• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    HCCI燃燒中NO與異辛烷相互作用簡(jiǎn)化動(dòng)力學(xué)模型構(gòu)建與分析

    2016-09-06 01:32:05鄭朝蕾呂祝梅
    物理化學(xué)學(xué)報(bào) 2016年5期
    關(guān)鍵詞:異辛烷重慶大學(xué)機(jī)理

    鄭朝蕾 呂祝梅

    (重慶大學(xué),低品位能源利用技術(shù)及系統(tǒng)教育部重點(diǎn)實(shí)驗(yàn)室,重慶400044)

    HCCI燃燒中NO與異辛烷相互作用簡(jiǎn)化動(dòng)力學(xué)模型構(gòu)建與分析

    鄭朝蕾*呂祝梅

    (重慶大學(xué),低品位能源利用技術(shù)及系統(tǒng)教育部重點(diǎn)實(shí)驗(yàn)室,重慶400044)

    為了分析廢氣再循環(huán)中NO對(duì)HCCI燃燒的影響,本文構(gòu)建了一個(gè)新的NO與異辛烷相互作用的化學(xué)動(dòng)力學(xué)機(jī)理,包括167種組分和835個(gè)反應(yīng),其中異辛烷分支反應(yīng)包括112種組分和467個(gè)反應(yīng)。NO分支的子機(jī)理是在Anderlohr等人對(duì)NO與異辛烷詳細(xì)機(jī)理研究的基礎(chǔ)上根據(jù)路徑分析而得到的。新IC8H18-NO機(jī)理的驗(yàn)證分為:IC8H18分支機(jī)理驗(yàn)證了在激波管中溫度范圍為855-1269 K,壓力范圍為2-6 MPa,化學(xué)計(jì)量比為0.5和1.0條件下的著火延遲時(shí)間;IC8H18-NO機(jī)理驗(yàn)證了在HCCI發(fā)動(dòng)機(jī)中NO添加濃度為0-500×10-6(體積分?jǐn)?shù)),同時(shí)也發(fā)現(xiàn)不同的NO添加濃度對(duì)IC8H18的HCCI燃燒的影響有所不同。因此,本文利用CHEMKIN PRO軟件中的零維單區(qū)化學(xué)動(dòng)力學(xué)模型,模擬了在不同NO濃度下NO對(duì)異辛烷燃燒影響。通過(guò)敏感性分析和產(chǎn)率分析,得出了NO添加后對(duì)異辛烷燃燒影響的關(guān)鍵性反應(yīng)為R476。在IC8H18燃燒初期通過(guò)R476產(chǎn)生活性基OH,從而體現(xiàn)對(duì)燃燒的促進(jìn)作用。但是在NO添加濃度較大時(shí),由于NO濃度較大結(jié)合活性基(如OH)的能力增強(qiáng),進(jìn)而NO對(duì)燃燒的促進(jìn)作用被削弱。

    反應(yīng)路徑;化學(xué)動(dòng)力學(xué);敏感性分析;產(chǎn)率分析;關(guān)鍵反應(yīng)

    1 Introduction

    Homogeneous charge compression ignition(HCCI)engine combines the advantages of a spark ignition engine with those of a compression ignition engine.However,ignition delay times and combustion rate are difficult to control.Studies have been conducted to overcome these difficulties,and advanced technologies have been applied to control HCCI combustion.For example, exhaust gas recirculation(EGR),including external EGR and internal EGR,has been extensively investigated as a means to modify inlet temperature and control ignition delay of gasolineand diesel-fueled HCCI combustion1-10.Moreover,internal EGR can be applied effectively to achieve HCCI combustion in a variable valve structure.

    EGR has drawn attention to research HCCI.The effects of EGR on HCCI combustion can be divided into four parts:a dilution effect,a thermal effect,a heat capacity effect,and a chemical effect1-9.The dilution,thermal,and heat capacity effects can be analyzed by thermodynamics,whereas the chemical effect can be analyzed by chemical kinetics.With several studies on HCCI combustion,the chemical effect drew more attention because its chemical kinetic mechanism is the key in controlling HCCI combustion1-4.EGR mainly includes active gases,such as carbon monoxide(CO)and nitrogen oxide(NO),carrying out the chemical effect.The chemical kinetic mechanism can be changed by NO,which is also an important component of environmental pollution.The active chemical property of NO has a significant influence on HCCI combustion and the emission process.

    Recently,NO has been proved a significant influence on hydrocarbon oxidation10-16.Moréac et al.10investigated the effects of NO on the oxidation of n-heptane(NC7H16),iso-octane(IC8H18), toluene,and methanol in a jet-stirred reactor.The NO effect was found related to temperature.Risberg et al.11carried out experiments on the effects of NO with concentrations from 0 to 476× 10-6(volume fraction)on an HCCI engine fueled with primary reference fuel(PRF)and toluene reference fuel(TRF)which have the same research octane number of 84.The NO concentration with maximum influence on ignition delay was obtained under two engine conditions,one at high intake pressure(0.2 MPa)and low intake temperature(40°C)and the other at high intake temperature(100°C)and atmospheric intake pressure.However, the effects of NO on HCCI combustion are too complicated to be understood only by engine experiments.Therefore,the effects of NO should be analyzed using the chemical kinetic model17-26.The interaction between NO and C1-C4at high temperature was analyzed by Frassoldati et al.17through the chemical kinetic model. Dayma et al.18investigated the interaction between NO and PRF using the models and experiments.PRF is a binary blend of IC8H18and NC7H16.The reaction paths of NO and IC8H18were used through the chemical kinetic models of NO and PRF,containing 1085 components and 4405 reactions.

    The above models17-19can describe the interaction between NO and hydrocarbons.However,the NO sub-mechanisms only describes the interaction between NO and small molecule hydrocarbons.

    Researches proved that the interaction between NO and large molecule hydrocarbons should not be neglected20-26.The detailed mechanism of NO and C4H10/C5H12was successfully developed up to five carbon atoms by Glaude et al.24.Anderlohr et al.15proposed a detailed mechanism of PRF-NO,which was validated on ignition delay and concentration of the intermediate components in a jet-stirred reactor and HCCI engine.It shows that the same trend can be obtained by the computational results of this detailed mechanism and the experiment under HCCI engine conditions. Meanwhile,the detailed mechanism of PRF-NO proposed by Anderlohr et al.15was developed up to eight carbon atoms.The interaction between NO and large molecule hydrocarbon should be considered to improve the effects of NO on the oxidation of large molecule hydrocarbons.Some detailed and skeletal mechanisms of hydrocarbons are shown in Table 1.

    The simplest and most essential surrogate fuel of gasoline is IC8H18,which is an alkane with similar ignition characteristics to gasoline.To investigate the effects of NO on gasoline-fueled HCCI combustion,the effects of NO on IC8H18oxidation should be analyzed.Recently,the effect of NO on IC8H18oxidation was investigated by Contino et al.19with the detailed mechanism of NO and PRF,containing 1062 components and 4494 reactions.Although validations of the detailed mechanism are in good agreement with experimental data,a defect exists in that the detailed mechanism do not contain the interaction between NO and large molecule hydrocarbons.In order to apply computational fluid dynamics,a smaller mechanism with less species and re-actions is needed.

    Table 1 Overview of NO mechanism

    In this study,a new IC8H18-NO mechanism is presented under extensive HCCI conditions to analyze the effects of NO on IC8H18in HCCI combustion,therefore understanding the chemical effect of EGR on IC Hin HCCI combustion.

    2 validation of the new IC8H18-NO model

    In this study,the IC8H18-NO mechanism consists of IC8H18and NO sub-mechanisms.

    2.1IC8H18sub-mechanism

    In this study,the IC8H18sub-mechanism is the mechanism of Kelley et al.27,consisting of 112 species and 467 reactions validated on laminar flame speeds and ignition delay time at different equivalence ratios and pressures.Curran28and Chaos29et al.obtained the mechanism by time-scale analysis with minimal loss of accuracy.The mechanism of Curran et al.28consisting of 860 species and 3600 reactions was not validated on high laminar flame speeds.Chaos et al.29proposed a PRF mechanism consisting of 106 species and 723 reactions.Comparison between the results of the above mechanisms and experiments is presented in Ref.29. Furthermore,the mechanism of Kelley et al.27can better describe IC8H18oxidation in HCCI combustion.Hence,the IC8H18mechanism of Kelley et al.27was chosen as the IC8H18sub-mechanism in this study.

    All validations presented in this study were carried out using a zero-dimensional model in CHEMKIN PRO software.When the simulations were carried out in a shock tube,autoignition delay time is defined as the time needed for the mixture to reach a temperature of 400 K above the initial temperature.For the simulations in HCCI engine,the ignition delay time is defined as the time needed for the temperature to reach the inflection point, which is the maximum value of the temperature slope20.

    Ignition delay times were also measured by Davidson et al.30in a shock tube with IC8H18.The temperature range was from 855 to 1269 K,and the equivalence ratios(φ)were 0.5 and 1.0.Computational results are in good agreement with experimental data at 2 and 6 MPa,as shown in Fig.1.Results show that the mechanism used in this study is closer to the experiment than the mechanism of Contino et al.19at both 2 and 6 MPa,as shown in Fig.1(a)and(b),respectively.These results indicate that the mechanism used in this study is more suitable for IC8H18oxidation than the mechanism of Contino et al.19.

    2.2NO sub-mechanism

    The interaction between IC8H18and NO not only concentrates on small molecules but also exists in large molecules20-26.Based on the research of Glaude et al.24on the interaction between NO and large molecule hydrocarbons,Anderlohr et al.21analyzed the interaction between NO and gasoline surrogate fuel systematically. Furthermore,they proposed a detailed mechanism of TRF-NO with the results of GRI-MECH 3.031,consisting of 536 species and 3000 reactions.The TRF-NO mechanism was validated on ignition delay in a rapid compression machine,a shock tube,a jetstirred reactor,a perfectly stirred reactor,and an HCCI engine. Computational results show that the same trend can be obtained by this detailed mechanism under HCCI engine conditions as shown in the experiments of Dubreuil4,Moréac10,and Risberg11et al.Based on the TRF-NO mechanism of Anderlohr et al.21, analysis of the productivity rate of nitride was carried out.The productivity rate of nitride,which mostly participates in the transformation of the IC8H18branch,is shown in Fig.2.As shown in Fig.2(a,b),the main reaction of the consumption of NO and production of NO2is R476,whereas the main reaction of the production of NO and transformation of HONO to NO and OH is R609.As shown in Fig.2(c,d),the main reaction of the consumption of HNO and production of HONO is R619,which also shows the transformation of HNO and NO2to HONO and NO. Therefore,through a similar analysis of the productivity rate of nitride,the reaction paths of NO sub-mechanism were proposed according to the detailed mechanism of TRF-NO21as shown in Fig.3.

    Fig.1 Comparison between experimental and calculated results in a shock tube(a)φ=0.5;(b)φ=1.0

    The reaction paths of NO sub-mechanism,with transformation of the IC8H18branch,contain the following parts:

    (1)The transformation of NO and NO2.RO and NO2were generated by the interaction between NO and hydroperoxyalkyl (RO2).The interaction between NO and oxohydroperoxy radical (HOOQOOH)occurred along with the formation of small molecules,including OH,NO2,aldehyde,and olefin.RO2and NO were generated by the interaction between NO2and alkane(RH).

    (2)The decomposition and formation of RNO2.The transfor-mation between the reactant RNO2and reactants RO and NO2occurred.

    (3)The transformation of NO to HNO.HNO and R were generated by the interaction between NO and alkane(RH).

    (4)The transformation of HONO and NO2.The transformation between the reactants RH and NO2and reactants R and HONO occurred.

    Considering the interaction between NO and all range of carbon atoms in IC8H18,the NO sub-mechanism in this study contains the following parts:

    Fig.2 Reaction rate of main nitrides(a)NO;(b)NO2;(c)HONO;(d)HNOR476:NO+HO2=NO2+OH,R477:NO+O+M=NO2+M,R478:NO2+O=NO+O2,R479:NO2+H=NO+OH,R502:NO+HO2=NO2+OH,R505:HNO+ OH=NO+H2O,R598:C2H5O+NO=CH3CHO+HNO,R563:HCCO+NO=HCNO+NO,R600:CO+NO2=CO2+NO,R604:C3H5-A+NO2=C2H3+CH2O, R606:NO2+HO2=HONO+O2,R609:NO+OH(+M)=HONO(+M),R610:CH3+NO2=CH3O+NO,R660:IC4H7+NO2=CH3+C2H3CHO+NO,R662:XC7H13+ NO2=IC4H9+C2H3CHO+NO,R619:HONO+NO=NO2+HNO,R729:NO+HCO=HNO+CO,R740:C2H3+NO=C2H2+HNO

    Fig.3 Reaction paths of NO

    (1)The interaction between NO and C0-C1.This part consists of the NO sub-mechanism in PRF-NO by Contino et al.19.Reactions R468-R488,with the results of GRI-MECH2.11,were updated with the results of GRI-MECH3.031.Based on the research of Anderlohr21and Wang22et al.,NO and CH2O can be generated by combining CH3NO2with active radicals such as OH.Therefore, when the NO sub-mechanism in this study was built,reactions R574-R577 were considered.

    CH3NO2+OH=CH2O+NO+H2O(R574)

    CH3NO2+O=CH2O+NO+OH(R575)

    CH3NO2+H=CH2O+NO+H2(R576)

    CH3NO2+CH3=CH2O+NO+CH4(R577)

    (2)The interaction between NO and C2-C8.This part consists of the NO sub-mechanism in TRF-NO by Anderlohr et al.21.Research demonstrated that NO initially reacts with large molecule hydrocarbons upon the addition of NO.Based on the analysis of Dayma et al.18on the interaction between NO and PRF,the effect of NO on PRF depends on reactions RO2+ NO=RO+NO2and NO+OH=HONO.When the NO submechanism in this study was built,reactions R595,R596,and R620-R626 were considered.The new NO sub-mechanism consists of 55 species and 368 reactions.

    CH3OO+NO=CH3O+NO2(R595)

    C2H5OO+NO=C2H5O+NO2(R596)

    IC3H7O2+NO=IC3H7O+NO2(R620)

    TC4H9O2+NO=TC4H9O+NO2(R621)

    IC4H9O2+NO=IC4H9O+NO2(R622)

    NEOC5H11O2+NO=NEOC5H11O+NO2(R623)

    AC8H17O2+NO=AC8H17O+NO2(R624)

    BC8H17O2+NO=BC8H17O+NO2(R625)

    CC8H17O2+NO=CC8H17O+NO2(R626)

    Combined with the results of Section 2.1,the new IC8H18-NO mechanism consists of 167 species and 835 reactions,as shown in the supplementary material.

    Fig.4 Comparison between experimental and calculated results in HCCI engine(a)φ=0.22;(b)φ=0.26.CAD:crank angle degree

    Table 2 Character of tested engine23

    Fig.5 Effect on main components with the different NO concentrations(a)IC8H18;(b)NO;(c)OH

    The comparison between the experimental and computational results is shown in Fig.4.The characteristics of the tested engine are listed in Table 2.Experiments on the effect of NO on IC8H18in HCCI engine were performed at 420 K and 0.14 MPa at the speed of 1000 r?min-1with equivalence ratios of 0.22 and 0.2623.The computational results are in good agreement with the experimental results on ignition delay times in HCCI engine,as shown in Fig.4.The computational results in this study can more successfully reproduce the trend of the experimental results than the computational results of Contino et al.19,especially at low concentrations of NO.The results of whether these reactions between NO and large molecules is included in the NO submechanism are also shown in Fig.4.The results of the mechanism with these reactions compared with those of mechanisms without such reactions are improved at all NO concentrations.

    Fig.6 Reaction rate of IC8H18at the NO concentrations of 50×10-6(a)and 500×10-6(b)R346:IC8H18=IC4H9+TC4H9,R348:IC8H18+H=AC8H17+H2,R350:IC8H18+H=CC8H17+H2,R351:IC8H18+H=DC8H17+H2,R354:IC8H18+O=CC8H17+OH, R356:IC8H18+OH=AC8H17+H2O,R357:IC8H18+OH=BC8H17+H2O,R358:IC8H18+OH=CC8H17+H2O,R359:IC8H18+OH=DC8H17+H2O

    Fig.7 Reaction rate of OH at the NO concentrations of 50×10-6(a)and 500×10-6(b)R7:CO+OH=CO2+H,R8:H+O2=O+OH,R10:O+H2O=OH+OH,R32:CH2O+OH=HCO+H2O,R42:HO2+O=OH+O2, R49:HO2+OH=H2O+O2,R51:OH+OH(+M)=H2O2(+M),R476:NO+HO2=NO2+OH

    From the above validations,the present IC8H18-NO mechanism is concluded suitable for studying the effects of NO on IC8H18in HCCI combustion.Though there are only 167 species and 835 reactions included in this model,it can provide excellent computational results similar to experimental results.

    3 Analysis of productivity rate

    The effects of NO on IC8H18in HCCI combustion differ at various NO concentrations.In order to explain this phenomenon, analysis of the productivity rate at different NO concentrations was proposed.

    The productive rates of the main components,including IC8H18, NO,and OH,at different mole fractions of NO are shown in Fig.5. As shown in Fig.5(a),the beginning and ending consumption times of IC8H18advanced with the appearance of NO,indicating an advance in the ignition delay time.The consumption and production of NO at different concentrations of NO shown in Fig.5 (b),indicates that NO is consumed at the beginning with the appearance of NO.The consumption and production of OH,which is the most important active radical,are shown in Fig.5(c).The higher the concentration of NO,the faster OH accumulates.

    The seven main reactions rates of IC8H18at NO concentrations of 50×10-6and 500×10-6were measured using the chemical kinetic model,as shown in Fig.6.The consumption of IC8H18is depicted in R356,which is the dehydrogenation reaction.IC8H18consumption time at 500×10-6is enhanced compared with that at 50×10-6.In addition,the main reaction rates of IC8H18remained constant at 500×10-6.It is seen from Fig.6 that the duration of IC8H18consumption is shortened because of the NO addition, respectively 17.5°CAand 13.5°CAfor the NO concentrations of 50×10-6and 500×10-6.

    Fig.8 Reaction rate of NO at the NO concentrations of 50×10-6(a)and 500×10-6(b)R476:NO+HO2=NO2+OH,R478:NO2+O=NO+O2,R604:C3H5-A+NO2=C2H3+CH2O+NO,R609:NO+OH(+M)=HONO(+M), R610:CH3+NO2=CH3O+NO,R660:IC4H7+NO2=CH3+C2H3CHO+NO,R662:XC7H13+NO2=IC4H9+C2H3CHO+NO

    Fig.9 Interaction between NO and IC8H18①the conversion between NO and NO2;②the decomposition of RNO2;③the conversion between NO and HNO;④the conversion between NO2and HONO

    The seven main reaction rates of OH at NO concentrations of 50×10-6and 500×10-6are shown in Fig.7.Reaction R476 contributes to the reaction rate of OH at 500×10-6but not at 50×10-6.The response time of R476 is earliest among the seven main reaction rates of OH at 500×10-6,indicating that the resource of OH at the initial IC8H18consumption is mainly from R476,which is the result of the promoting effect of NO on IC8H18consumption.

    Fig.10 Sensitivity coefficients at the NO concentrations of 0 and 50×10-6

    Fig.11 Sensitivity coefficients at the NO concentrations of 50×10-6and 500×10-6

    The seven main reaction rates of NO at NO concentrations of 50×10-6and 500×10-6are shown in Fig.8.The reaction rates of these main reactions are magnified by 5 to 6 times at 500×10-6compared with those at 50×10-6.Most reaction rates of NO consumption are from R476 regardless of the concentration of NO (Fig.8).The main production reactions at 50×10-6are R604, R609,and R660,whereas those at 500×10-6are R609,R610,and R660.The above reactions are generated by the addition of NO, which indicates that NO participates in the transformation of the IC8H18branch.

    The reaction paths of the IC8H18branch were obtained by analyzing the reaction paths.The new reaction paths in the IC8H18branch were found to have resulted from the addition of NO,as shown in Fig.9 as dashed line.Meanwhile,the original reaction paths in the IC8H18branch(without the addition of NO)are shown as solid line in Fig.9.The transformation of the IC8H18branch was accelerated by the new reaction paths(with the addition of NO), whereas the original reactions in the IC8H18branch weakened.This result also explains why the reaction rates of OH in the IC8H18branch are reduced with increasing NO concentration,as shownin Fig.7.

    4 Sensitivity analysis

    Sensitivity analysis at different NO concentrations was conducted,with temperature at 420 K,pressure at 0.14 MPa,and equivalence ratio of 0.22.

    As shown in Fig.10,the temperature sensitivity coefficients of the key reactions of IC8H18-NO mechanism without the addition of NO in HCCI engine include those in dehydrogenation reactions R364-R367,R389,and R390,showing the promoting effect on IC8H18combustion.On the other hand,the temperature sensitivity coefficients of those reactions at NO concentration of 50×10-6are lower,indicating that the original reactions in the IC8H18branch are weakened by the addition of NO,which in turn is in accordance with the conclusion from Section 3.

    As shown in Fig.11,the temperature sensitivity coefficients of the key reactions of IC8H18-NO mechanism at NO concentration of 500×10-6in HCCI engine consist of R476,R606,R610,R675, R683,and R798,showing the promoting effect on IC8H18combustion.On the other hand,the temperature sensitivity coefficient of R683 at NO concentration of 500×10-6is lower than that at 50×10-6,which is attributed to the enhanced ability of NO to combine with active radicals with increased NO concentration (R476).

    5 Conclusions

    (1)A new chemical kinetic model of IC8H18-NO,consisting of 167 species and 835 reactions,was developed by considering the effects of NO on large molecule hydrocarbons.The reaction paths of NO in IC8H18-NO mechanism were carried out.

    (2)The IC8H18sub-mechanism of IC8H18-NO mechanism was validated on ignition delay times in shock tubes.The experimental and computational results are in good agreement with ignition delay times at temperature range of 855 to 1269 K at pressures of 2 and 6 MPa with equivalence ratios of 0.5 and 1.0.The new IC8H18-NO mechanism was also validated in HCCI engine.The computational results are in good agreement with the experimental data on ignition delay time over an NO concentration range of 0-500×10-6.

    (3)Generally,the addition of NO in HCCI engine changes the reaction paths of the IC8H18branch.The transformation of the IC8H18branch is accelerated by the new reaction paths after the addition of NO.Meanwhile,the original reactions in the IC8H18branch are weakened by the addition of NO,which is in accordance with the results of the productivity rate analysis.Through the analysis of productivity rate,the response time of R476 was found to be earliest among the seven main reaction rates of OH at NO concentration of 500×10-6.This phenomenon indicates that the main resource of OH at the beginning of IC8H18consumption is R476,which is the result of the promoting effect of NO on IC8H18consumption.

    (4)The temperature sensitivity coefficients of the 20 key reactions in IC8H18-NO mechanism at NO concentration of 500× 10-6consist of R476,R606,R610,R675,R683,and R798,which show the promoting effect of NO on IC8H18combustion.The temperature sensitivity coefficient of R683 at NO concentration of 500×10-6is lower than that at NO concentration of 50×10-6, which is attributed to the enhanced ability of NO to combine with active radicals with increase in NO concentration,such as R476.

    References

    (1)Machrafi,H.Energ.Convers.Manage.2008,49(11),2956.

    doi:10.1016/j.enconman.2008.06.016

    (2)Machrafi,H.Energ.Convers.Manage.2010,51(10),2025.

    doi:10.1016/j.enconman.2010.02.036

    (3)Machrafi,H.;Guibert,P.;Cavadias,S.Combust.Sci.Technol. 2008,180(7),1245.doi:10.1080/00102200802049380

    (4)Dubreuil,A.;Foucher,F;Mouna?m-Rousselle,C.;Dayma,G.; Dagaut,P.Proc.Combust.Inst.2007,No.31,2879. doi:10.1016/j.proci.2006.07.168

    (5)Fathi,M.;Saray,R.K.;Checkel,M.D.Appl.Energ.2011,88 (12),4719.doi:10.1016/j.apenergy.2011.06.017

    (6)Lijima,A.;Yoshida,K.;Shoji,H.;Lee,J.T.Int.J.Automot. Techn.2007,8(2),137.

    (7)Piperel,A.;Montagne,X.;Dagaut,P.SAE Tech.Pap.Ser. 2007,2007-24-0087.doi:10.4271/2007-24-0087

    (8)Fu,J.Q.;Deng,B.L.;Wang,Y.;Yang,J.;Zhang,D.M.;Xu, Z.X.;Liu,J.P.Fuel 2014,No.124,102.doi:10.1016/j. fuel.2014.01.092

    (9)Kozarac,D.;Vuilleumier,D.;Saxena,S.;Dibble,R.W.Energ. Convers.Manage.2014,No.87,1186.doi:10.1016/j. enconman.2014.04.085

    (10)Moréac,G.;Dagaut,P.;Roesler,J.F.Combust.Flame 2006, 145(3),512.doi:10.1016/j.combustflame.2006.01.002

    (11)Risberg,P.;Johansson,D.;Andrae,J.;Kalghatgi,G.; Bj?rnbom,P.;?ngstr?m,H.E.SAE Tech.Pap.Ser.2006, 2006-01-0416.doi:10.4271/2006-01-0416

    (12)Dagaut,P.;Dayma,G.Combust.Flame 2005,143(1-2),135. doi:10.1016/j.combustflame.2005.06.006

    (13)Bendtsen,A,B.;Glarborg,P.;Dam-Johansen,K.Combust.Sci. Technol.2000,No.151,31.doi:10.1080/00102200008924214

    (14)Masurier,J.B.;Foucher,F.;Dayma,G.;Dagaut,P.Proc. Combust.Inst.2015,No.35,3125.doi:10.1016/j. proci.2006.07.168

    (15)Anderlohr,J.;Cruz,A.P.D.;Bounaceur,R.;Leclerc,F.B. Modeling of NO Sensitization of IC Engines Surrogate Fuels Auto-Ignition and Combustion.21st Int.Colloquium on the Dynamics of Explosions and Reactive Systems,Poitiers France,Jul 23-27,2007.

    (16)Piperel,A.;Dagaut,P.;Montagne,X.Proc.Combust.Inst. 2009,No.32,2861.doi:10.1016/j.proci.2008.08.004

    (17)Frassoldati,A.;Faravelli,T.;Ranzi,E.Combust.Flame 2003, 135(1-2),97.doi:10.1016/S0010-2180(03)00152-4

    (18)Dayma,G.;Ali,K.H.;Dagaut,P.Proc.Combust.Inst.2007,No.31,411.doi:10.1016/j.proci.2006.07.143

    (19)Contino,F.;Foucher,F.;Dagaut,P.;Lucchini,T.;D′Errico,G.;Mounaim-Rousselle,C.Combust.Flame 2013,160(8),1476.

    doi:10.1016/j.combustflame.2013.02.028

    (20)Faravelli,T.;Frassoldati,A.;Ranzi,E.Combust.Flame 2003, 132(1-2),188.doi:10.1016/S0010-2180(02)00437-6

    (21)Anderlohr,J.M.;Bounaceur,R.;Cruz,A.P.D.;Leclerc,F.B. Combust.Flame 2009,156(2),505.doi:10.1016/j. combustflame.2008.09.009

    (22)Wang,Y.;Zheng,Z.L.;He,Z.W.;Zhang,Q.F.;Wang,F. Energy Sources 2015,37(9),997.doi:10.1080/ 15567036.2011.601789

    (23)Wang,Y.An Experimental Investigation and Numerical Simulation about Effect of Nitric Oxide on HCCI Combustion. Ph.D.Dissertation,Chongqing University,Chongqing,2012.[王迎.一氧化氮對(duì)均質(zhì)壓燃燃燒影響的試驗(yàn)研究與數(shù)值模擬[D].重慶:重慶大學(xué),2012.]

    (24)Glaude,P.A.;Marinov,N.;Matsungaga,N.;Hori,M.Energy Fuels 2005,No.19,1839.doi:10.1021/ef050047b

    (25)Andrae,J.C.Energy Fuels 2013,27(11),7098.doi:10.1021/ ef401666c

    (26)Dayma,G.;Dagaut,P.Experimental and Kinetic Modeling Study of the Impact of NO and NO2on the Oxidation of a Primary Reference Fuels Mixture.Proceedings of the European Combustion Meeting,ViennaAustria,Apr 14-17, 2009.

    (27)Kelley,A.P.;Liu,W.;Xin,Y.X.;Smallbone,A.J.;Law,C.K. Proc.Combust.Inst.2011,33(1),501.doi:10.1016/j. proci.2010.05.058

    (28)Curran,H.J.;Gaffuri,P.;Pitz,W.J.;Westbrook,C.K. Combust.Flame 2002,129(3),253.doi:10.1016/S0010-2180 (01)00373-X

    (29)Chaos,M.;Kazakov,A.;Zhao,Z.;Dryer,F.L.Int.J.Chem. Kinet.2007,39(7),399.doi:10.1002/kin.v39:7

    (30)Davidson,D.F.;Gauthier,B.M.;Hanson,R.K.Proc. Combust.Inst.2005,30(1),1175.doi:10.1016/j. proci.2004.08.004

    (31)http://www.me.berkeley.edu/gri_mech/(accessed Feb 25, 2014).

    Generation and Analysis for a Skeletal Chemical Kinetic Model of IC8H18with Nitric Oxide in HCCI Combustion

    ZHENG Zhao-Lei*Lü Zhu-Mei
    (Key Laboratory of Low-grade Energy Utilization Technologies and Systems,Ministry of Education, Chongqing University,Chongqing 400044,P.R.China)

    A new mechanism for IC8H18with nitric oxide(IC8H18-NO)in homogeneous charge compression ignition(HCCI)combustion is presented to investigate the effects of NO in exhaust gas recirculation(EGR)on combustion.The IC8H18sub-mechanism consists of 112 species and 467 reactions.A NO sub-mechanism is developed through reaction path analysis.The reaction paths of NO are summarized on the basis of the detailed NO mechanism reported byAnderlohr to describe the effects of NO on IC8H18.Anew IC8H18-NO mechanism with 167 species and 835 reactions is described.The IC8H18sub-mechanism of IC8H18-NO mechanism was validated by the ignition delay times in a shock tube.Experimental and computational results are in good agreement with those of ignition delay times at 855 to 1269 K and at 2 and 6 MPa with equivalence ratios of 0.5 and 1.0.The new IC8H18-NO mechanism is also validated in an HCCI engine.Computational results are consistent with experimental data of ignition delay times at a NO concentration range of 0 to 500×10-6(volume fraction).The effects of NO on IC8H18differ as the NO concentration increases.Therefore,the effects of NO on IC8H18are simulated using a zero-dimensional model using the CHEMKIN PRO software.Key reactions at different NO concentrations are proposed by analyzing the sensitivity and productivity rates.The resource of OH for initial IC8H18consumption is mainly generated through R476,which occurs as a result of the promoting effect of NOon IC8H18consumption.The ability of NO to combine with active radicals,such as those in R476,is enhanced as the NO concentration is increased.

    November 20,2015;Revised:January 29,2016;Published on Web:February 17,2016.

    Reaction path;Chemical kinetics;Sensitivity analysis;Analysis of productivity rate; Key reaction

    O643

    10.3866/PKU.WHXB201602174

    *Corresponding author.Email:zhengzhaolei@cqu.edu.cn;Tel:+86-23-65102473.

    The project was supported by the Fundamental Research Funds for the Central Universities,China(CDJZR13 14 55 01).中央高校基本科研業(yè)務(wù)費(fèi)(CDJZR13 14 55 01)資助

    猜你喜歡
    異辛烷重慶大學(xué)機(jī)理
    重慶大學(xué)學(xué)報(bào)征稿簡(jiǎn)則
    增塑劑和異辛烷在丁腈橡膠中遷移過(guò)程的研究*
    隔熱纖維材料的隔熱機(jī)理及其應(yīng)用
    異辛烷純度標(biāo)準(zhǔn)物質(zhì)的研制
    煤層氣吸附-解吸機(jī)理再認(rèn)識(shí)
    Who Is The Master?
    大東方(2018年9期)2018-10-21 15:29:02
    霧霾機(jī)理之問(wèn)
    “精益管理五原則”在高校圖書館社區(qū)服務(wù)中的應(yīng)用——以重慶大學(xué)城為例
    異辛烷的防護(hù)
    DNTF-CMDB推進(jìn)劑的燃燒機(jī)理
    国产国语露脸激情在线看| 久久久久久人人人人人| 男女做爰动态图高潮gif福利片 | 狂野欧美激情性xxxx| 淫妇啪啪啪对白视频| 岛国在线观看网站| 美女免费视频网站| 国产成人精品久久二区二区91| av片东京热男人的天堂| 精品卡一卡二卡四卡免费| 黄色 视频免费看| 久久中文看片网| 亚洲欧美一区二区三区黑人| 老司机午夜福利在线观看视频| 亚洲国产欧美网| 一区二区三区高清视频在线| 国产一区二区在线av高清观看| 午夜福利视频1000在线观看 | 天堂动漫精品| 精品熟女少妇八av免费久了| 窝窝影院91人妻| 妹子高潮喷水视频| 国产一区二区三区综合在线观看| 成人手机av| 亚洲国产精品久久男人天堂| 一二三四在线观看免费中文在| 日韩精品免费视频一区二区三区| 电影成人av| 波多野结衣一区麻豆| 制服诱惑二区| 波多野结衣av一区二区av| 老汉色∧v一级毛片| 999久久久国产精品视频| 国产精品久久久av美女十八| 丰满的人妻完整版| 视频区欧美日本亚洲| 久久精品国产亚洲av香蕉五月| 亚洲伊人色综图| 午夜a级毛片| 国产黄a三级三级三级人| 国产成人精品无人区| 最近最新免费中文字幕在线| 国产国语露脸激情在线看| 狂野欧美激情性xxxx| 两人在一起打扑克的视频| 很黄的视频免费| www.精华液| 欧美激情久久久久久爽电影 | 日本一区二区免费在线视频| 9191精品国产免费久久| 丁香欧美五月| 18美女黄网站色大片免费观看| 国产精品 欧美亚洲| 97人妻天天添夜夜摸| 在线观看免费视频网站a站| 国产成人精品无人区| 欧美成人免费av一区二区三区| 一本大道久久a久久精品| 91成人精品电影| 俄罗斯特黄特色一大片| 国产97色在线日韩免费| 亚洲最大成人中文| 18禁国产床啪视频网站| 久久性视频一级片| 亚洲成a人片在线一区二区| 51午夜福利影视在线观看| 男女做爰动态图高潮gif福利片 | 久久久国产精品麻豆| 亚洲精品久久国产高清桃花| bbb黄色大片| 午夜老司机福利片| 精品欧美一区二区三区在线| 级片在线观看| 一级毛片高清免费大全| 激情在线观看视频在线高清| 12—13女人毛片做爰片一| 久久国产精品男人的天堂亚洲| 99热只有精品国产| 精品久久久久久久毛片微露脸| 一级,二级,三级黄色视频| 女警被强在线播放| 成熟少妇高潮喷水视频| 久久 成人 亚洲| 国产精品99久久99久久久不卡| 自线自在国产av| videosex国产| 成人三级做爰电影| 麻豆成人av在线观看| 18禁国产床啪视频网站| 久久久精品国产亚洲av高清涩受| 欧美 亚洲 国产 日韩一| 欧美av亚洲av综合av国产av| 最近最新免费中文字幕在线| 成人欧美大片| 欧美av亚洲av综合av国产av| 一区二区三区精品91| 欧美一级a爱片免费观看看 | 亚洲国产欧美日韩在线播放| 欧美日韩亚洲综合一区二区三区_| 夜夜夜夜夜久久久久| 无限看片的www在线观看| 欧美在线黄色| 制服诱惑二区| 亚洲自偷自拍图片 自拍| 国产又色又爽无遮挡免费看| 后天国语完整版免费观看| 啦啦啦韩国在线观看视频| 18禁观看日本| 欧美成人性av电影在线观看| 人人澡人人妻人| 老熟妇仑乱视频hdxx| 亚洲av电影在线进入| 欧美黄色淫秽网站| 亚洲成人免费电影在线观看| 19禁男女啪啪无遮挡网站| 日本撒尿小便嘘嘘汇集6| 中文字幕精品免费在线观看视频| 欧美激情 高清一区二区三区| 国产欧美日韩一区二区精品| 亚洲午夜理论影院| 波多野结衣高清无吗| 久久中文字幕一级| 国产片内射在线| 亚洲中文字幕一区二区三区有码在线看 | 亚洲人成电影观看| 亚洲av片天天在线观看| 午夜a级毛片| 高清毛片免费观看视频网站| 91在线观看av| 一区福利在线观看| 操出白浆在线播放| 老熟妇乱子伦视频在线观看| 亚洲少妇的诱惑av| 天天躁狠狠躁夜夜躁狠狠躁| 好男人在线观看高清免费视频 | 国产精品久久久av美女十八| 涩涩av久久男人的天堂| 中文字幕人成人乱码亚洲影| 中文字幕人妻丝袜一区二区| 中文字幕另类日韩欧美亚洲嫩草| a在线观看视频网站| 午夜福利成人在线免费观看| 久久精品国产综合久久久| 999久久久国产精品视频| 天天躁夜夜躁狠狠躁躁| av天堂久久9| 久久草成人影院| 国产国语露脸激情在线看| 天堂影院成人在线观看| 9191精品国产免费久久| 黑人巨大精品欧美一区二区mp4| 亚洲全国av大片| 国产免费av片在线观看野外av| 中文字幕人成人乱码亚洲影| 欧美国产日韩亚洲一区| 欧美另类亚洲清纯唯美| 啦啦啦观看免费观看视频高清 | 搡老岳熟女国产| 国产午夜精品久久久久久| 免费看十八禁软件| 狂野欧美激情性xxxx| 精品高清国产在线一区| 亚洲精品中文字幕在线视频| 免费av毛片视频| 高清黄色对白视频在线免费看| 国产成人一区二区三区免费视频网站| 午夜久久久久精精品| 国产亚洲精品一区二区www| 国产欧美日韩一区二区三区在线| 精品乱码久久久久久99久播| 好男人在线观看高清免费视频 | 99国产精品99久久久久| 91成人精品电影| 变态另类丝袜制服| 午夜老司机福利片| 亚洲午夜精品一区,二区,三区| 人人妻,人人澡人人爽秒播| 满18在线观看网站| 亚洲中文日韩欧美视频| 18禁国产床啪视频网站| 精品日产1卡2卡| 日韩中文字幕欧美一区二区| 精品免费久久久久久久清纯| 看片在线看免费视频| 搡老岳熟女国产| 亚洲成av人片免费观看| 久久久久国产精品人妻aⅴ院| 亚洲av美国av| 校园春色视频在线观看| 91字幕亚洲| 亚洲黑人精品在线| 国产亚洲精品av在线| 色综合亚洲欧美另类图片| 欧美日韩一级在线毛片| 麻豆成人av在线观看| 国产成人精品在线电影| 人人澡人人妻人| 亚洲国产毛片av蜜桃av| 中文字幕人妻熟女乱码| 亚洲欧美日韩另类电影网站| 欧美激情高清一区二区三区| 免费在线观看日本一区| 精品国产美女av久久久久小说| 国产极品粉嫩免费观看在线| 成年版毛片免费区| 99国产综合亚洲精品| 亚洲天堂国产精品一区在线| 巨乳人妻的诱惑在线观看| 大香蕉久久成人网| 亚洲色图av天堂| 国产黄a三级三级三级人| 欧美日韩亚洲国产一区二区在线观看| 国产av在哪里看| 又大又爽又粗| 岛国在线观看网站| 久久中文字幕一级| 91精品国产国语对白视频| 一a级毛片在线观看| 欧美日韩一级在线毛片| 国产精品1区2区在线观看.| 女性生殖器流出的白浆| 国产精品永久免费网站| 亚洲国产精品999在线| 91国产中文字幕| 老司机深夜福利视频在线观看| 岛国视频午夜一区免费看| 首页视频小说图片口味搜索| 天天躁夜夜躁狠狠躁躁| 国产av又大| 激情在线观看视频在线高清| 丝袜美腿诱惑在线| 男男h啪啪无遮挡| 日本 av在线| 无人区码免费观看不卡| 国产一区二区三区视频了| 日本a在线网址| 精品国内亚洲2022精品成人| av在线播放免费不卡| 可以在线观看的亚洲视频| 欧美精品亚洲一区二区| 日本免费a在线| 黄色a级毛片大全视频| 成人三级黄色视频| 很黄的视频免费| 精品国产亚洲在线| 视频在线观看一区二区三区| 亚洲国产精品合色在线| 欧美激情高清一区二区三区| 久久久久久久久中文| 日韩欧美一区二区三区在线观看| 日本vs欧美在线观看视频| 国产亚洲av高清不卡| 午夜亚洲福利在线播放| 在线观看舔阴道视频| 88av欧美| 国产成人啪精品午夜网站| 嫩草影视91久久| 嫁个100分男人电影在线观看| 亚洲va日本ⅴa欧美va伊人久久| 亚洲熟妇熟女久久| 国产aⅴ精品一区二区三区波| 国产亚洲精品第一综合不卡| 国产麻豆69| 国产亚洲精品久久久久久毛片| 精品国产乱码久久久久久男人| 免费在线观看日本一区| 深夜精品福利| 亚洲天堂国产精品一区在线| 精品人妻在线不人妻| 性少妇av在线| 麻豆久久精品国产亚洲av| 最近最新免费中文字幕在线| 曰老女人黄片| 欧美成人性av电影在线观看| 搞女人的毛片| 国产亚洲精品久久久久5区| 国产成人免费无遮挡视频| 丰满的人妻完整版| 日本三级黄在线观看| 涩涩av久久男人的天堂| 欧美色欧美亚洲另类二区 | 最新在线观看一区二区三区| 久久欧美精品欧美久久欧美| 男人操女人黄网站| 精品国产超薄肉色丝袜足j| 国产精品久久久久久人妻精品电影| 99久久99久久久精品蜜桃| 欧美黑人欧美精品刺激| 久久热在线av| 亚洲,欧美精品.| 美女扒开内裤让男人捅视频| 亚洲第一av免费看| 精品欧美一区二区三区在线| 午夜免费成人在线视频| 久久这里只有精品19| 亚洲精品中文字幕在线视频| 成年人黄色毛片网站| 9热在线视频观看99| 制服丝袜大香蕉在线| 啦啦啦观看免费观看视频高清 | 午夜日韩欧美国产| 婷婷精品国产亚洲av在线| 大香蕉久久成人网| 久久精品91蜜桃| 最近最新免费中文字幕在线| 国产精品98久久久久久宅男小说| 久久久久久久久久久久大奶| 97人妻天天添夜夜摸| 51午夜福利影视在线观看| 波多野结衣巨乳人妻| 99精品欧美一区二区三区四区| 欧美中文综合在线视频| 免费少妇av软件| 非洲黑人性xxxx精品又粗又长| 免费在线观看影片大全网站| 欧美色视频一区免费| 黄网站色视频无遮挡免费观看| 一级片免费观看大全| 老司机深夜福利视频在线观看| 免费高清在线观看日韩| 91九色精品人成在线观看| 国产一区二区激情短视频| 精品久久久久久久久久免费视频| 人人妻人人爽人人添夜夜欢视频| 国产精品一区二区免费欧美| 天堂动漫精品| 亚洲色图综合在线观看| 日本精品一区二区三区蜜桃| 日韩大尺度精品在线看网址 | 91在线观看av| 久久中文字幕一级| 欧美绝顶高潮抽搐喷水| 中文字幕另类日韩欧美亚洲嫩草| 欧美绝顶高潮抽搐喷水| 日日干狠狠操夜夜爽| 熟妇人妻久久中文字幕3abv| 亚洲精品中文字幕一二三四区| 亚洲一区二区三区不卡视频| 中文字幕另类日韩欧美亚洲嫩草| 亚洲va日本ⅴa欧美va伊人久久| 香蕉丝袜av| 国产亚洲精品av在线| 国产成人精品在线电影| 精品久久久精品久久久| 黄频高清免费视频| 欧美精品啪啪一区二区三区| 亚洲av熟女| 欧美 亚洲 国产 日韩一| 日韩欧美免费精品| 色婷婷久久久亚洲欧美| 亚洲欧美一区二区三区黑人| 欧美不卡视频在线免费观看 | 国产av精品麻豆| 丝袜美足系列| 99国产综合亚洲精品| netflix在线观看网站| 90打野战视频偷拍视频| 搡老熟女国产l中国老女人| 亚洲人成77777在线视频| 一区二区三区国产精品乱码| or卡值多少钱| 欧美乱色亚洲激情| 99国产精品一区二区蜜桃av| 国产精品1区2区在线观看.| 一级片免费观看大全| 少妇熟女aⅴ在线视频| 国产一区二区激情短视频| 国产亚洲欧美精品永久| 夜夜看夜夜爽夜夜摸| 中文字幕另类日韩欧美亚洲嫩草| 亚洲国产欧美网| or卡值多少钱| 两性午夜刺激爽爽歪歪视频在线观看 | 国产一区二区三区视频了| 两性夫妻黄色片| 不卡一级毛片| 在线观看免费午夜福利视频| av天堂在线播放| 性少妇av在线| 欧美在线黄色| 国产高清videossex| 宅男免费午夜| 亚洲色图综合在线观看| 黑丝袜美女国产一区| 午夜日韩欧美国产| 搡老妇女老女人老熟妇| 欧美不卡视频在线免费观看 | 免费观看人在逋| 超碰成人久久| 啪啪无遮挡十八禁网站| 中文亚洲av片在线观看爽| 男人的好看免费观看在线视频 | 国产精品1区2区在线观看.| 午夜福利在线观看吧| 亚洲专区国产一区二区| 国产亚洲av嫩草精品影院| 老汉色∧v一级毛片| 99精品久久久久人妻精品| 伊人久久大香线蕉亚洲五| 日韩一卡2卡3卡4卡2021年| 午夜影院日韩av| 中出人妻视频一区二区| 国产蜜桃级精品一区二区三区| 亚洲国产中文字幕在线视频| 精品乱码久久久久久99久播| 中文字幕av电影在线播放| 亚洲无线在线观看| 搞女人的毛片| 一级,二级,三级黄色视频| 亚洲欧美激情在线| 99香蕉大伊视频| 97碰自拍视频| 99久久综合精品五月天人人| 国产免费av片在线观看野外av| 久久影院123| 美女高潮喷水抽搐中文字幕| 成人精品一区二区免费| 51午夜福利影视在线观看| 欧美日韩精品网址| 国产色视频综合| 午夜精品国产一区二区电影| 久久久国产成人精品二区| av在线播放免费不卡| 国产精品永久免费网站| 亚洲av成人av| 国产熟女xx| 日日干狠狠操夜夜爽| 一级a爱视频在线免费观看| 青草久久国产| 大型黄色视频在线免费观看| 国产单亲对白刺激| 黄色女人牲交| 一级毛片女人18水好多| 久久中文字幕一级| av免费在线观看网站| 给我免费播放毛片高清在线观看| 午夜精品国产一区二区电影| 亚洲成国产人片在线观看| 久久亚洲精品不卡| 国产成人av激情在线播放| 色综合站精品国产| 欧美国产精品va在线观看不卡| 色精品久久人妻99蜜桃| 少妇粗大呻吟视频| 国产单亲对白刺激| 亚洲激情在线av| 国产99久久九九免费精品| or卡值多少钱| 午夜激情av网站| 成年人黄色毛片网站| 97碰自拍视频| 亚洲av电影不卡..在线观看| 免费在线观看完整版高清| 窝窝影院91人妻| 欧美日韩亚洲综合一区二区三区_| 日韩精品中文字幕看吧| 一区二区三区精品91| 嫩草影院精品99| 国产亚洲精品一区二区www| 国产精品久久久久久人妻精品电影| 国产亚洲精品久久久久久毛片| 欧美日韩一级在线毛片| 97人妻精品一区二区三区麻豆 | 日日爽夜夜爽网站| 日本免费a在线| 变态另类成人亚洲欧美熟女 | 97人妻精品一区二区三区麻豆 | 热re99久久国产66热| 日本a在线网址| 女同久久另类99精品国产91| 一级,二级,三级黄色视频| 欧美不卡视频在线免费观看 | 激情在线观看视频在线高清| 亚洲欧美一区二区三区黑人| 色婷婷久久久亚洲欧美| 久久人妻熟女aⅴ| 一级毛片高清免费大全| 99在线人妻在线中文字幕| 国产成人av激情在线播放| 国产精品爽爽va在线观看网站 | 动漫黄色视频在线观看| 欧美色欧美亚洲另类二区 | 成人国产一区最新在线观看| 欧美成人免费av一区二区三区| 欧美老熟妇乱子伦牲交| 在线国产一区二区在线| 欧美在线一区亚洲| 久久婷婷成人综合色麻豆| 操美女的视频在线观看| 国产精品香港三级国产av潘金莲| 国内精品久久久久精免费| 亚洲九九香蕉| 变态另类成人亚洲欧美熟女 | 国产野战对白在线观看| 正在播放国产对白刺激| 国产精品爽爽va在线观看网站 | 悠悠久久av| 欧美中文日本在线观看视频| 精品乱码久久久久久99久播| 久久精品国产综合久久久| 日本 欧美在线| 国产精品综合久久久久久久免费 | 日韩精品青青久久久久久| 亚洲av电影不卡..在线观看| 99在线人妻在线中文字幕| 老司机深夜福利视频在线观看| 久久久久九九精品影院| av中文乱码字幕在线| 日本三级黄在线观看| 亚洲精品国产精品久久久不卡| 无限看片的www在线观看| 高清毛片免费观看视频网站| 免费看a级黄色片| 黄色丝袜av网址大全| 成人亚洲精品一区在线观看| 97人妻天天添夜夜摸| 免费在线观看黄色视频的| 国产不卡一卡二| 欧美最黄视频在线播放免费| 日日干狠狠操夜夜爽| 麻豆久久精品国产亚洲av| 少妇的丰满在线观看| 在线免费观看的www视频| 韩国av一区二区三区四区| 亚洲精品久久国产高清桃花| 日本五十路高清| 久久久久精品国产欧美久久久| 久久久久久大精品| 少妇 在线观看| 美女 人体艺术 gogo| 午夜a级毛片| 免费一级毛片在线播放高清视频 | 久久久久久人人人人人| 校园春色视频在线观看| 亚洲中文av在线| 激情在线观看视频在线高清| 一进一出抽搐动态| 国产免费av片在线观看野外av| 热re99久久国产66热| 久久精品91无色码中文字幕| 婷婷精品国产亚洲av在线| 中文字幕最新亚洲高清| 国内毛片毛片毛片毛片毛片| 黄网站色视频无遮挡免费观看| 最新在线观看一区二区三区| 亚洲av美国av| 欧美精品啪啪一区二区三区| 欧美日韩一级在线毛片| 一区二区日韩欧美中文字幕| 亚洲av片天天在线观看| a在线观看视频网站| 午夜福利18| 九色国产91popny在线| 欧美日韩亚洲综合一区二区三区_| 成人特级黄色片久久久久久久| 国产精品亚洲av一区麻豆| 欧美黑人欧美精品刺激| 757午夜福利合集在线观看| 69精品国产乱码久久久| 日韩精品免费视频一区二区三区| 看片在线看免费视频| 中国美女看黄片| 涩涩av久久男人的天堂| 夜夜躁狠狠躁天天躁| 男女下面插进去视频免费观看| 午夜精品国产一区二区电影| 国内久久婷婷六月综合欲色啪| 日韩视频一区二区在线观看| 成人特级黄色片久久久久久久| 国产单亲对白刺激| 19禁男女啪啪无遮挡网站| 国产精品免费视频内射| 女人精品久久久久毛片| 亚洲精品美女久久久久99蜜臀| 一边摸一边抽搐一进一出视频| 国产国语露脸激情在线看| 久久天堂一区二区三区四区| 国产免费男女视频| 亚洲人成电影免费在线| 午夜福利一区二区在线看| 亚洲av成人一区二区三| 亚洲人成电影观看| 日本欧美视频一区| 99国产精品99久久久久| 午夜免费激情av| 国产真人三级小视频在线观看| 真人做人爱边吃奶动态| 十八禁人妻一区二区| 亚洲第一av免费看| 一区二区三区国产精品乱码| 午夜免费激情av| 国产一区在线观看成人免费| 久久国产亚洲av麻豆专区| 色精品久久人妻99蜜桃| 亚洲自拍偷在线| 久久青草综合色| 麻豆av在线久日| 亚洲欧美日韩无卡精品| 丁香六月欧美| 亚洲人成电影观看| 中文字幕人成人乱码亚洲影| 午夜日韩欧美国产| 制服诱惑二区| 黄色女人牲交| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲精品美女久久久久99蜜臀| 亚洲av五月六月丁香网| 97超级碰碰碰精品色视频在线观看| 亚洲熟妇中文字幕五十中出| 两性午夜刺激爽爽歪歪视频在线观看 | 国产一区二区激情短视频| 国产视频一区二区在线看| 欧美一级毛片孕妇| or卡值多少钱| 久久婷婷成人综合色麻豆|