• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    堿基對(duì)在DNA雙螺旋鏈上分離的自由能計(jì)算

    2016-09-06 01:32:23伍紹貴
    物理化學(xué)學(xué)報(bào) 2016年5期
    關(guān)鍵詞:理論物理雙螺旋物理化學(xué)

    伍紹貴 馮 丹

    (1四川師范大學(xué)化學(xué)與材料科學(xué)學(xué)院,成都610068;2中國(guó)科學(xué)院理論物理研究所,理論物理國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京100190)

    堿基對(duì)在DNA雙螺旋鏈上分離的自由能計(jì)算

    伍紹貴1,2,*馮丹1

    (1四川師范大學(xué)化學(xué)與材料科學(xué)學(xué)院,成都610068;2中國(guó)科學(xué)院理論物理研究所,理論物理國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京100190)

    DNA是大部分生物包括病毒的基因載體。DNA雙螺旋鏈通過A=T和G≡C兩種堿基對(duì)編碼實(shí)現(xiàn)對(duì)遺傳信息的存儲(chǔ)。堿基對(duì)中的相互作用對(duì)DNA雙螺旋鏈的穩(wěn)定性起到重要作用,直接關(guān)系到基因的復(fù)制和轉(zhuǎn)錄。當(dāng)前研究中,我們構(gòu)建了四組不同結(jié)構(gòu)的DNA雙螺旋鏈,進(jìn)行了總共4.3 μs的分子動(dòng)力學(xué)模擬。通過傘形取樣技術(shù)計(jì)算了DNA雙螺旋鏈中堿基對(duì)分離的自由能曲線,并從分子尺度細(xì)節(jié)和相互作用能對(duì)自由能曲線進(jìn)行解析。在堿基對(duì)G≡C的自由能曲線(PMF-PGC)上觀察到三個(gè)峰,通過監(jiān)測(cè)氫鍵數(shù)目的變化發(fā)現(xiàn)分別對(duì)應(yīng)于G≡C三個(gè)氫鍵的斷裂;而在A=T的自由能曲線(PMF-PAT)上只出現(xiàn)一個(gè)峰,說明A=T的兩個(gè)氫鍵在分離過程中幾乎同時(shí)斷裂。PMF-PGC的總能壘比PMF-PAT高,主要是因?yàn)镚≡C比A=T多一個(gè)氫鍵,更穩(wěn)定。兩條曲線的后段自由能仍然升高,而此時(shí)堿基對(duì)的氫鍵已斷裂,這是DNA鏈骨架剛性所導(dǎo)致。我們還研究了堿基對(duì)穩(wěn)定性受相鄰堿基對(duì)的影響,發(fā)現(xiàn)鄰近G≡C堿基對(duì)會(huì)增強(qiáng)A=T的穩(wěn)定性,C≡G會(huì)削弱A=T的穩(wěn)定性,T=A對(duì)A=T的影響較小。

    平均力勢(shì);氫鍵;分子動(dòng)力學(xué)模擬;傘形取樣

    1 Introduction

    DNA duplexes are double-stranded DNA(dsDNA),in which two complementary nucleic acid strands are combined into one helix.DNA is the primary genetic material for biological objects. The studies on its structures and functions are the basis of exposing biological heredity secrets.Since it was first isolated by the Swiss physician Miescher in 1869,DNA has been extensively studied both experimentally and theoretically1,2.The Nobel Prize in Chemistry 2015 was awarded to three scientists Lindahl, Modrich,and Sancar for their mechanistic studies of DNA repair which provides chemical stability for life.DNA duplexes are coded with two basic components:AT and GC base pairs.AT base pair contains two hydrogen bonds(N6―H62…O4 and N3―H3…O1)as shown in Fig.1(A),so it is referred to asA=T.AGC base pair is more stable than an AT one for one more hydrogen bond (N4―H42…O6,N1―H1…N3,N2―H21…O2),denoted as G≡C here.The interactions between two bases in a base-pair contribute to the stability of DNA duplex,further related to gene replication and transcription.Santalucia has proposed a method to predict the binding free energy for DNA duplex3,which is treated as a string of interactions.However,it cannot intuitively exhibit the details of base pair dissociation and the energetics of this process remains largely unknown.Additionally,it is known to all that G≡C base pair is more stable than A=T base pair. However,when these two base pairs are located in a detailed DNA duplex,due to the rigidity of DNA duplex backbone and the stacking interactions from neighboring base pairs,the free energy difference to separate them is of particular interest.

    Fig.1 Molecular structure diagrams for base-pairsA=T(A)and G≡C(B)and four groups of DNAduplexes with different structures (C,D,E,F)studied in this workIn GROUP 1,DNAduplexes consisting of pureA=T base pairs but with different lengths(trimer,pentamer and heptamer)were employed to investigate the influence of DNAchain length on base pair stability.In GROUP 2,DNAheptamers with pureA=T or G≡C base pairs were used to determine the PMFs forA=T and G≡C base pair dissociation.GROUP 3 and GROUP 4 are DNAheptamers with different sequences,which were used to investigate the impact of neighboring base pairs on the stability of A=T or G≡C base pair.These DNAduplexes with different sequences are labeled as PAT,PGC,MAT,MGC,GAG,TAT,and CAC,respectively.

    Molecular dynamics(MD)simulation is a powerful auxiliary tool for conventional experiment methods.By using physical force field,MD simulations can mimic detailed interactions among proteins4,5,nucleic acids6,7,lipids8,9,and many small molecules10,11and provide dynamic information to explain many biological phenomena at atomic-level resolution.In this work,we use allatom MD simulations to study the free energy profile and molecular details of base-pair dissociation.The potential of mean force(PMF)profiles for dissociating A=T and G≡C base pairs have been determined.Non-bonded interactions and hydrogen bond number(Nhb)changes during base pair dissociation have been measured to explain these PMF profiles.DNAduplexes with different sequences have been investigated to explore the influential factors on base pair stability.

    2 Methods

    2.1Model construction

    Four groups of DNA duplexes with different compositions and chain lengths were constructed for MD simulations,as shown in Fig.1(C,D,E,F).In GROUP 1,three DNAduplexes with three,five,and seven base pairs consisting of pureA=T base pairs,referred to as trimer,pentamer,and heptamer,respectively,were employed to investigate the influence of chain length on DNA duplex stability.In the second group,two heptamers composed of pureA=TandG≡Csequences,whicharereferredasPATandPGC as shown in Fig.1(D),were employed to elucidate the free energy to dissociate anA=T or a G≡C base pair in DNAduplex.In the third group,the middle base pairs of PATand PGCwere exchanged to yield two mutated heptamers,termed as MGC and MAT respectively,as shown in Fig.1(E).These two mutated heptamers were created to investigate the influence of neighboring base pairs on base pair′s stability.In other words,we calculated the PMFs for anA=T base pair dissociation in a G≡C duplex,and a G≡C base pair dissociation in anA=T duplex.The heptamers in GROUP 4 are all alternating copolymers with middle A=T base pairs,as shown in Fig.1(F),which were employed to verify the influence of neighboring base pairs on base pair′s stability in further.

    2.2Simulation details

    All simulations were performed using GROMACS software, which is one of the fastest MD simulation packages available12-14. AMBER99SB force field with ParmBSC0 nucleic acid parameters15was used to describe nucleotides in DNAduplex.The DNA duplexes with different sequences in this work were generated using the make-na server(http://structure.usc.edu/make-na/server. html).To create a system of DNAduplex surrounded by explicit water,DNAduplex was initially placed in the center of a cubic box of 5.4 nm×5.4 nm×5.4 nm.The distances from box surfaces to the closest atoms of DNAduplex are at least~1.0 nm,which is safe to prevent DNAduplex from contacting with its periodic images. Next~5000 three-point transferable intermolecular potential (TIP3P)water molecules16were filled to solvate the DNAduplex. Sodium and chloride ions were added to make the solvated system electrically neutral at a concentration of~0.15 mol?L-1 17,which is close to the physiological ionic concentration.The final system contains~15000 atoms.Atypical 1.0 nm cutoff distance was used for both van der Waals and short-range electrostatic interactions. Long-range electrostatic interactions were treated using the particle-mesh Ewald(PME)summation method18,19.Berendsen barostat20and velocity rescaling thermostat21were applied to control pressure and temperature at 105Pa and 310 K,respectively. Periodic boundary condition was applied in the three dimensions of the simulation box.Motion equations were solved numerically with a time step of 2 fs and the neighbor list was updated every 10 steps.The constructed DNAduplex system was firstly subjected to a thorough energy minimization using steepest descent minimization22followed by a 200 ps MD simulation with position restrains on the heavy atoms of DNA duplex.Thereafter,an equilibrium simulation run was performed at a constant temperature of 310 K and a constant pressure of 105Pa for 1 ns.To generate a representative ensemble of structures,each production simulation was performed for 50 ns and trajectories were saved at 2 ps intervals.The detailed conformation analysis and interaction calculations were conducted using the built-in tools of GROMACS.

    2.3Umbrella sampling(US)

    US method was used to elucidate the free energy for base-pair dissociation.To carry out US simulation,a series of seed configurations along reaction coordinate should be prepared as initial configurations.The middle base-pairs of these DNA heptamers were chosen for free energy calculation.First each DNAheptamer was solvated and ionized in a water box.After an equilibrium simulation for 1 ns,the resulted structure was used for steered molecular dynamics(SMD)23simulation to create initial seed configurations for US simulations.Here,we chose one base of the middle base pair as the reference point,and the other was applied a pulling force with a force constant k=1000 kJ?mol-1?nm-2at a speed of 0.1 nm?ns-1by SMD simulation.The distance(ζ) between two bases was set as the reaction coordinates for PMF. The SMD simulation produces a set of configurations in the range of ζ≈0.6 to 1.0 nm.To obtain accurate PMF results,40 umbrella windows were used at a spacing of 0.01 nm for each DNA heptamer system.Each umbrella window was simulated for 10 ns under a force constant k=1000 kJ?mol-1?nm-2.The first 2 ns simulation trajectory was discarded and the later 8 ns trajectory was sampled at a frequency of every 2 ps for US calculation.The built-in Gromacs tool g_wham24was used to build PMFs along the reaction coordinate ζ.Due to the stacking interactions from neighboring base-pairs and the rigidity of duplex backbone,the obtained PMFs represent free energy profiles for base pair dissociation under the condition close to real environment.

    3 Results and discussion

    3.1Impact of duplex length on DNA duplex stability

    DNA length has significant influence on its stability especially for short DNAchains.To obtain accurate free energy results,largescale simulations should be launched so as to sample conformation space sufficiently.This means that particle systems for US simulations should be as small as possible to save computational resource.Therefore,in current study,it is necessary to choose DNAduplexes with short length,however,which should be stable enough to endure long time simulation without being disintegrated.Thus we firstly investigate the influence of duplex length on its robustness.

    For simplicity,DNA duplexes composed of pure A=T basepairs were considered.Three DNAduplexes with 3,5,and 7 basepairs,termed as trimer,pentamer and heptamer,respectively,were generated from make-na server.We performed 10-independent parallel simulations with each DNA duplex and each simulation runs for 50 ns.Hydrogen bond occupancy was used to elucidate the effect of duplex length on the robustness of DNA duplex25. DNA duplexes consisting of pure A=T base-pairs own only two types of hydrogen bonds:N6―H62…O4 and N3―H3…N1.We determined occupancy values for both hydrogen bonds of each base pair for three DNA duplexes,as shown in Fig.2.For hydrogen bond N6―H62…O4,trimer has the weakest stability and pentamer is better,which means that trimer and pentamer cannot endure the thermal disturbance from long time MD simulations.For heptamer,from the 1st base pair to the 3rd one,occupancy value is increasing;the occupancy values for the 4th,5th,and 6th base-pairs are all larger than 0.9,which denotes that these basepairs have established very robust hydrogen bond interactions.For the 7th base-pair(3′terminal),the occupancy decreases to 0.42 sharply.The case for another hydrogen bond,N3―H3…N1,is very similar to that of N6―H62…O:Trimer has the poorest stability;pentamer is better while heptamer has the highest occupancy value in each position as compared to trimer and pentamer.Specially,hydrogen bond N3―H3…N1 has higher occupancy values than N6―H62…O4 in most of the positions except the 3′terminal one.Furthermore,a detailed check of Fig.2 shows that both hydrogen bonds have the highest occupancy values(~0.94 for N6―H62…O4 and~0.99 for N3―H3…N1)in the 4th base-pair of heptamer.Therefore,the middle base pair in heptamer is an idea position for PMF calculation.

    Fig.2 Effect of DNAduplex length on base pair stabilityHydrogen bond occupancy is used to characterize the robustness of DNAduplex. Hydrogen bond is assumed to be present when donor-acceptor distance is less than 0.35 nm and hydrogen-donor-acceptor angle is less than 30 degree. Hydrogen bond occupancy is defined as the ratio of times where the hydrogen bond is present with relative to the total time length of simulation trajectory. Here,three DNAduplexes(Trimer,Pentamer,and Heptamer)were employed to study the influences of duplex length on DNAduplex stability.They are all comprised ofA=T base-pairs.We performed 10-independent 50 ns simulations for each DNAduplex and conformations were sampled at every 2 ps. Atotal number of 250000 conformations were taken from 10 trajectories for the hydrogen bond occupancy calculation for each DNAduplex.

    Fig.3 Schematic diagrams of US implementation(A)ADNAheptamer(colored in yellow)is cut out from a long DNAduplex(colored in white).The base pair(colored in blue)in the middle position of the heptamer is chosen for US simulations.The harmonic spring for US is applied on the center of masses of two aromatic rings of the chosen base pair.(B)and(C)Definition of reaction coordinates for base pairsA=T and G≡C.The centers of mass of the aromatic rings forA,T,G,and C are highlighted as magenta points. The distances between them are chosen as the reaction coordinates(ζ)for PMF,such as ζATand ζGCfor base-pairsA=T and G≡C,respectively. (D)distance distributions for ζATand ζGCfrom unbiased MD simulations.color online

    Subsequently we determined the equilibrium lengths between two aromatic groups inA=T and G≡C base-pairs.For clarity,the centers of mass of the aromatic rings for A,T,G,and C are referred to as COMA,COMT,COMGand COMC.The distances(ζ) between them are chosen as the reaction coordinates for PMF.The distance between COMAand COMTin the 4th base-pair of anA=T heptamer is denoted as ζATas shown in Fig.3(A,B)while the distance between COMGand COMCin the same position of a G≡C heptamer is denoted as ζGCas shown in Fig.3(C).We conducted two unbiased MD simulations with A=T and G≡C heptamers respectively with each one runs for 50 ns.The distance distributions for ζATand ζGCare calculated as shown in Fig.3(D).It is apparent two base pairs have close equilibrium lengths with their values~0.63 nm forA=T and~0.65 nm for G≡C.Since hydrogen bond is considered to be broken at a distance larger than 0.35 nm, the range of reaction coordinate ζ is set as 0.6-1.0 nm in US simulations for bothA=T and G≡C.

    3.2Potential of mean force profiles for base-pair

    dissociation in DNA duplexes

    Firstly we determined the dissociation PMFs forA=T and G≡C in their pure heptamers(PAT and PGC,Fig.1(D)).For clarity, the two profiles are referred to PMF-PAT and PMF-PGC,re-spectively(similarly hereinafter).For each one,at least 400 ns of US simulations were performed.Fig.4(A)displays the obtained free energy profiles.Along the reactive coordinate ζ,two PMFs are increasing and their energy free energy minima are both located at near ζ≈0.64 nm.However,their PMFs are very different in shape.PMF-PGC is significantly higher than PMF-PAT in most of the range.This is because that G≡C base pair has one more hydrogen bond,it is significantly more stable and more energy is needed to separate it.PMF-PAT is relatively simple with only one peak at near ζ≈0.74 nm.The PMF changes are also qualitatively reflected in the evolution of hydrogen bond number(Nhb).As shown in Fig.4(B),Nhb-PAT has a sharp decrease from 2 to 0 in the narrow range ζ≈0.70-0.75 nm,which denotes that two hydrogen bonds of A=T base pair were almost broken within a short time. As a result,only one disruption peak is observed for PMF-PAT. After hydrogen bonds disruption(ζ>0.90 nm),PMFs are still increasing along the reaction coordinate,which is mainly contributed by the rigidity of DNA duplex backbone.On the other hand,PMF-PGC has three disruption peaks(circled by dash lines), located at near ζ≈0.72,0.79,and 0.90 nm,respectively.Fig.4(B) clearly exhibits that the three moments the G≡C base pair loses its three hydrogen bonds.As shown in Fig.4(A),the energy barriers for three peaks are~23,~11,and~5 kJ?mol-1,respectively. The first peak(near 0.72 nm)is the sharpest because all three hydrogen bonds of the G≡C base pair contribute to it though only one is broken here.In the same way,the remained two hydrogen bonds contribute to the second peak(near 0.79 nm),where only one hydrogen bond is broken as well.The third peak is the weakest for only one base pair contributes it.From above analysis, it is clear that these peaks in PMF profiles correspond to the rupture moments of hydrogen bonds in G≡C base pairs.Therefore,these peaks are termed as hydrogen bond rupture peaks below.

    Fig.4 Potential of mean force profiles,number of hydrogen bonds,and non-bonded interaction energies changes during base-pair dissociation(A)comparison of PMF-PAT and PMF-PGC.(B)the number of hydrogen bonds(Nhb)changes in US simulations.The three dash-line circles in both diagrams corresponding to the moments of hydrogen bonds break.The energies to break three hydrogen bonds are~23,~11,and~5 kJ?mol-1respectively.(C),(D),and(E)are the total non-bonded interaction energy Etotal,the electric interaction energy Eelec,and the vdW interaction energy EvdWbetween two pulling bases changes during US simulation. All calculations were performed using these trajectories from US simulations and subsequently binned to yield the average value at a given ζ.

    The difference between PMF-PAT and PMF-PGC can be partly explained by non-bonded interaction energies between two bases during base pair dissociation.Fig.4(C-E)show the non-bonded energies obtained from US trajectories.It is clear that the electric interaction energy Eelecis larger than the vdW interaction energy EvdWin one order of magnitude.As a result,the total non-bonded energy Etotalas shown in Fig.4(C)is more close to Eelecin Fig.4(D) in shape,which suggests that electric interaction plays more dominated roles than vdWinteraction in maintaining DNAduplex′s stability.On the other hand,the Etotalof G≡C base pair is larger than that for A=T base pair in absolute value,which is consistent with their PMF difference.This result is in agreement with the fact that G≡C base pair has better stability than A=T base pair. However,during the base pair dissociation in the distance rangeζ≈0.64-1.00 nm,the Etotalhas a total of~100 kJ?mol-1decrease in absolute value for G≡C base pair and~50 kJ?mol-1decrease for A=T base pair,which are significantly different from their PMF variations.It suggests that besides non-bonded interactions, other components have participated in maintaining the stability of DNA duplex,such as the stacking interactions from neighboring base pairs,the backbone rigidity of DNA duplex,etc.Unfortunately,these contributions cannot be evaluated by using current methods.All these components prevent base pair from dissociation and contribute to the stability of DNAduplex together.

    Furthermore,it is of interest whether neighboring base pairshave influences on the stability of the chosen one.Therefore,we prepared two mutated DNA duplexes:one is substituting the middle base pair in a PGC heptamer to an A=T one,denoted as MAT;the other is the substitution of the middle base pair in a PAT heptamer to a G≡C one,denoting as MGC.Both mutated heptamers are shown in Fig.1(E).Then we performed US simulations to determine their corresponding PMFs,PMF-MAT,and PMFMGC,as shown in Fig.5(A).For comparison,PMF-PAT and PMFPGC are also plotted.For A=T base pair,PMF-MAT almost overlaps with PMF-PATin the section ζ=0.60-0.73 nmand PMFMAT is higher than PMF-PAT in the section ζ>0.75 nm.Especially,the hydrogen bond rupture peak near ζ≈0.74 nm in PMFMAT is obviously higher than that in PMF-PAT,which suggests that neighboring G≡C base pairs have increased the free energy barrier for base pair dissociation and improved the stability ofA=T base pair.On the other hand,PMF-MGC is lower than PMFPGC in the section ζ=0.70-0.90 nm,which indicates neighboring A=T base pairs decrease the stability of G≡C base pair.The above results suggest that neighboring base pairs have different influences on the stability of the chosen base pair,positively or negatively.

    Another important issue is whether alternating sequences are favorable for increasing DNA duplex′s stability.Therefore,we prepared another group of heptamers with alternating sequences. For comparison,their middle base pairs are all set as A=T base pairs,as shown in Fig.1(F).These heptamers are referred to as GAG,TAT,and CAC and their corresponding PMFs are labeled as PMF-GAG,PMF-TAT,and PMF-CAC respectively.Fig.5(B) displays PMF-MAT and PMF-GAG.For comparison,PMF-PAT is also plotted.For heptamers MAT and GAG,the neighboring base pairs of the middle A=T base pairs are all G≡C base pairs while GAG is a heptamer with alternating sequence.As shown in Fig.5(B),their PMF curves almost overlap with each other,indicating that alternating sequence has little impact on DNAduplex stability.In order to further clarify the impact of neighboring base pairs on the stability of middle base pair,Fig.5(C)shows the PMFs for heptamers PAT,GAG,TAT,and CAC.These heptamers have middle A=T base pairs neighboring with different base pairs.It is significant that PMF-PAT is higher than PMF-CAC while lower than PMF-GAG in most of the range,which suggests that neighboring G≡C base pairs enhance A=T base pair′s stability while neighboring C≡G base pairs reduce the stability of A=T base pair.PMF-TAT is very close to PMF-PAT before ζ≈0.82 nm while higher than PMF-PAT at the section ζ>0.82 nm.Since base pair A=T has lost its two hydrogen bonds when the separating distance is larger than ζ≈0.82 nm,the energy difference between PMF-TAT and PMF-PAT is deduced to be attributed by the backbone rigidity of DNAduplex.It means that neighboring T=A base pairs cause little influences on the stability of A=T base pair.On the other hand,these PMFs are still very similar in shape, for instance,only one peak and one valley appearing in the rangeζ≈0.70-0.80 nm.Therefore,we can draw a conclusion that neighboring base pairs do have influences on the stability of middle base pair,but these influences are different,positively or negatively.

    4 Conclusions

    In this work,we used all-atom MD simulations combined with US method to determine the free energy profiles for base pair dissociation in DNA duplex.Four groups of DNA duplex models have been constructed:the first group is used to examine the effect of chain length on DNAduplex′s stability;the other three groups, which are all heptamers with different sequences,are used for PMF calculations in different DNA duplex sequences.We have launched a total of 4.3 μs MD simulations,in which 2.8 μs were US simulations to obtain accurate PMF profiles for base pair dissociation.The results show that the free energy to split a G≡C base pair is higher than that for an A=T base pair,which is resulted from the fact that G≡C base pair has one more hydrogen bond and it is more stable than A=T base pair.PMF-PGC hasthree peaks,representing the three moments the G≡C base pair loses its three hydrogen bonds,respectively.Differently,PMF-PAT has only one peak,indicating that two hydrogen bonds of theA=T base pair were broken within a very short time.Both PMF-PAT and PMF-PGC are still increasing after their hydrogen bonds were fully broken,which are mainly attributed to the backbone rigidity of DNA duplex.Additionally,non-bonded interaction analysis suggests that electric interaction plays more important roles than vdW interaction in maintaining DNA duplex′s stability.Additionally,we have found that neighboring base pairs do have influences on the stability of the selected base pair.Neighboring G≡C base pairs improveA=T base pair′s stability while neighboring C≡G base pairs reduce the stability of A=T base pair;Neighboring T=A base pairs cause little influences on the stability of A=T base pair.Moreover,alternating sequence has little impact on DNAduplex stability.

    The above calculated PMF results may be different from Santalucia′s binding free energy for DNA base pairs.Our PMF curves were calculated from model systems of DNA duplexes in explicit water and the dynamics of particles has been considered. For base pair A=T or G≡C in a detailed environment,the free energy to dissociate them is contributed by not only hydrogen bonds,but also other components,such as the π-π stacking interactions from neighboring base pairs,the rigidity of DNAduplex backbone,and so on.As a result,these free energy results reveal more molecular details and are more meaningful.

    Acknowledgments:Thank Prof.WANG Yi in Chinese University of Hong Kong,Prof.SHI Hua-Lin in Institute of Theoretical Physics,Chinese Academy of Sciences,and Prof.JI Qing in Hebei University of Technology for helpful advices.

    References

    (1)Cressey,D.Nature 2015,526(7573),307.doi:10.1038/ nature.2015.18515

    (2)Peyrard,M.;Bishop,A.R.Phys.Rev.Lett.1989,62(23), 2755.doi:10.1103/PhysRevLett.62.2755

    (3)Santalucia,J.Proc.Natl.Acad.Sci.U.S.A.1998,95(4), 1460.doi:10.1073/pnas.95.4.1460

    (4)Wu,S.G.;Gao,X.T.;Li,Q.;Liao,J.;Xu,C.G.Acta Phys.-Chim.Sin.2015,31(9),1803.[伍紹貴,高曉彤,李權(quán),廖杰,徐成剛.物理化學(xué)學(xué)報(bào),2015,31(9),1803]. doi:10.3866/PKU.WHXB201508062

    (5)Meng,X.M.;Zhang,S.L.;Zhang,Q.G.Acta Phys.-Chim. Sin.2016,32(2),436.[孟現(xiàn)美,張少龍,張慶剛.物理化學(xué)學(xué)報(bào),2016,32(2),436].doi:10.3866/PKU.WHXB201511302

    (6)Silva,D.A.;Weiss,D.R.;Avila,F.P.;Da,L.T.;Levitt,M.; Wang,D.;Huang,X.Proc.Natl.Acad.Sci.U.S.A.2014,111 (21),7665.doi:10.1073/pnas.1315751111

    (7)Mackerell,A.D.;Banavali,N.K.J.Comput.Chem.2000,21 (2),105.doi:10.1002/(SICI)1096-987X(20000130)21:2<105:: AID-JCC3>3.0.CO;2-P

    (8)Ge,Z.;Li,Q.;Wang,Y.J.Chem.Theory Comput.2014,10 (7),2751.doi:10.1021/ct500194s

    (9)Delemotte,L.;Tarek,M.J.Membr.Biol.2012,245(9),531. doi:10.1007/s00232-012-9434-6

    (10)Da,L.;Avila,F.P.;Wang,D.;Huang,X.PLoS Comput.Biol. 2013,9(4),e1003020.doi:10.1371/journal.pcbi.1003020

    (11)Yang,L.J.;Gao,Y.Q.Acta Phys.-Chim.Sin.2016,32(1), 313.[楊立江,高毅勤.物理化學(xué)學(xué)報(bào),2016,32(1),313.]

    doi:10.3866/PKU.WHXB201512161

    (12)Kutzner,C.;Van Der Spoel,D.;Fechner,M.;Lindahl,E.; Schmitt,U.W.;De Groot,B.L.;Grubmüller,H.J.Comput. Chem.2007,28(12),2075.doi:10.1002/jcc.20703

    (13)Pronk,S.;Páll,S.;Schulz,R.;Larsson,P.;Bjelkmar,P.; Apostolov,R.;Shirts,M.R.;Smith,J.C.;Kasson,P.M.;van der Spoel,D.Bioinformatics 2013,29(7),845.doi:10.1093/ bioinformatics/btt055

    (14)Hess,B.;Kutzner,C.;Van Der Spoel,D.;Lindahl,E.J.Chem. Theory Comput.2008,4(3),435.doi:10.1021/ct700301q

    (15)Perez,A.;Marchan,I.;Svozil,D.;Sponer,J.;Cheatham,T.E., III;Laughton,C.A.;Orozco,M.Biophys.J.2007,92(11), 3817.doi:10.1529/biophysj.106.097782

    (16)Miyamoto,S.;Kollman,P.A.J.Comput.Chem.1992,13(8), 952.doi:10.1002/jcc.540130805

    (17)Ito,H.O.;Soutome,S.M.J.Microbiol.Methods 2003,55(1), 29.doi:10.1016/S0167-7012(03)00111-8

    (18)Essmann,U.;Perera,L.;Berkowitz,M.L.;Darden,T.;Lee, H.;Pedersen,L.G.J.Chem.Phys.1995,103(19),8577.

    doi:10.1063/1.470117

    (19)Darden,T.;York,D.;Pedersen,L.J.Chem.Phys.1993,98 (12),10089.doi:10.1063/1.464397

    (20)Berendsen,H.J.;Postma,J.P.M.;van Gunsteren,W.F.; DiNola,A.;Haak,J.J.Chem.Phys.1984,81(8),3684.

    doi:10.1063/1.448118

    (21)Bussi,G.;Donadio,D.;Parrinello,M.J.Chem.Phys.2007, 126(1),014101.doi:10.1063/1.2408420

    (22)Zimmermann,K.J.Comput.Chem.1991,12(3),310.

    doi:10.1002/jcc.540120305

    (23)Isralewitz,B.;Gao,M.;Schulten,K.Curr.Opin.Struc.Biol. 2001,11,224.doi:10.1016/S0959-440X(00)00194-9

    (24)Hub,J.S.;De Groot,B.L.;Van Der Spoel,D.J.Chem. Theory Comput.2010,6(12),3713.doi:10.1021/ct100494z

    (25)Huang,X.;Wang,D.;Weiss,D.R.;Bushnell,D.A.;Kornberg, R.D.;Levitt,M.Proc.Natl.Acad.Sci.U.S.A.2010,107 (36),15745.doi:10.1073/pnas.1009898107

    Free Energy Calculation for Base Pair Dissociation in a DNA Duplex

    WU Shao-Gui1,2,*FENG Dan1
    (1College of Chemistry and Material Science,Sichuan Normal University,Chengdu 610068,P.R.China; (2State Key Laboratory of Theoretical Physics,Institute of Theoretical Physics,Chinese Academy of Sciences, Beijing 100190,P.R.China)

    DNAis the main genetic material for living organisms including many viruses.DNAduplex,coded with A=T and G≡C base pairs,is well suited for biological information storage.The interactions between two bases in a base pair contribute to the stability of DNA duplex,and are further related to gene replication and transcription.In this study,we use all-atom Molecular dynamics(MD)simulations combined with Umbrella sampling(US)method to determine the free energy profiles and explore the molecular details for base pair dissociations.Four groups of DNAduplexes with different sequences have been constructed and a total of 4.3 μs MD simulations have been carried out.In the potential of mean force(PMF)profile for G≡C base pair dissociation(denoted as PMF-PGC),we observed three peaks,which correspond to the three moments G≡C base pair loses its three hydrogen bonds respectively.Differently,A=T base pair loses its two hydrogen bonds within a very short time.As a result,only one hydrogen bond rupture peak was observed in its PMF curve (denoted as PMF-PAT).Compared with PMF-PAT,the overall free energy barrier in PMF-PGC is higher,which is due to the better stability of G≡C than A=T.In the latter sections of both PMFs,free energies are still increasing,which is mainly resulted from the rigidity of DNA duplex backbone.We have also investigated the impact of neighboring base pairs on the stability of middle one.It is found that neighboring G≡C base pairsincrease the stability ofA=T base pair while neighboring C≡G base pairs reduce the stability ofA=T base pair. Additionally,neighboring T=Abase pairs have little influence on the stability ofA=T base pair.

    December 16,2015;Revised:February 16,2016;Published on Web:February 18,2016.

    Potential of mean force;Hydrogen bond;Molecular dynamics simulation;Umbrella sampling

    O641

    10.3866/PKU.WHXB201602185

    *Corresponding author.Email:wsgchem@foxmail.com.

    The project was supported by the National Natural Science Foundation of China(11405113),Science and Technology Plan of Sichuan Province, China(2010JY0122),and Science Research Fund of Sichuan Normal University,China(10MSL02).

    國(guó)家自然科學(xué)基金(11405113),四川省科技廳項(xiàng)目(2010JY0122)和四川師范大學(xué)科學(xué)研究基金(10MSL02)資助

    猜你喜歡
    理論物理雙螺旋物理化學(xué)
    馬爾斯克雙螺旋瞭望塔
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進(jìn)的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    小議高中物理教學(xué)中理論的重要性
    Chemical Concepts from Density Functional Theory
    力學(xué)之我見
    蝴蝶魚
    開關(guān)耦合加速諧振子網(wǎng)絡(luò)同步
    軟件(2015年1期)2015-07-03 08:00:04
    理論物理教學(xué)中學(xué)生創(chuàng)新學(xué)習(xí)能力培養(yǎng)的探索與實(shí)踐
    Origin of the cis-Effect:a Density Functional Theory Study of Doubly Substituted Ethylenes
    午夜精品久久久久久毛片777| 亚洲熟妇熟女久久| 午夜福利一区二区在线看| 少妇被粗大的猛进出69影院| 高清黄色对白视频在线免费看| 久久午夜亚洲精品久久| 国产精品久久电影中文字幕| 黑人操中国人逼视频| 一边摸一边做爽爽视频免费| 美女午夜性视频免费| 亚洲精品美女久久久久99蜜臀| 国内毛片毛片毛片毛片毛片| 精品熟女少妇八av免费久了| 免费在线观看日本一区| 99国产精品一区二区三区| 伊人久久大香线蕉亚洲五| 久久精品aⅴ一区二区三区四区| 久久精品影院6| 一边摸一边抽搐一进一小说| 午夜久久久在线观看| 一本综合久久免费| 黄色 视频免费看| 另类亚洲欧美激情| 亚洲五月天丁香| 久久草成人影院| 久久久久久久久中文| 激情视频va一区二区三区| 亚洲精品久久成人aⅴ小说| 精品国产乱码久久久久久男人| 操出白浆在线播放| 久久青草综合色| 亚洲五月色婷婷综合| 色在线成人网| 国产av精品麻豆| 欧美人与性动交α欧美精品济南到| 亚洲国产中文字幕在线视频| 欧美日韩瑟瑟在线播放| 精品国产一区二区三区四区第35| 亚洲七黄色美女视频| 精品无人区乱码1区二区| 脱女人内裤的视频| 亚洲一区二区三区色噜噜 | 亚洲精品久久成人aⅴ小说| 日韩欧美免费精品| 女人被狂操c到高潮| 精品第一国产精品| 在线观看免费视频日本深夜| 国产av一区二区精品久久| 一夜夜www| 成人黄色视频免费在线看| 黑人猛操日本美女一级片| av电影中文网址| 少妇粗大呻吟视频| 在线观看www视频免费| 一区二区三区激情视频| 色哟哟哟哟哟哟| 国产精品亚洲一级av第二区| 热99国产精品久久久久久7| 真人一进一出gif抽搐免费| 国产精品一区二区三区四区久久 | 成人特级黄色片久久久久久久| 婷婷精品国产亚洲av在线| 欧美日本亚洲视频在线播放| 精品日产1卡2卡| 校园春色视频在线观看| xxx96com| 亚洲一区中文字幕在线| 伊人久久大香线蕉亚洲五| 婷婷六月久久综合丁香| 成年人免费黄色播放视频| 视频区欧美日本亚洲| 午夜福利一区二区在线看| 露出奶头的视频| 精品国产乱码久久久久久男人| 欧美人与性动交α欧美精品济南到| 午夜成年电影在线免费观看| 好看av亚洲va欧美ⅴa在| 18禁观看日本| 久久精品国产清高在天天线| 久久久国产精品麻豆| 欧美av亚洲av综合av国产av| 欧美精品一区二区免费开放| 国产精品成人在线| 欧美成人午夜精品| 男人舔女人的私密视频| 国产精品98久久久久久宅男小说| 可以在线观看毛片的网站| 久久精品国产99精品国产亚洲性色 | 18美女黄网站色大片免费观看| 久99久视频精品免费| 久久久久精品国产欧美久久久| 叶爱在线成人免费视频播放| 久久精品影院6| 亚洲精品美女久久av网站| av视频免费观看在线观看| 男女下面插进去视频免费观看| 中亚洲国语对白在线视频| 亚洲人成电影免费在线| 狂野欧美激情性xxxx| 黄色丝袜av网址大全| 黑人猛操日本美女一级片| 欧美日韩瑟瑟在线播放| 亚洲专区字幕在线| 一区二区三区激情视频| 亚洲第一欧美日韩一区二区三区| 免费女性裸体啪啪无遮挡网站| 国产成年人精品一区二区 | 大型黄色视频在线免费观看| 多毛熟女@视频| 大香蕉久久成人网| 欧美激情高清一区二区三区| 国产欧美日韩精品亚洲av| 日本欧美视频一区| 男人舔女人的私密视频| 身体一侧抽搐| 在线观看免费视频日本深夜| 久久精品国产综合久久久| 日韩欧美在线二视频| 中文字幕av电影在线播放| 国产成人av激情在线播放| 久久久国产成人精品二区 | 国产免费av片在线观看野外av| 麻豆久久精品国产亚洲av | 中国美女看黄片| 亚洲七黄色美女视频| 这个男人来自地球电影免费观看| 如日韩欧美国产精品一区二区三区| 精品一区二区三区四区五区乱码| 午夜福利在线免费观看网站| 国产精品二区激情视频| 免费高清在线观看日韩| 久久性视频一级片| 国产极品粉嫩免费观看在线| 十分钟在线观看高清视频www| 国产精品久久电影中文字幕| 午夜激情av网站| 丰满的人妻完整版| 18禁国产床啪视频网站| 一区二区日韩欧美中文字幕| 在线观看免费高清a一片| 美国免费a级毛片| 久久精品亚洲精品国产色婷小说| 精品人妻1区二区| 啦啦啦免费观看视频1| 婷婷六月久久综合丁香| 成人亚洲精品一区在线观看| cao死你这个sao货| 欧美中文综合在线视频| 国产成人av激情在线播放| 亚洲va日本ⅴa欧美va伊人久久| 在线观看免费视频日本深夜| 亚洲一区中文字幕在线| 欧美不卡视频在线免费观看 | 中国美女看黄片| 亚洲色图 男人天堂 中文字幕| 少妇的丰满在线观看| 国产av一区在线观看免费| 中文字幕av电影在线播放| 国产亚洲精品一区二区www| 亚洲欧美日韩另类电影网站| 亚洲少妇的诱惑av| 搡老岳熟女国产| 久久香蕉国产精品| 国产有黄有色有爽视频| 老司机靠b影院| 美女大奶头视频| 亚洲专区中文字幕在线| 在线观看www视频免费| 每晚都被弄得嗷嗷叫到高潮| 欧美日韩瑟瑟在线播放| 亚洲午夜精品一区,二区,三区| 黄网站色视频无遮挡免费观看| 黄片播放在线免费| 亚洲在线自拍视频| 国产熟女xx| 亚洲色图av天堂| 亚洲精品成人av观看孕妇| www.自偷自拍.com| 一级a爱片免费观看的视频| 亚洲成人免费av在线播放| 91麻豆精品激情在线观看国产 | 久久久久久久久久久久大奶| 国产av又大| 久久这里只有精品19| 一级毛片精品| 一边摸一边抽搐一进一出视频| 曰老女人黄片| 中文字幕高清在线视频| 丰满饥渴人妻一区二区三| 99久久人妻综合| 亚洲全国av大片| 精品一区二区三卡| 国产亚洲欧美在线一区二区| 一个人观看的视频www高清免费观看 | 一区福利在线观看| 欧美黑人欧美精品刺激| а√天堂www在线а√下载| e午夜精品久久久久久久| 久久久久久久久免费视频了| 国产视频一区二区在线看| 男女午夜视频在线观看| 国产91精品成人一区二区三区| cao死你这个sao货| 久久伊人香网站| 高清欧美精品videossex| 久久天堂一区二区三区四区| 国产色视频综合| 狂野欧美激情性xxxx| 久久久久久免费高清国产稀缺| 久久精品影院6| 久久中文字幕一级| 久久青草综合色| 亚洲 欧美 日韩 在线 免费| 高清黄色对白视频在线免费看| www.熟女人妻精品国产| 亚洲av成人不卡在线观看播放网| 久久久水蜜桃国产精品网| 亚洲五月天丁香| 美女福利国产在线| 天天影视国产精品| 亚洲精华国产精华精| 国产精品秋霞免费鲁丝片| 99热只有精品国产| 亚洲国产毛片av蜜桃av| 久久人人精品亚洲av| 在线永久观看黄色视频| 亚洲片人在线观看| 天堂√8在线中文| 久久精品91无色码中文字幕| 亚洲avbb在线观看| 精品卡一卡二卡四卡免费| 女同久久另类99精品国产91| 亚洲成人免费av在线播放| 国产精品爽爽va在线观看网站 | 国产有黄有色有爽视频| 久久九九热精品免费| av片东京热男人的天堂| 日日爽夜夜爽网站| 黄色成人免费大全| 欧美日韩亚洲高清精品| 国产伦人伦偷精品视频| 国产高清videossex| 日韩欧美国产一区二区入口| 国产精品 国内视频| 亚洲欧洲精品一区二区精品久久久| 妹子高潮喷水视频| 国产精品av久久久久免费| 亚洲精品国产色婷婷电影| 色老头精品视频在线观看| 一区二区日韩欧美中文字幕| 黄色片一级片一级黄色片| 色播在线永久视频| 国产精品国产av在线观看| 久久九九热精品免费| 色老头精品视频在线观看| a级片在线免费高清观看视频| 一个人免费在线观看的高清视频| 1024香蕉在线观看| 国产不卡一卡二| а√天堂www在线а√下载| 精品日产1卡2卡| 黑人巨大精品欧美一区二区mp4| 久热这里只有精品99| 黄频高清免费视频| 欧美丝袜亚洲另类 | 69精品国产乱码久久久| 久久影院123| 日韩国内少妇激情av| 女性被躁到高潮视频| 波多野结衣高清无吗| 国产成人系列免费观看| 天堂√8在线中文| 91国产中文字幕| 亚洲色图综合在线观看| 国产精品一区二区精品视频观看| 国产成人系列免费观看| cao死你这个sao货| 操美女的视频在线观看| 日本撒尿小便嘘嘘汇集6| av天堂久久9| www日本在线高清视频| 国产精品国产高清国产av| 久久国产乱子伦精品免费另类| 免费女性裸体啪啪无遮挡网站| bbb黄色大片| 亚洲 欧美一区二区三区| 女人被躁到高潮嗷嗷叫费观| 天堂√8在线中文| 两性夫妻黄色片| 搡老乐熟女国产| 亚洲精品在线美女| 日日干狠狠操夜夜爽| 国产成人av激情在线播放| 男女下面进入的视频免费午夜 | 天堂俺去俺来也www色官网| 90打野战视频偷拍视频| 一级毛片精品| av视频免费观看在线观看| 可以免费在线观看a视频的电影网站| 国产精品免费视频内射| 久久久久久久久久久久大奶| 丁香六月欧美| 日本一区二区免费在线视频| 亚洲专区字幕在线| 国产xxxxx性猛交| 国产精华一区二区三区| 亚洲精品成人av观看孕妇| 男女床上黄色一级片免费看| 久久久久精品国产欧美久久久| 国产视频一区二区在线看| 交换朋友夫妻互换小说| 精品第一国产精品| 999久久久国产精品视频| 久久婷婷成人综合色麻豆| 少妇粗大呻吟视频| 婷婷六月久久综合丁香| 中亚洲国语对白在线视频| 国产高清国产精品国产三级| www日本在线高清视频| 亚洲av成人不卡在线观看播放网| av有码第一页| 老司机午夜十八禁免费视频| 国产人伦9x9x在线观看| 一二三四在线观看免费中文在| 1024香蕉在线观看| 日本精品一区二区三区蜜桃| 亚洲av熟女| 桃红色精品国产亚洲av| 午夜成年电影在线免费观看| 麻豆成人av在线观看| 久久精品aⅴ一区二区三区四区| 欧美激情高清一区二区三区| 美女 人体艺术 gogo| 午夜91福利影院| 国产精品影院久久| 欧美激情高清一区二区三区| 亚洲国产中文字幕在线视频| 国产精品野战在线观看 | 少妇粗大呻吟视频| 啦啦啦 在线观看视频| 亚洲五月天丁香| 亚洲av电影在线进入| 中文字幕人妻熟女乱码| 午夜日韩欧美国产| 欧美 亚洲 国产 日韩一| 亚洲国产看品久久| 天堂中文最新版在线下载| 久久久国产一区二区| 亚洲精品在线美女| 露出奶头的视频| 99香蕉大伊视频| 色播在线永久视频| 嫩草影视91久久| 成年版毛片免费区| 国产成年人精品一区二区 | 国产麻豆69| 欧美激情久久久久久爽电影 | 久久久久久久午夜电影 | 在线视频色国产色| 欧美成人性av电影在线观看| 三级毛片av免费| 高清在线国产一区| 亚洲熟女毛片儿| 黄片小视频在线播放| 老鸭窝网址在线观看| 狂野欧美激情性xxxx| 亚洲自偷自拍图片 自拍| 亚洲国产精品999在线| 黄频高清免费视频| 97超级碰碰碰精品色视频在线观看| 777久久人妻少妇嫩草av网站| 国产精品久久久av美女十八| 成在线人永久免费视频| 国产亚洲欧美98| 久久久久久免费高清国产稀缺| 亚洲av美国av| 亚洲色图 男人天堂 中文字幕| 日本黄色视频三级网站网址| 大型av网站在线播放| 亚洲色图综合在线观看| 亚洲久久久国产精品| 午夜精品在线福利| 大型黄色视频在线免费观看| 一边摸一边抽搐一进一小说| 亚洲中文字幕日韩| 老鸭窝网址在线观看| 热99国产精品久久久久久7| a级片在线免费高清观看视频| 亚洲精品国产一区二区精华液| 亚洲全国av大片| 欧美在线一区亚洲| 免费在线观看日本一区| 午夜免费观看网址| 淫妇啪啪啪对白视频| 少妇被粗大的猛进出69影院| www国产在线视频色| 人人妻,人人澡人人爽秒播| 国产精品成人在线| 亚洲欧美一区二区三区久久| 丰满饥渴人妻一区二区三| 亚洲欧美激情在线| 亚洲五月色婷婷综合| 搡老岳熟女国产| 欧美日本中文国产一区发布| 亚洲五月天丁香| 久久热在线av| 99久久人妻综合| 51午夜福利影视在线观看| 性少妇av在线| 国产亚洲av高清不卡| 精品一区二区三卡| 丝袜人妻中文字幕| 级片在线观看| 婷婷精品国产亚洲av在线| 亚洲狠狠婷婷综合久久图片| 欧美日韩乱码在线| 高清在线国产一区| 久久国产精品影院| 午夜福利一区二区在线看| 18美女黄网站色大片免费观看| 黄色怎么调成土黄色| 国产男靠女视频免费网站| 亚洲国产精品一区二区三区在线| 丰满人妻熟妇乱又伦精品不卡| 国产亚洲av高清不卡| 欧美在线黄色| 久久性视频一级片| 淫妇啪啪啪对白视频| 亚洲国产精品999在线| 自拍欧美九色日韩亚洲蝌蚪91| 精品人妻1区二区| 两人在一起打扑克的视频| 亚洲人成网站在线播放欧美日韩| 久久久久久大精品| 老司机亚洲免费影院| 丝袜美腿诱惑在线| 一边摸一边抽搐一进一出视频| 黄色视频,在线免费观看| 级片在线观看| 国产又色又爽无遮挡免费看| 狂野欧美激情性xxxx| 日本 av在线| 久久草成人影院| 涩涩av久久男人的天堂| 国产精品久久视频播放| 久热爱精品视频在线9| 男人的好看免费观看在线视频 | 国产成人欧美在线观看| 亚洲自偷自拍图片 自拍| 80岁老熟妇乱子伦牲交| 国产色视频综合| 午夜91福利影院| 黄片小视频在线播放| 欧美中文日本在线观看视频| 亚洲三区欧美一区| 亚洲精华国产精华精| 亚洲中文日韩欧美视频| 亚洲国产精品999在线| 欧美另类亚洲清纯唯美| 国产一区在线观看成人免费| 正在播放国产对白刺激| 日韩成人在线观看一区二区三区| 国产精品久久电影中文字幕| 在线观看一区二区三区| 欧美中文综合在线视频| 日本 av在线| 我的亚洲天堂| 天堂动漫精品| 91九色精品人成在线观看| 国产免费现黄频在线看| 欧美最黄视频在线播放免费 | 首页视频小说图片口味搜索| 久久狼人影院| 亚洲精品国产一区二区精华液| 1024香蕉在线观看| 精品久久久久久久久久免费视频 | 久久精品成人免费网站| 欧美国产精品va在线观看不卡| 最近最新免费中文字幕在线| 国产视频一区二区在线看| 99热国产这里只有精品6| 成人特级黄色片久久久久久久| 无人区码免费观看不卡| 好男人电影高清在线观看| 99久久综合精品五月天人人| 99re在线观看精品视频| 亚洲情色 制服丝袜| 久久中文看片网| 丝袜美足系列| 午夜福利在线免费观看网站| 欧美精品亚洲一区二区| 18美女黄网站色大片免费观看| ponron亚洲| 操出白浆在线播放| 搡老岳熟女国产| 狂野欧美激情性xxxx| 国产91精品成人一区二区三区| av天堂久久9| 91成年电影在线观看| 91精品国产国语对白视频| 欧美成人性av电影在线观看| 色老头精品视频在线观看| 国产av又大| 一区二区三区激情视频| 亚洲成a人片在线一区二区| 少妇 在线观看| 久久九九热精品免费| 国产精品综合久久久久久久免费 | 深夜精品福利| 一级毛片精品| 亚洲av五月六月丁香网| av福利片在线| 精品国产一区二区三区四区第35| 校园春色视频在线观看| 长腿黑丝高跟| 一级毛片精品| 亚洲黑人精品在线| 9热在线视频观看99| 欧美人与性动交α欧美精品济南到| 老司机靠b影院| 视频区图区小说| 午夜福利欧美成人| 免费av中文字幕在线| 成人免费观看视频高清| 亚洲午夜理论影院| 满18在线观看网站| 久久精品亚洲熟妇少妇任你| 后天国语完整版免费观看| 国产99白浆流出| www国产在线视频色| 男人舔女人下体高潮全视频| 啦啦啦在线免费观看视频4| 国产一区二区在线av高清观看| 免费日韩欧美在线观看| 国产免费现黄频在线看| 侵犯人妻中文字幕一二三四区| 久久人妻福利社区极品人妻图片| 日韩精品中文字幕看吧| 中文字幕人妻熟女乱码| 在线观看www视频免费| 性欧美人与动物交配| 日韩成人在线观看一区二区三区| 淫妇啪啪啪对白视频| 19禁男女啪啪无遮挡网站| 欧美激情久久久久久爽电影 | 久久人人精品亚洲av| 日本wwww免费看| 午夜影院日韩av| 精品久久久久久久久久免费视频 | 91国产中文字幕| 午夜免费成人在线视频| 人妻久久中文字幕网| 国产91精品成人一区二区三区| 欧美乱码精品一区二区三区| 天堂中文最新版在线下载| 黄色 视频免费看| 麻豆av在线久日| 国产男靠女视频免费网站| 三级毛片av免费| 亚洲自拍偷在线| 中文字幕最新亚洲高清| 亚洲狠狠婷婷综合久久图片| 亚洲三区欧美一区| 精品久久蜜臀av无| 久久香蕉国产精品| 亚洲专区字幕在线| 精品国产超薄肉色丝袜足j| 麻豆国产av国片精品| 男女下面进入的视频免费午夜 | 热re99久久精品国产66热6| 午夜精品久久久久久毛片777| 在线观看一区二区三区| 最新在线观看一区二区三区| 亚洲熟妇中文字幕五十中出 | 日韩三级视频一区二区三区| 亚洲国产精品合色在线| 久久久久国内视频| 午夜影院日韩av| 精品日产1卡2卡| 久久久国产精品麻豆| 无限看片的www在线观看| 午夜精品在线福利| 99久久久亚洲精品蜜臀av| 女人精品久久久久毛片| 亚洲精品久久成人aⅴ小说| 人妻丰满熟妇av一区二区三区| 黑丝袜美女国产一区| 午夜福利影视在线免费观看| 久久久久久久久久久久大奶| 悠悠久久av| 制服诱惑二区| 老熟妇仑乱视频hdxx| 久久精品亚洲av国产电影网| 在线观看一区二区三区激情| 欧美最黄视频在线播放免费 | 亚洲一码二码三码区别大吗| 日日夜夜操网爽| 少妇被粗大的猛进出69影院| 69精品国产乱码久久久| 亚洲欧美一区二区三区久久| 亚洲精品国产精品久久久不卡| 老司机午夜十八禁免费视频| 在线观看免费高清a一片| 丁香欧美五月| a级毛片在线看网站| 欧美日韩精品网址| 在线永久观看黄色视频| 大香蕉久久成人网| 大型黄色视频在线免费观看| 欧美成狂野欧美在线观看| 自线自在国产av| 精品久久久久久电影网| 亚洲国产精品999在线| 97超级碰碰碰精品色视频在线观看| 一级毛片高清免费大全|