsofX.ThenthesuperiorlimitDof{Cn}isdefinedby

    suchthatxni→x}.

    (18)

    Lemma 7[14]Each connected subset of metric spaceXis contained in a component, and each connected component ofXis closed.

    Lemma 8[15]LetXbe a Banach space and let {Cn|n=1, 2,…} be a family of closed connected subsets ofX. Assume that

    (i) there existszn∈Cn,n=1, 2,… andz*∈X, such thatzn→z*;

    (ii)rn=sup{‖x‖|x∈Cn}=∞;

    BR={x∈X|‖x‖≤R}.

    ThenthereexistsanunboundedconnectedcomponentCinDandz*∈C.

    2 Main results

    Inordertoprovethemainresults,theconditions(A1), (A2)andthefollowingconditionsaresatisfiedinthefollowingpart:

    (H1) f∈C(R, R)satisfiesf(s)s>0fors≠0.

    Theorem3Let(A1), (A2), (H1), (H2)and(H3)hold.Assumefollowingconditionholdsforsomek∈N:

    Theorem4Let(A1), (A2), (H1), (H2)and(H3)hold.Assumefollowingconditionholdsforsomek, n∈Nwithk≤n:

    Proofoftheorem3Firstly,westudythebifurcationphenomenaforthefollowingeigenvalueproblem:

    (19)

    whereλ>0isaparameter.Itisclearthatanysolutionof(19)oftheform(1,x)yieldssolutionsxof(2).

    Foreachn∈N,definef[n](s):R→Rby

    Clearly,by(H2),wehave

    Nowconsidertheauxiliaryfamilyoftheequations

    (20)

    Letζ[n]∈C(R, R)suchthat

    (21)

    Then

    (22)

    Letusconsider

    (23)asabifurcationproblemfromthetrivialsolutionx≡0.

    Equation(23)canbeconvertedtotheequivalentequation

    x:=λL-1[a[n](·)x(·)](t)+

    λL-1[ζ[n](·x(·))](t).

    (24)

    Clearly, ‖L-1[ζ[n](·,x(·))]‖E=o(‖x‖E),as‖x‖E→0.

    Since

    λn+‖xn‖→∞.

    If

    then

    andmoreover,

    AssumethatthereexistsaconstantnumberM>0suchthatforalln∈N,

    λn∈ (0,M],

    Inthiscase,itfollowsthat‖xn‖E→∞.

    Letξ∈C(R, R)suchthat

    f(x)= f∞x+ξ(x).

    Then

    Let

    (25)

    Wedividetheequation

    (26)

    since

    Thus

    y′?+ky″+ly=λra(t)f∞y.

    Weclaimthat

    Proofofthetheorem4Usingthesimilarproofwiththatoftheorem3,wecanobtaintheresult.

    [1]RABINOWITZPH.Someglobalresultsfornonlineareigenvalueproblems[J].JFunctAnal,1971(7):487-513.

    [2]DANCER E N. On the structure of solutions of non-linear eigenvalue problems[J]. Indiana University Math J,1974,23:1069-1076.

    [3]SHEN W G. Global structure of nodal solutions for a fourth-order two-point boundary value problem[J]. Applied Mathematics and Computation,2012,219(1):88-98.

    [4]SHEN W G. Existence of nodal solutions of a nonlinear fourth-order two-point boundary value problem[J]. Boundary Value Problems,2012,2012(1):1-18.doi:10.1186/1687-2770-2012-31.

    [5]DANCER E N. Bifurcation from simple eigenvaluses and eigenvalues of geometric multiplicity one[J]. Bull Lond Math Soc,2002, 34:533-538.

    Hall,2001.

    [7]DAI G W, MA R Y. Unilateral global bifurcation phenomena and nodal solutions forp-Laplacian[J]. J Differ Equ,2012,252:2448-2468.

    [8]DAI G W, HAN X L. Global bifurcation and nodal solutions for fourth-order problems with sign-changing weight[J]. Applied Mathematics and Computation,2013,219:9399-9407.

    [9]KORMAN P. Uniqueness and exact multiplicity of solutions for a class of fourth-order semilinear problems[J]. Proceedings of the Royal Society of Edinburgh A,2004,134(1):179-190.

    [10]MA R Y, GAO C H, HAN X L. On linear and nonlinear fourth-order eigenvalue problems with indefinite weight[J]. Nonlinear Anal Theory Methods Appl,2011,74(18):6965-6969.

    [11]MA R Y, GAO C H. Nodal solutions of a nonlinear eigenvalue problem of the Euler-Bernoulli equation[J]. Math Anal Appl,2012,387(2):1160-1166.

    [12]DEIMLING K. Nonlinear Functional Analysis[M]. New York: Springer-Verlag,1987.

    [13]RYNNE B P. Global bifurcation for 2mth-order boundary value problems and infinitely many solu-tions of superlinear problems[J]. J Differential Equations,2003,188:461-472.

    [14]WHYBURN G T. Topological Analysis, Princeton Mathematical Series No.23[M]. New Jersey: Princeton University Press,1958.

    [15]MA R Y, AN Y L. Global structure of positive for superlinear second-orderm-point boundary value problems[J]. Topological Methods in Nonlinear Analysis,2009,34(2):279-290.

    10.3785/j.issn.1008-9497.2016.05.005

    非線性項在零點非漸進增長的四階邊值問題單側(cè)全局分歧.

    沈文國

    (蘭州工業(yè)學院, 基礎(chǔ)學科部, 甘肅 蘭州 730050)

    四階問題;單側(cè)全局分歧;結(jié)點解;非線性項在零點非漸進增長

    O175.8

    A

    1008-9497(2016)05-525-07

    date:August 1,2015.

    Supported by the National Natural Science Foundation of China (11561038); the Gansu Provincial Natural Science Foundation(145RJZA087).

    About the author:SHEN Wenguo (1963-), ORCID:http://orcid.org/0000-0001-7323-1887, Doctor, Professor, the field of interest is nonlinear functional differential equations,E-mail: shenwg369@163.com.

    猜你喜歡
    基礎(chǔ)學科四階邊值問題
    非線性n 階m 點邊值問題正解的存在性
    四階p-廣義Benney-Luke方程的初值問題
    以戰(zhàn)略遠見促進基礎(chǔ)學科人才培養(yǎng)
    帶有積分邊界條件的奇異攝動邊值問題的漸近解
    臨床醫(yī)院培養(yǎng)基礎(chǔ)學科研究生的探索與思考
    帶參數(shù)的四階邊值問題正解的存在性
    非線性m點邊值問題的多重正解
    對中醫(yī)臨床基礎(chǔ)學科屬性的認識
    一類非線性向量微分方程無窮邊值問題的奇攝動
    四階累積量譜線增強方法的改進仿真研究
    汾阳市| 石河子市| 涟水县| 兴海县| 乳山市| 苏尼特右旗| 聂拉木县| 临澧县| 武鸣县| 通河县| 泌阳县| 孝昌县| 张家界市| 青阳县| 甘泉县| 泊头市| 买车| 南澳县| 汉沽区| 广丰县| 沈丘县| 光泽县| 灵台县| 新丰县| 慈溪市| 耒阳市| 孟州市| 墨玉县| 大姚县| 灌南县| 靖宇县| 四平市| 饶河县| 体育| 宜君县| 永泰县| 紫阳县| 天祝| 扬州市| 桂阳县| 梅州市|