陳日帥 祁影霞 吳 東
(上海理工大學(xué)能源與動(dòng)力工程學(xué)院 制冷與低溫工程研究所 上?!?00093)
?
混合制冷劑R1234yf/R134a PVTx性質(zhì)的實(shí)驗(yàn)研究
陳日帥祁影霞吳 東
(上海理工大學(xué)能源與動(dòng)力工程學(xué)院 制冷與低溫工程研究所上海200093)
為了獲得混合制冷劑R1234yf/R134a的熱物性數(shù)據(jù),本文利用Burnett法為基礎(chǔ)搭建的高精度PVTx實(shí)驗(yàn)臺,在溫度為268~323 K時(shí),測定了質(zhì)量分?jǐn)?shù)為55%/45%,50%/50%和45%/55%混合制冷劑R1234yf/R134a的PVT性質(zhì),最終擬合了三種不同配比的混合工質(zhì)的氣態(tài)維里方程,方程和實(shí)驗(yàn)數(shù)據(jù)具有較高的重合度。
混合制冷劑;R1234yf/R134a;PVTx;維里方程
當(dāng)今汽車空調(diào)中最廣泛使用的制冷劑為R134a。它的主要特點(diǎn)是不含氯原子,ODP為0,不可燃,具有良好的安全性能[1-2]。但R134a具有很高的溫室效應(yīng),GWP為1430[3]。根據(jù)歐盟F-gas法規(guī),自2011年1月1日起,在歐盟境內(nèi)生產(chǎn)和銷售的所有新設(shè)計(jì)車型,禁止使用GWP大于150的制冷劑[4],顯然R134a也在其列,即將面臨被替代的命運(yùn)。盡管國際社會(huì)對R134a的替代呼聲很高,但目前R134a在國內(nèi)正處于發(fā)展時(shí)期[5]。
通過尋找第二種制冷劑,以優(yōu)勢互補(bǔ)的原則進(jìn)行混合,優(yōu)化R134a單質(zhì)的性能成為必要的途徑。目前,人們對研究混合制冷劑R134a/R1234ze取得重大成果,開發(fā)出R450a制冷劑,該制冷劑是一種不可燃燒的混合物,組分配比是42%的R134a和58%的R1234ze,ODP為零,GWP約為601。美國環(huán)境署(EPA)宣布將把R450a制冷劑列入新的替代制冷劑中。Mota-Babiloni A等[6]結(jié)合不同的操作條件(蒸發(fā)溫度、冷凝溫度等)對R134a的替代制冷劑非易燃R1234ze(E)/R134a混合物(R450a)進(jìn)行了研究:R450a的平均冷卻能力比R134a高6%。R450a的制冷系數(shù)比R134a高約1%,R450a的排放溫度平均比R134a低2 K??梢钥闯鯮450a是替代R134a一個(gè)不錯(cuò)的選擇。
目前對混合制冷劑R134a/R1234yf的研究還有待進(jìn)一步突破。Lee Y等[7]研究了R1234yf與R134a以不同比例混合,替代R134a的性能表現(xiàn)。Akasaka R等[8-9]分別通過實(shí)驗(yàn)手段測量了R1234yf+R134a飽和密度和臨界參數(shù);使用亥姆赫茲能量方程描述了R32/R1234yf的熱力學(xué)模型。Kamiaka T等[10]測量了二元混合制冷劑R1234yf/R134a的氣液相平衡數(shù)據(jù),R1234yf的質(zhì)量分?jǐn)?shù)為25%~80%,溫度范圍為273~333 K,間隔10 K,對測量數(shù)據(jù)分別采用混合法則PR和亥姆霍茲狀態(tài)方程進(jìn)行關(guān)聯(lián)。通過擬合混合物的氣液相平衡數(shù)據(jù),得到包含在每個(gè)混合法則中優(yōu)化的二元相互作用參數(shù)。R1234yf/R134a在質(zhì)量分?jǐn)?shù)為50/50時(shí)的溫度滑移僅為0.2 K。田貫三等[11]的研究表明,當(dāng)混合工質(zhì)中R134a的體積分?jǐn)?shù)超過13.87%,即質(zhì)量分?jǐn)?shù)超過27.1%時(shí),任何濃度下混合工質(zhì)都不會(huì)發(fā)生燃燒爆炸。因此,混合工質(zhì)R1234yf/R134a在可燃性方面具有較高的安全性。
R1234yf/R134a的溫度滑移很小,能夠與礦物油較好互溶,兩者在諸多方面能夠互補(bǔ),且GWP明顯小于R134a,可降低溫室效應(yīng),具有較高的應(yīng)用意義。本文將用Burnett法測定三種質(zhì)量配比R134a/R1234yf的PVTx數(shù)據(jù),并擬合維里狀態(tài)方程,為該混合制冷劑熱物性的研究提供依據(jù)。
1.1 測量制冷劑PVTx的實(shí)驗(yàn)裝置
本實(shí)驗(yàn)裝置以Burnett法為基礎(chǔ),用于高精度工質(zhì)PVTx性質(zhì)的測試。主要包括高精度溫度測量系統(tǒng)、高精度壓力測量系統(tǒng)、真空系統(tǒng)、恒溫槽、配氣系統(tǒng)、PVTx 測試裝置、PVTx自動(dòng)采集軟件、PVTx數(shù)據(jù)處理軟件。其中,該P(yáng)VT測量系統(tǒng)的溫度控制系統(tǒng),全量程范圍內(nèi)波動(dòng)度小于30 mK/15 min;系統(tǒng)溫度的測量不確定度小于±10 mK;壓力的測量不確定度小于±10 kPa。系統(tǒng)的具體連接方式如圖1所示。
圖1 制冷工質(zhì)PVT實(shí)驗(yàn)系統(tǒng)Fig.1 The PVT measurement system of refrigerants
1.2 Burnett法原理
Burnett法是美國學(xué)者Burnett S E提出的,隨后有許多研究人員對其測量和數(shù)據(jù)處理的方法進(jìn)行了深入研究[12-14]。實(shí)驗(yàn)本體主要由兩個(gè)容器構(gòu)成,一個(gè)為主容器VA,容積為vA,另一個(gè)為膨脹容器VB,容積為vB,容器間通過閥門連接,為了保證等溫膨脹,整個(gè)裝置處于恒溫環(huán)境中,通過主容器向膨脹容器的膨脹放氣測量氣體壓縮因子?;镜淖龇ㄊ牵簩?shí)驗(yàn)前將兩個(gè)容器都抽真空,真空計(jì)讀數(shù)在3 Pa以下并保持一定時(shí)間,然后關(guān)閉膨脹閥V0。Burnett法的實(shí)驗(yàn)原理圖如圖2所示。
圖2 Burnett法測量氣相PVT性質(zhì)原理圖Fig.2 The schematic diagram of the gas PVT properties measurement with Burnett method
向主容器VA充入一定質(zhì)量n0的制冷劑,則制冷劑的壓縮因子Z0為:
(1)
式中:T為溫度,K;p0為壓力,Pa;vA為主容器VA的容積,m3;R為普適氣體常數(shù),n為氣體摩爾數(shù)。當(dāng)主容器VA中的制冷劑氣體溫度和壓力穩(wěn)定后,測量其壓力p0和溫度T,然后打開膨脹閥V0,則VA中的氣體向VB膨脹,待到壓力和溫度平衡后,再次測量主容器VA中制冷劑的壓力p1,根據(jù)壓縮因子的定義式可得到第一次膨脹后的壓縮因子Z1:
(2)
接著,關(guān)閉V0,對VB抽真空,當(dāng)VA的壓力與溫度穩(wěn)定后,打開V0再次膨脹,等到壓力與溫度穩(wěn)定后,測量壓力p2,因此可得到第二次膨脹后的氣體壓縮因子Z2。重復(fù)上述步驟,測得這一溫度下的一系列膨脹壓力值:p0,p1,p2,…,pn,pn為第n次膨脹后的壓力值,因此可得到該溫度下的一系列氣體壓縮因子:Z1,Z2,Z3,…,Zn。
第r次膨脹前后,主容器和膨脹容器中總的工質(zhì)質(zhì)量是相同的。因此可得:
(3)
其中,定義容積常數(shù)Nr:
Nr=(vA+vB)r/(vA)r-1
(4)
容積常數(shù)Nr隨實(shí)驗(yàn)壓力與溫度的變化較小,可認(rèn)為常數(shù),記為N。不斷重復(fù)上面的式子,可得到Zr與Z0的關(guān)系式:
(5)
確定試樣初始質(zhì)量、裝置容積常數(shù)N和溫度T后,可以獲得試樣氣體的壓縮因子隨實(shí)驗(yàn)壓力變化的曲線,每次膨脹后的氣體壓縮因子Zr確定后,根據(jù)氣體壓縮因子得分定義式計(jì)算出每次膨脹得到的氣體密度值:
(6)
此時(shí)工質(zhì)氣體的密度ρi與壓力pi、溫度T的關(guān)系也確定。
容積常數(shù)N值標(biāo)定對PVT性質(zhì)測試有至關(guān)重要的影響,它與所測工質(zhì)的種類無關(guān),采用氫氣、氬氣或者氦氣作為標(biāo)定氣體時(shí),精度最好。本文采用氦氣來進(jìn)行標(biāo)定,氦氣純度為99.999%,由偉創(chuàng)氣體提供。在實(shí)驗(yàn)前,分別在溫度283.5 K、287.5 K、288.5 K左右進(jìn)行三次標(biāo)定,在實(shí)驗(yàn)后,為了檢驗(yàn)實(shí)驗(yàn)期間,N值標(biāo)定是否因時(shí)間變化有較大變化,在溫度288.5 K左右進(jìn)行第四次標(biāo)定。標(biāo)定實(shí)驗(yàn)數(shù)據(jù)見表1~表4。
表1容積常數(shù)N值標(biāo)定數(shù)據(jù)Ⅰ
Tab.1The experiment data ofNcalibration Ⅰ
T/Kp/kPaρexp/(kg/m3)ρref/(kg/m3)Δ/%283.5971288.6402.16362.17380.4708283.600965.5781.62561.63140.3537283.642724.1501.22131.22470.2796283.639543.1380.91760.91940.1931283.663407.6260.68940.69040.1425283.676306.0580.51800.51860.1194
表2容積常數(shù)N值標(biāo)定數(shù)據(jù)Ⅱ
Tab.2The experiment data ofNcalibration Ⅱ
T/Kp/kPaρexp/(kg/m3)ρref/(kg/m3)Δ/%287.586768.9381.27651.28250.4713287.595576.7310.95930.96270.3581287.574432.7140.72100.72290.2586287.588324.8290.54190.54290.1951287.589243.9350.40720.40790.1551
表3容積常數(shù)N值標(biāo)定數(shù)據(jù)Ⅲ
Tab.3The experiment data ofNcalibration Ⅲ
T/Kp/kPaρexp/(kg/m3)ρref/(kg/m3)Δ/%288.5781294.7102.14062.14660.2796288.535970.2911.60801.61140.2136288.560727.4751.20761.20950.1595288.552545.6720.90700.90800.1141288.557409.4300.68120.68170.0809288.559307.3140.51160.51200.0663
表4容積常數(shù)N值標(biāo)定數(shù)據(jù)Ⅳ
Tab.4The experiment data ofNcalibration Ⅳ
T/Kp/kPaρexp/(kg/m3)ρref/(kg/m3)Δ/%288.5091203.0301.98921.99590.3370288.500901.5861.49421.49800.2530288.510676.1211.12231.12460.2015288.520507.1790.84300.84420.1422288.502380.5900.63330.63390.1034288.521285.6900.47560.47600.0833
將獲得的實(shí)驗(yàn)數(shù)據(jù)導(dǎo)入PVT分析軟件PVT Analysis數(shù)據(jù)分析軟件中,進(jìn)行N值標(biāo)定。四次的標(biāo)定N值分別為NⅠ=1.330895,NⅡ=1.330580,NⅢ=1.331450,NⅣ=1.331296。由此可知,不同溫度對N值的標(biāo)定影響很小,而且在實(shí)驗(yàn)期間,N值的變化也很小。因此,本實(shí)驗(yàn)選取四次標(biāo)定的N值的平均值作為此次實(shí)驗(yàn)的容積常數(shù)N,N=1.331055。
1.3 實(shí)驗(yàn)步驟
本實(shí)驗(yàn)對R1234yf/R134a質(zhì)量分?jǐn)?shù)分別為55%/45%、50%/50%和45%/55%的三種配比進(jìn)行測量,具體實(shí)驗(yàn)步驟如下:
1)檢查各個(gè)部件是否已經(jīng)連接好,做好實(shí)驗(yàn)前期準(zhǔn)備。
2)利用已有的配氣系統(tǒng)配制符合實(shí)驗(yàn)要求的混合制冷劑。
3)對整個(gè)系統(tǒng)抽真空,直到真空計(jì)讀數(shù)在10 Pa以下,關(guān)閉閥門Ф5。
4)溫度控制:首先設(shè)定恒溫槽的溫度,通過溫度采集系統(tǒng)所測溫度與恒溫槽設(shè)定溫度的差值,對恒溫槽溫度進(jìn)行微調(diào),待溫度波動(dòng)度小于±10 mK/15 min時(shí)采集溫度。
5)打開閥門Ф1,將混合制冷劑充入到主容器中,一般要保證待測工質(zhì)處于飽和狀態(tài)或近飽和狀態(tài),可以根據(jù)主容器的體積計(jì)算出該溫度下達(dá)到飽和態(tài)時(shí)所需要充入工質(zhì)的大概質(zhì)量[15]。關(guān)閉閥門Ф1,將主容器與壓力采集系統(tǒng)連接。在恒溫槽的溫度達(dá)到設(shè)定溫度并穩(wěn)定10~15 min后,可利用放氣的方法來判斷待測工質(zhì)是否處于飽和狀態(tài)或氣液兩相狀態(tài)。放氣過程如下:恒溫槽溫度穩(wěn)定后,首先測一個(gè)壓力值,然后打開閥門Ф2,釋放少量氣體,然后迅速關(guān)閉閥門Ф2,等待2~3 min,如果壓力能夠較快的恢復(fù)到上一個(gè)壓力值,說明充入的混合制冷劑處于飽和氣態(tài)或氣液兩相狀態(tài)。
6)壓力測試:點(diǎn)擊PVTx測試軟件中的“壓力測量”選項(xiàng),等到壓力值穩(wěn)定后選取一段壓力值,得到T0、p0,打開Ф2,當(dāng)主容器與膨脹容器平衡,壓力波動(dòng)為±0.01%、溫度波動(dòng)小于±10 mK/15 min時(shí)關(guān)閉Ф2,測量一段較為平直的壓力值,得到T0、p1,打開Ф3、Ф4,將膨脹容器中的工質(zhì)排到大氣、降壓;關(guān)閉Ф4,打開Ф5對膨脹容器抽真空,當(dāng)真空計(jì)讀數(shù)在10 Pa以下并保持30 min后,關(guān)閉Ф3、Ф5,打開Ф2,再次等待主容器與膨脹容器的溫度、壓力平衡,平衡后關(guān)閉Ф2,測量一段較平直的壓力值,得到T0、p2,不斷重復(fù)下去直到壓力在200 kPa左右,停止測量,此時(shí),得到此溫度下的最后一組實(shí)驗(yàn)值T0、pn。
7)設(shè)定另一溫度點(diǎn)T1,重復(fù)以上步驟,直至達(dá)到所需的溫度Tn。
8)對所得實(shí)驗(yàn)數(shù)據(jù)進(jìn)行分析、處理。
本文對混合制冷劑 R1234yf/R134a的三種不同質(zhì)量配比在268~323 K的溫度范圍內(nèi)進(jìn)行了氣相PVTx性質(zhì)的測定。為了能夠清楚直觀的了解三種配比下混合工質(zhì)R1234yf/R134a的氣相PVT性質(zhì)的實(shí)驗(yàn)數(shù)據(jù)分布情況,本文在圖3~圖5分別給出了三種配比下的實(shí)驗(yàn)數(shù)據(jù)在p-T圖上的分布,其中各圖中所示曲線為飽和蒸氣壓曲線。為了檢驗(yàn)系統(tǒng)的可靠性,本文在陸岷山等[16]對PVTx系統(tǒng)的不確定度分析的基礎(chǔ)上,做了進(jìn)一步驗(yàn)證。選擇由天津聚鑫偉業(yè)公司提供的純度高于99.9%的制冷劑R134a的飽和蒸氣壓,測溫范圍255~320 K,溫度間隔為3 K,并與Refprop9.0數(shù)據(jù)比較,如表5所示。由表5可以看出,制冷劑R134a的實(shí)驗(yàn)飽和蒸氣壓值與Refprop9.0的相對誤差非常小,精確度較好。表6、表7和表8給出了R1234yf/R134a質(zhì)量配比分別為55%/45%、50%/50%和45%/55%工況下飽和蒸氣壓的實(shí)驗(yàn)測定值。
圖3 R1234yf/R134a(w(R134a)=45%)的PVT實(shí)驗(yàn)數(shù)據(jù)分布圖Fig.3 The PVT experimental data in the p-T chart distribution of R1234yf/R134a(w(R134a)=45%)
為了以后該混合制冷工質(zhì)熱力學(xué)性質(zhì)計(jì)算的要求,需要擬合R1234yf/R134a的氣相維里方程,利用混合工質(zhì)的第二、第三維里系數(shù)方程,得到本文擬合的氣態(tài)維里方程形式如下:
p=RTρ(1+Bρ+Cρ2)
(7)
第二、第三維里系數(shù)擬合成如下的形式:
B=B0+B1T-1r+B2T-2r+B3T-3r
(8)
C=C0Tr+C1t-0.5rC2t2r
(9)
式中:Tr=T/Tc,Tc為臨界溫度,經(jīng)過計(jì)算,混合工質(zhì)R1234yf/R134a (55%/45%)的臨界溫度Tc為370.8746 K;混合工質(zhì)R1234yf/R134a(50%/50%)臨界溫度Tc為371.1932 K;混合工質(zhì)R1234yf/R134a (45%/55%)臨界溫度Tc為371.5089 K。上面氣體方程中,溫度、壓力和密度的單位分別為K、MPa和mol/cm3,R為普適氣體常數(shù)。擬合的氣體維里方程(7)的第二、第三維里系數(shù)的參數(shù)如表9~表11所示。
圖4 R1234yf/R134a(w(R134a)=50%)的PVT實(shí)驗(yàn)數(shù)據(jù)分布圖Fig.4 The PVT experimental data in the p-T chart distribution of R1234yf/R134a(w(R134a)=50%)
圖5 R1234yf/R134a(w(R134a)=55%)的PVT實(shí)驗(yàn)數(shù)據(jù)分布圖Fig.5 The PVT experimental data in the p-T chart distribution of R1234yf/R134a(w(R134a)=55%)
表5R134a飽和蒸氣壓實(shí)驗(yàn)數(shù)據(jù)與Refprop9.0數(shù)據(jù)的比較
Tab.5The comparison of saturated vapor pressures of R134a between experiments and Refprop9.0 data
溫度/K實(shí)驗(yàn)壓力/MPaRefprop壓力/MPa壓差/MPa誤差/%255.0120.145980.14376-0.00222-1.52075627258.0230.161860.163080.001220.7537378261.0080.182890.184190.001300.71080978264.0170.205210.207560.002351.14516836267.0260.235760.23317-0.00259-1.09857482270.0350.263130.26116-0.00197-0.74867936273.0110.293340.29133-0.00201-0.6852117276.0320.327660.32463-0.00303-0.92473906279.0190.359520.360350.000830.23086337282.0050.394270.398980.004711.19461283285.0440.439870.441470.001600.36374383288.0350.489240.48657-0.00267-0.54574442291.0330.533840.535210.001370.2566312294.0110.567380.587080.019703.47209983300.0070.700020.702970.002950.42141653303.0150.769980.76721-0.00277-0.3597496306.0410.836520.83621-0.00031-0.03705829309.0070.913030.90826-0.00477-0.52243628311.9930.980630.985410.004780.48744175315.0041.064911.068100.003190.29955583320.0161.214211.217100.002890.23801484
表6R1234yf/R134a(w(R134a)=45%)飽和蒸氣壓
Tab.6The saturated vapor pressures of R1234yf/R134a(w(R134a)=45%)
表7R1234yf/R134a(w(R134a)=50%)飽和蒸氣壓
Tab.7The saturated vapor pressures of R1234yf/R134a(w(R134a)=50%)
T/Kpexp/kPaT/Kpexp/kPa323.1751343.390293.151587.969318.0971190.600288.297502.824313.2721031.980283.293436.735309.226940.746278.167366.203305.282835.426273.265310.358301.039761.073268.272254.843297.047671.897——
表8R1234yf/R134a(w(R134a)=55%)飽和蒸氣壓
Tab.8The saturated vapor pressures of R1234yf/R134a (w(R134a)=55%)
T/Kpexp/kPaT/Kpexp/kPa323.0511377.020295.237630.658319.0811186.490291.149562.359315.1131074.820287.045468.139311.053994.966283.321430.871307.096865.161278.246365.801303.170798.342273.183302.006299.047710.841268.175247.134
為了比較方程(8)與(9)與第二、第三維里系數(shù)的一致度,同時(shí)也為了闡述這3種配比下的混合制冷工質(zhì)R1234yf/R134a的第二、第三維里系數(shù)與溫度的關(guān)系,圖6~圖11給出了第二、第三維里系數(shù)與溫度的關(guān)系,由圖中可看出,方程和實(shí)驗(yàn)數(shù)據(jù)具有較高的重合度。
表9混合工質(zhì)R1234yf/R134a(w(R134a)=45%)維里方程各參數(shù)的值
Tab.9The parameters’values of virial equation of mixed refrigerants R1234yf/R134a(w(R134a)=45%)
參數(shù)數(shù)值參數(shù)數(shù)值B013155.8628C0-1.6149E7B1-34012.2926C15.5081E6B228953.2032C21.1015E7B3-8431.6614——
表10混合工質(zhì)R1234yf/R134a(w(R134a)=50%)維里方程各參數(shù)的值
Tab.10The parameters’values of virial equation of mixed refrigerants R1234yf/R134a(w(R134a)=50%)
參數(shù)數(shù)值參數(shù)數(shù)值B0-273437.9801C0-6.9795E7B1662714.1864C12.3575E7B2-532064.5698C24.7004E7B3141043.0864——
表11混合工質(zhì)R1234yf/R134a(w(R134a)=55%)維里方程各參數(shù)的值
Tab.11The parameters’values of virial equation of mixed refrigerants R1234yf/R134a(w(R134a)=55%)
參數(shù)數(shù)值參數(shù)數(shù)值B019714.4951C0-2.0726E7B1-50564.8005C16.7929E6B242821.7615C21.4474E7B3-12287.1021——
圖6 R1234yf/R134a(w(R134a)=45%)的第二維里系數(shù)B與溫度的關(guān)系Fig.6 The relationship between the second virial coefficient B of mixed refrigerants R1234yf/R134a(w(R134a)=45%)and the temperature
圖7 R1234yf/R134a(w(R134a)=45%)的第三維里系數(shù)C與溫度的關(guān)系Fig.7 The relationship between the third virial coefficient C of mixed refrigerants R1234yf/R134a(w(R134a)=45%) and the temperature
圖8 R1234yf/R134a(w(R134a)=50%)的第二維里系數(shù)B與溫度的關(guān)系Fig.8 The relationship between the second virial coefficient B of mixed refrigerants R1234yf/R134a(w(R134a)=50%) and the temperature
圖9 R1234yf/R134a(w(R134a)=50%)的第三維里系數(shù)C與溫度的關(guān)系Fig.9 The relationship between the third virial coefficient C of mixed refrigerants R1234yf/R134a(w(R134a)=50%) and the temperature
圖10 R1234yf/R134a(w(R134a)=55%)的第二維里系數(shù)B與溫度的關(guān)系Fig.10 The relationship between the second virial coefficient B of mixed refrigerants R1234yf/R134a(w(R134a)=55%) and the temperature
圖11 R1234yf/R134a(w(R134a)=55%)的第三維里系數(shù)C與溫度的關(guān)系Fig.11 The relationship between the third virial coefficient C of mixed refrigerants R1234yf/R134a(w(R134a)=55%) and the temperature
本文以Burnett法為基礎(chǔ),測量了三種不同質(zhì)量配比的R1234yf/R134a的氣相PVT性質(zhì),根據(jù)實(shí)驗(yàn)數(shù)據(jù)的處理與分析,分別擬合出三種不同質(zhì)量配比制冷工質(zhì)的氣態(tài)維里方程,并分析了第二、第三維里系數(shù)與溫度的關(guān)系,進(jìn)一步驗(yàn)證了實(shí)驗(yàn)數(shù)據(jù)與擬合得到的方程具有較好的重合度,為目前正在進(jìn)行的制冷工質(zhì)替代研究提供重要的參考。
[1]汪軍, 李美玲, 周文鑄. 核電站空調(diào)系統(tǒng)HCFC22冷水機(jī)組替代工質(zhì)性質(zhì)的研究[J]. 上海理工大學(xué)學(xué)報(bào),2001, 23(1): 8-13. (WANG Jun, LI Meiling, ZHOU Wenzhu. On the properties of alternative refrigerants for HCFC22 water chillers applied in the air-conditioning system of nuclear power stations[J]. Journal of University of Shanghai for Science and Technology, 2001, 23(1): 8-13.)
[2]葛志松, 吳獻(xiàn)忠, 崔曉鈺, 等. 三元非共沸混合工質(zhì)變組成容量控制空調(diào)系統(tǒng)可行性分析[J]. 上海理工大學(xué)學(xué)報(bào), 2005, 27(4): 336-340. (GE Zhisong, WU Xianzhong, CUI Xiaoyu, et al. Feasibility analysis on a varying composition capacity control air conditioning system using the ternary refrigerant mixtures[J]. Journal of University of Shanghai for Science and Technology, 2005, 27(4): 336-340.)
[3]Longo G A, Zilio C, Righetti G. Condensation of the low GWP refrigerant HFC152a inside a brazed plate heat exchanger[J]. Experimental Thermal and Fluid Science, 2015, 68: 509-515.
[4]The European Parliament and the Council of the European Union. Directive 2006/40/EC of the European Parliament and of the Council of 17 May 2006 relating to emissions from air-conditioning systems in motor vehicles and amending Council Directive 70/156/EEC[J]. Official J. Eur. Union, 2006, 161: 12-18.
[5]劉杰, 陳江平. 車用空調(diào)R134a的發(fā)展現(xiàn)狀與替代情況[J]. 制冷技術(shù), 2008, 28(1): 39-41. (LIU Jie, CHEN Jiangping. Development of alternative refrigerant for R134a in mobile air conditioning system[J]. Refrigeration Technology, 2008, 28(1): 39-41.)
[6]Mota-BabiloniA, Navarro-Esbri J, Barragan-Cervera A, et al. Experimental study of an R1234ze(E)/R134a mixture (R450A) as R134a replacement[J]. International Journal of Refrigeration, 2015, 51: 52-58.
[7]Lee Y, Kang D G, Jung D. Performance of virtually non-flammable azeotropic HFO1234yf/HFC134a mixture for HFC134a applications[J]. International Journal of Refrigeration, 2013, 36(4): 1203-1207.
[8]Akasaka R, Tanaka K, Higashi Y. Measurements of saturated densities and critical parameters for the binary mixture of 2, 3, 3, 3-tetrafluoropropene (R-1234yf) + difluoromethane (R-32) [J]. International Journal of Refrigeration, 2013, 36(4): 1341-1346.
[9]Akasaka R. Thermodynamic property models for the difluoromethane (R-32) + trans-1, 3, 3, 3-tertrafluoropropene (R-1234ze(E)) and difluoromethane + 2, 3, 3, 3-tetrafluoropropene (R-1234yf) mixtures[J]. Fluid Phase Equilibria, 2013, 358: 98-104.
[10] Kamiaka T, Dang C, Hihara E. Vapor-liquid equilibrium measurements for binary mixtures of R1234yf with R32, R125, and R134a[J]. International Journal of Refrigeration, 2013, 36(3): 965-971.
[11] 田貫三, 馬一太, 楊昭, 等. 可燃制冷劑爆炸極限及抑制的理論與實(shí)驗(yàn)研究[J]. 山東建筑工程學(xué)報(bào), 2001, 16(2): 58-63. (TIAN Guansan, MA Yitai, YANG Zhao, et al. Theoretical and experimental study on explosion limit and inhibition of flammable refrigerants[J]. Journal of Shandong Jianzhu University, 2001, 16(2): 58-63.)
[12] Silberberg I H,Kobe K A,McKetta J J. Gas compressibility with the Burnett apparatus methods and apparatus[J]. Journal of Chemical and Engineering Data, 1959, 4(4): 314-323.
[13] Kramer G M, Miller J G. Compressibility of gases III —The second and third virial coefficients of mixtures of helium and nitrogen at 30[J]. Journal of Physical Chemistry, 1957, 61(6): 785-788.
[14] Wielopolski P, Warowny W. A fast least-squares method for reduction of Burnett data to compressibility factors and virial coefficients[J]. Physica A: Statistical Mechanics and its Applications, 1978, 91(1/2): 66-72.
[15] 楊喜, 祁影霞, 陳偉, 等. 近共沸制冷劑R290 /R134a PVTx 性質(zhì)的實(shí)驗(yàn)研究[J]. 制冷學(xué)報(bào), 2014, 35(2): 76-81. (YANG Xi, QI Yingxia, CHEN Wei, et al. The experimental study of PVTx properties of near aeotropic mixture refrigerant R290/R134a[J]. Journal of Refrigeration, 2014, 35(2): 76-81.)
[16] 陸岷山, 祁影霞, 楊喜, 等. 混合工質(zhì)R134a/R600a氣相PVTx性質(zhì)的實(shí)驗(yàn)研究[J]. 制冷技術(shù), 2014, 34(6): 27-31,36. (LU Minshan, QI Yingxia, YANG Xi, et al. Experimental study of PVTx properties of gas phase for binary R134a/R600a[J]. Chinese Journal of Refrigeration Technology, 2014, 34(6): 27-31,36.)
About the corresponding author
Qi Yingxia, female, professor, Institute of Refrigeration and Cryogenics, School of Energy and Power Engineering, University of Shanghai for Science and Technology, +86 21-55271875, E-mail: qipeggy@126.com. Research fields: low temperature refrigeration system, environmental friendly refrigerants.
Experimental Study of PVTx Properties of Mixture Refrigerant R1234yf/R134a
Chen RishuaiQi YingxiaWu Dong
(Institute of Refrigeration and Cryogenics, School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China)
In order to get the thermophysical properties of mixed refrigerants R1234yf/R134a, the PVT properties of mixture refrigerant R1234yf/R134a with mass fraction 55%/45%, 50%/50%,45%/55% in the range of 268-323 K were measured by using high-precision PVTx apparatus which is based on the Burnett method.The gas virial equation of these mixed refrigerants was fitted based on the measured data. It turned out that the experimental data agreed well with the equations.
mixed refrigerants; R1234yf/R134a; PVTx; virial equation
0253-4339(2016) 01-0018-08
10.3969/j.issn.0253-4339.2016.01.018
2015年9月12日
TB61+2;TB64
A
簡介
祁影霞,女,副教授,上海理工大學(xué)能源與動(dòng)力工程學(xué)院制冷與低溫工程研究所,(021)55271875,E-mail: qipeggy@126.com。研究方向:低溫制冷系統(tǒng),環(huán)保制冷劑。