楊立峰鐘太賢陳超峰丁云宏劉哲
1.中國(guó)石油天然氣集團(tuán)公司油氣藏改造重點(diǎn)實(shí)驗(yàn)室;2.中國(guó)石油勘探開(kāi)發(fā)研究院廊坊分院;3.中國(guó)石油天然氣集團(tuán)公司科技管理部;4.中國(guó)石油新疆油田分公司
考慮應(yīng)力場(chǎng)變化的水平井壓后產(chǎn)能計(jì)算方法
——水平井井筒沿最小主應(yīng)力方向
楊立峰1,2鐘太賢3陳超峰4丁云宏1,2劉哲1,2
1.中國(guó)石油天然氣集團(tuán)公司油氣藏改造重點(diǎn)實(shí)驗(yàn)室;2.中國(guó)石油勘探開(kāi)發(fā)研究院廊坊分院;3.中國(guó)石油天然氣集團(tuán)公司科技管理部;4.中國(guó)石油新疆油田分公司
低滲、特低滲油氣藏水平井的分段壓裂產(chǎn)能模擬計(jì)算,一般不考慮儲(chǔ)層應(yīng)力變化對(duì)裂縫形態(tài)的影響,計(jì)算誤差較大。將二維誘導(dǎo)應(yīng)力場(chǎng)計(jì)算模型與預(yù)估的每段分壓時(shí)間間隔相結(jié)合,計(jì)算已存在的人工裂縫對(duì)應(yīng)力場(chǎng)變化的影響,預(yù)測(cè)后續(xù)壓裂人工裂縫形態(tài),并根據(jù)預(yù)測(cè)結(jié)果建立地質(zhì)模型,采用三維三相黑油模型計(jì)算水平井壓后產(chǎn)能,從而建立了考慮人工裂縫存在時(shí)應(yīng)力場(chǎng)變化后的水平井分段壓裂產(chǎn)能計(jì)算方法。結(jié)果表明,在考慮應(yīng)力場(chǎng)變化時(shí),人工裂縫形態(tài)會(huì)發(fā)生明顯變化,由預(yù)期的橫切裂縫,變成類似于“T”形的人工裂縫,且橫切縫部分會(huì)遠(yuǎn)離預(yù)定的射孔位置。JM油藏實(shí)例分析得出,考慮8條橫切裂縫存在時(shí)水平井產(chǎn)能與不考慮應(yīng)力場(chǎng)變化時(shí)所計(jì)算的產(chǎn)能相比, 5年末的累計(jì)產(chǎn)量相差5.6%,驗(yàn)證了進(jìn)行水平井分段壓裂產(chǎn)能計(jì)算時(shí)考慮實(shí)施過(guò)程中應(yīng)力場(chǎng)變化的必要性。
低滲透;特低滲透;水平井分段;應(yīng)力場(chǎng);產(chǎn)能模擬
低滲、特低滲油氣藏水平井分段改造后的產(chǎn)能模擬(水平井井筒沿最小主應(yīng)力方向)是實(shí)現(xiàn)水平井改造裂縫參數(shù)優(yōu)化的關(guān)鍵環(huán)節(jié),以往多采用解析解或油藏?cái)?shù)值模擬手段對(duì)水平井產(chǎn)能進(jìn)行分析,優(yōu)化人工裂縫參數(shù)[1-5]。這些研究均假設(shè)人工裂縫相互平行,并未考慮實(shí)施過(guò)程中應(yīng)力場(chǎng)變化對(duì)人工裂縫形態(tài)的影響。應(yīng)力場(chǎng)是決定裂縫擴(kuò)展和最終形態(tài)的關(guān)鍵因素,在實(shí)施過(guò)程中應(yīng)力場(chǎng)變化會(huì)引起裂縫扭曲或者空間轉(zhuǎn)向等形態(tài)變化,利用不考慮應(yīng)力場(chǎng)變化的裂縫平行假設(shè)與現(xiàn)場(chǎng)實(shí)施結(jié)果不符,影響產(chǎn)能分析的準(zhǔn)確性[6-12]。
Variation of inter-fracture stress field
水力壓裂過(guò)程中由于人工裂縫的存在,導(dǎo)致地應(yīng)力場(chǎng)發(fā)生明顯改變。引起改變的原因主要有:已存在的裂縫形態(tài)引起的應(yīng)力場(chǎng)變化;壓裂過(guò)程中泵注入流體濾失引起的巖石孔隙壓力變化;泵注入過(guò)程中注入液體引起的溫度場(chǎng)變化。對(duì)于滲透率較低的儲(chǔ)層,壓裂過(guò)程中注入的液量和時(shí)間有限,地層溫度和儲(chǔ)層壓力在垂直裂縫方向傳播距離較短,溫度和孔隙壓力增加對(duì)水平最大、最小主應(yīng)力的影響幅度一致[12]。因此在研究低滲、特低滲儲(chǔ)層壓裂過(guò)程中的縫間應(yīng)力場(chǎng)變化時(shí),可忽略地層溫度和儲(chǔ)層壓力變化的影響。誘導(dǎo)應(yīng)力場(chǎng)引起的變化(圖1)由式(1)~(6)求得。
圖1 人工裂縫縫高橫切面的應(yīng)力分布狀態(tài)Fig. 1 Stress distribution at fracture height cross section of artificial fractures
式中,x、y分別為待求應(yīng)力的某點(diǎn)坐標(biāo),m;L、L1、L2分別為地層內(nèi)某點(diǎn)(x,y)距離裂縫中心(0,0)、裂縫上端點(diǎn)(0,h/2)和下端部(0,-h/2)的距離,m;θ、θ1、θ2分別為L(zhǎng)、L1、L2線段與Y軸的夾角,°(若θ、θ1、θ2為負(fù)值,則分別用θ+180°、θ1+180°和θ2+180°來(lái)代替);h為裂縫高度,m;Pnet為縫內(nèi)凈壓力,Pa;σx,σy,σz分別為x、y、z方向的主應(yīng)力,Pa;ν為泊松比,無(wú)因次;τxz為以X軸為法向的Z方向上的剪切應(yīng)力,Pa;c為半縫高度,數(shù)值上等于h/2,m。
Optimization methods of transverse fracture parameters with consideration to the variation of stress field
2.1多縫應(yīng)力場(chǎng)的疊加
Superposition of multi-fracture stress field
由于水平井施工時(shí)多采用多段連續(xù)分壓后合段返排,每段的施工時(shí)間間隔由分壓所用工具決定,一般采用橋塞分壓的時(shí)間間隔約4~6 h,時(shí)間較長(zhǎng)的可能間隔12 h以上。對(duì)于中高滲儲(chǔ)層,儲(chǔ)層滲透率較高時(shí),液體濾失較快,人工裂縫閉合的時(shí)間較短。對(duì)于低滲、特低滲儲(chǔ)層,閉合時(shí)間一般較長(zhǎng),對(duì)于致密油或頁(yè)巖儲(chǔ)層,閉合時(shí)間遠(yuǎn)遠(yuǎn)在12 h以上。因此,在人工裂縫存在的情況下,再次進(jìn)行水平段的壓裂,則需要考慮多縫存在情況時(shí)應(yīng)力場(chǎng)的變化對(duì)后續(xù)裂縫形態(tài)的影響。采用2維應(yīng)力場(chǎng)計(jì)算模型,對(duì)人工裂縫存在時(shí)的應(yīng)力場(chǎng)進(jìn)行疊加計(jì)算。模擬中假設(shè)施工次序?yàn)?,2,3,…,i,…,N。第i條裂縫起裂前,應(yīng)力場(chǎng)計(jì)算方法為:
(1)獲取井層力學(xué)參數(shù),包括應(yīng)力剖面,楊氏模量、泊松比等;
(2)計(jì)算第1條裂縫的縫高、縫長(zhǎng)和裂縫在空間的走向;
(3)估算第1條裂縫壓后停泵時(shí)間,根據(jù)該井或者該地區(qū)鄰井濾失情況,估算縫內(nèi)凈壓力下降速度,得出每個(gè)時(shí)間對(duì)應(yīng)的縫內(nèi)凈壓力pnet(t)并求出應(yīng)力場(chǎng),分布記為Ω(1,t1);
(4)根據(jù)應(yīng)力場(chǎng)Ω(1,t1)估算第2條裂縫形態(tài),并估算第2條裂縫在裂縫3處形成的應(yīng)力場(chǎng),記第2條裂縫產(chǎn)生的應(yīng)力場(chǎng)為Ω(2,t2);
(5)對(duì)應(yīng)力場(chǎng)進(jìn)行疊加,即在x方向ΣΩx=Ωx(1,t1)+Ωx(2,t1),在y方向ΣΩy=Ωy(1,t1)+Ωy(2,t1),估算第3條裂縫形態(tài),并估算第3裂縫在裂縫4處形成的應(yīng)力場(chǎng),記第3條裂縫產(chǎn)生的應(yīng)力場(chǎng)為Ω (3,t3);
(6)同理通過(guò)i-1條裂縫形成的應(yīng)力場(chǎng)判斷第i條裂縫形態(tài)
式中,ΣΩ為總應(yīng)力場(chǎng);i為裂縫形成的次序(i=1,2,3,…,n),條;ti為第i條裂縫停泵后到裂縫閉合前累計(jì)時(shí)間(i=1,2,3,…,n),min。
對(duì)于多條人工裂縫同時(shí)擴(kuò)展(例如水平井段內(nèi)分簇射孔)情況,在人工裂縫長(zhǎng)度相差較小時(shí),可以按多條人工裂縫平行處理,并按照人工裂縫起裂的位置,計(jì)算每一條人工裂縫在第二組人工裂縫處產(chǎn)生的應(yīng)力場(chǎng),依次求取應(yīng)力分布。
2.2閉合在支撐劑上的人工裂縫所引起的誘導(dǎo)應(yīng)力
Induced stress resulted from artificial fractures closed on proppants
由于人工裂縫最終閉合在支撐劑上,并保持一定的裂縫寬度,因裂縫張開(kāi)導(dǎo)致的誘導(dǎo)應(yīng)力變形不會(huì)消失,而是降低到一定數(shù)值后穩(wěn)定不變,此時(shí)如果不進(jìn)行生產(chǎn)或無(wú)其他外來(lái)因素干擾,該誘導(dǎo)應(yīng)力會(huì)一直保持不變。由于該誘導(dǎo)應(yīng)力會(huì)對(duì)后續(xù)施工人工裂縫的應(yīng)力場(chǎng)產(chǎn)生影響,且關(guān)系到后續(xù)裂縫最終的閉合時(shí)的凈壓力,因此需要對(duì)其進(jìn)行量化。這里給出了簡(jiǎn)單計(jì)算人工裂縫受支撐時(shí)的誘導(dǎo)應(yīng)力,當(dāng)縫長(zhǎng)遠(yuǎn)大于縫寬時(shí)應(yīng)用PKN模型,反之KGD模型[13]
式中,E'為平面應(yīng)變彈性模量,Pa;E為彈性模量,Pa;ν為泊松比,無(wú)因次;Wpro為支撐的裂縫寬度,m;p'net為閉合在支撐劑上的人工裂縫引起的誘導(dǎo)應(yīng)力,Pa;Hp為支撐裂縫高度,m;Lf為支撐裂縫長(zhǎng)度,m;n'為流變系數(shù);a為沿著裂縫長(zhǎng)度冪律系數(shù)(稠度系數(shù)K')的指數(shù)變量,a=1表示從井底到裂縫端部線性變化的,a=0表示縫內(nèi)壓裂液黏度恒定。
2.3人工裂縫幾何形態(tài)模擬
Simulation of artificial fracture geometry
未施工井段的人工裂縫形態(tài)可以根據(jù)儲(chǔ)層力學(xué)參數(shù)結(jié)合二維模型(PKN或KGD)或三維的水力壓裂擴(kuò)展模擬軟件(如目前常用的Fracpro、Stimplan、Goofer、Meyer)對(duì)不同施工參數(shù)下的人工裂縫的長(zhǎng)度、高度和縫內(nèi)凈壓力進(jìn)行預(yù)測(cè),為壓裂設(shè)計(jì)優(yōu)化提供基礎(chǔ)數(shù)據(jù)。對(duì)于已經(jīng)施工的井段,可以利用水力壓裂擴(kuò)展模擬軟件對(duì)施工數(shù)據(jù)結(jié)合進(jìn)行反演,并預(yù)測(cè)后續(xù)施工井段對(duì)應(yīng)的儲(chǔ)層施工前的應(yīng)力場(chǎng)狀態(tài),從而判斷新起裂的人工裂縫可能的裂縫形態(tài)。
2.4橫切裂縫的參數(shù)優(yōu)化
Parameter optimization of transverse fractures 2.4.1 計(jì)算方法 采用三維三相的黑油(組分)模型進(jìn)行油氣藏產(chǎn)能模擬,采用以下計(jì)算方法實(shí)現(xiàn)考慮應(yīng)力場(chǎng)變化的產(chǎn)能計(jì)算及人工裂縫參數(shù)優(yōu)化。
(1)設(shè)第j級(jí)(簇)完成壓裂的時(shí)刻為tj,第j+1級(jí)(簇)壓裂開(kāi)始實(shí)施的時(shí)刻為t'(j+1),計(jì)算 t'(j+1)時(shí)刻的第j條縫內(nèi)的凈壓力及對(duì)應(yīng)力場(chǎng)的影響并進(jìn)行應(yīng)力疊加,求取j+1級(jí)施工段對(duì)應(yīng)的儲(chǔ)層應(yīng)力場(chǎng),其中j=0,1,2,3,…,N(0時(shí)刻代表完成第1條裂縫后停泵的時(shí)刻)。
(2)如果第1~j級(jí)施工所引起的應(yīng)力場(chǎng)變化對(duì)j+1級(jí)施工段對(duì)應(yīng)的儲(chǔ)層應(yīng)力場(chǎng)無(wú)影響則按常規(guī)方法進(jìn)行產(chǎn)能計(jì)算,否則按變化后的應(yīng)力場(chǎng)重新預(yù)測(cè)j+1級(jí)施工所形成人工裂縫形態(tài),并建立地質(zhì)模型。
(3)計(jì)算給定縫間距產(chǎn)能。2.4.2實(shí)例分析 以JM油藏為例,該油藏埋深2 990 ~3 020 m,巖性為白云質(zhì)砂巖,孔隙度0.1,有效滲透率0.01 mD(滲透率各向同性),有效厚度30 m,水平井段長(zhǎng)280 m,閉合壓力梯度0.018 MPa/m,油藏壓力系數(shù)1.27,地層原油黏度1.2 mPa·s,原油壓縮系數(shù)2×10-3MPa-1,儲(chǔ)層泊松比0.2,彈性模量21 000 MPa,隔層泊松比0.26,彈性模量27 000 MPa,儲(chǔ)層兩向應(yīng)力差7 MPa,計(jì)算獲得的綜合濾失系數(shù)C'為5.38×10-4m/min1/2。
采用孟加拉紅培養(yǎng)基[18],分別接種10-5、10-6、10-7、10-8 四個(gè)稀釋梯度的懸浮液,將接種好的培養(yǎng)皿于30 ℃培養(yǎng)24 h后進(jìn)行酵母菌計(jì)數(shù)。計(jì)數(shù)時(shí)選取培養(yǎng)基上濕潤(rùn)、光滑、不透明、大而厚的菌落進(jìn)行酵母菌計(jì)數(shù)。
設(shè)計(jì)分壓8級(jí)(設(shè)段間距40 m,且在水平井的水平段端部和水平段根部各設(shè)置一條裂縫),每級(jí)施工排量8 m3/min,施工時(shí)間50 min,砂量65 m3/段,裂縫高度52 m,支撐縫長(zhǎng)220 m,導(dǎo)流能力10 D·cm。全懸浮壓裂液體系,時(shí)間0 min對(duì)應(yīng)的n'=0.434,K'=0.1 Pa·sn; 時(shí) 間1 h對(duì) 應(yīng) 的n'=0.38,K'=0.09 Pa·sn,壓裂液初始黏度260 mPa·s,采用膠囊破膠劑(裂縫閉合到支撐劑和膠囊上,膠囊擠壓破碎后起到破膠作用),忽略支撐劑的沉降和溫度場(chǎng)恢復(fù)后對(duì)壓裂液黏度的影響,每級(jí)間隔20 min,壓后一次性放噴。求考慮和不考慮應(yīng)力干擾兩種情況下的產(chǎn)能。
(1)由式(8)得裂縫閉合時(shí)縫內(nèi)凈壓力1.88 MPa。
(2)計(jì)算裂縫存在時(shí),各條裂縫對(duì)應(yīng)的縫內(nèi)凈壓力隨時(shí)間變化(表1)及人工裂縫存在時(shí)誘導(dǎo)應(yīng)力(圖2,誘導(dǎo)應(yīng)力為最小主應(yīng)力增量與最大主應(yīng)力增量之差),假設(shè)儲(chǔ)層均質(zhì),所有裂縫參數(shù)相同。
表1 不同時(shí)間縫內(nèi)凈壓力值(對(duì)應(yīng)任意一條裂縫情況)Tabel 1 Net pressure inside fractures at different time (corresponding to any fracture)
圖2 考慮裂縫存在時(shí)地層誘導(dǎo)應(yīng)力Fig. 2 Stratigraphic induced stress in the existence of fractures
(3)模擬計(jì)算不考慮應(yīng)力場(chǎng)變化和考慮應(yīng)力場(chǎng)變化時(shí)8條橫切裂縫存在時(shí)的水平井產(chǎn)能。計(jì)算結(jié)果表明,人工裂縫形態(tài)發(fā)生改變后(如圖3所示),產(chǎn)能模擬結(jié)果發(fā)生了明顯變化(如圖4所示),5 年末的累計(jì)產(chǎn)量相差近1 091 m3(相差5.6%)。儲(chǔ)層滲透率、裂縫參數(shù)、巖石力學(xué)參數(shù)及兩向水平主應(yīng)力差情況不同時(shí),影響程度也不相同。
圖3 根據(jù)應(yīng)力場(chǎng)變化情況的裂縫分布模擬Fig. 3 Fracture distribution simulation with consideration to stress field variation
圖4 傳統(tǒng)方法與新方法的產(chǎn)能模擬Fig. 4 Productivity simulation results fromconventional and new methods
Conclusions
(1)在低滲、特低滲儲(chǔ)層水平井分段壓裂每段施工時(shí)間相隔較短時(shí),應(yīng)力場(chǎng)對(duì)裂縫形態(tài)的影響不可忽略。未考慮裂縫應(yīng)力場(chǎng)變化影響的產(chǎn)能計(jì)算,可能與現(xiàn)場(chǎng)實(shí)施結(jié)果不符,影響產(chǎn)能分析的準(zhǔn)確性。
(3)在JM油藏的實(shí)例分析中,考慮應(yīng)力場(chǎng)變化時(shí),計(jì)算的產(chǎn)能和不考慮應(yīng)力場(chǎng)變化的產(chǎn)能相差5.6%,驗(yàn)證了低滲、特低滲儲(chǔ)層水平井分段壓裂產(chǎn)能計(jì)算和裂縫參數(shù)優(yōu)化時(shí),考慮裂縫存在時(shí)應(yīng)力場(chǎng)變化帶來(lái)的影響,使模擬分析結(jié)果更符合實(shí)際情況。
References:
[1] 竇宏恩.預(yù)測(cè)水平井產(chǎn)能的一種新方法[J].石油鉆采工藝,1996,18(1):76-81. DOU Hongen. A new method of predicting the productivity of horizontal well[J]. Oil Drilling & Production Technology, 1996, 18(1):76-81.
[2] 王曉泉,張守良,吳奇,劉玉章,雷群,丁云宏.水平井分段壓裂多段裂縫產(chǎn)能影響因素分析[J].石油鉆采工藝,2009,31(1):73-76. WANG Xiaoquan, ZHANG Shouliang, WU Qi, LIU Yuzhang, LEI Qun, DING Yunhong. Factors affecting the productivity of multi-section fractures in subsection fracturing of horizontal wells [J]. Oil Drilling & Production Technology, 2009, 31(1): 73-76.
[3] 岳建偉,段永剛,青紹學(xué),青鵬,劉興國(guó). 含多條垂直裂
縫的水平壓裂氣井產(chǎn)能研究[J].天然氣工業(yè),2004,24(10):102-104. YUE Jianwei, DUAN Yonggang, QING Shaoxue, QING Peng, LIU Xingguo. Study on production performance of fractured horizontal gas wells with several vertical fractures[J]. Natural Gas Industy, 2004, 24(10):102-104.
[4] 唐汝眾,溫慶志,蘇建,曲占慶.水平井分段壓裂產(chǎn)能影響因素研究[J].石油鉆采工藝,2010,38(2):80-83. TANG Ruzhong, WEN Qingzhi, SU Jian, QU Zhanqing. Factors affecting productivity of stage fractured horizontal well[J]. Oil Drilling & Production Technology, 2010,38(2): 80-83.
[5] 位云生,賈愛(ài)林,何東博,冀光.致密氣藏分段壓裂水平井產(chǎn)能評(píng)價(jià)新思路[J].鉆采工藝,2012,35(1):32-34. WEI Yunsheng, JIA Ailin, HE Dongbo, JI Guang. A new way of evaluating productivity of staged fracturing horizontal well in tight gas reservoir[J]. Drilling & Production Technology, 2012, 35(1): 32-34.
[6] ROUSSEL N P, SHARMA M M. Optimizing fracture spacing and sequencing in horizontal well fracturing [R]. SPE 127986, 2010.
[7] CHENG Y M. Impacts of the number of perforation clusters and cluster spacing on production performance of horizontal shale gas wells[R]. SPE 138843, 2010.
[8] 張平,趙金洲,郭大立,陳汶濱,田繼東.水力壓裂裂縫三維延伸數(shù)值模擬研究[J].石油鉆采工藝,1997,19(3):53-59. ZHANG Ping, Zhao Jinzhou, GUO Dali, CHEN Wenbin,Tian Jidong. Study on numerical simulation for 3D frature propagation in hydraulic fracturing[J]. Oil Drilling & Production Technology, 1997, 19(3): 53-59.
[9] 陳守雨,劉建偉,龔萬(wàn)興,潘竟軍,何驍,修書(shū)志.裂縫性儲(chǔ)層縫網(wǎng)壓裂技術(shù)研究及應(yīng)用[J].石油鉆采工藝,2010,32(6):67-71. CHEN Shouyu, LIU Jianwei, GONG Wanxing, PAN Jingjun, HE Xiao, XIU Shuzhi. Study and application on network fracturing technology in fractured reservoir[J]. Oil Drilling & Production Technology, 2010, 32(6): 67-71.
[10] 劉洪,胡永全,趙金洲,李文華,劉威,胡國(guó)恒.重復(fù)壓裂氣井誘導(dǎo)應(yīng)力場(chǎng)模擬研究[J].巖石力學(xué)與工程學(xué)報(bào),2004, 23(23):4022-4027. LIU Hong, Hu Yongquan, ZHAO Jinzhou, LI Wenhua,Liu Wei, Hu Guoheng. Simulation study of induced stress field in refracturing gas well[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23 (23): 4022-4027.
[11] 張丁涌,趙金洲,趙磊,伊丕麗,劉洪濤.重復(fù)壓裂造縫的應(yīng)力場(chǎng)分析[J].油氣地質(zhì)與采收率, 2004,11(4):58-59. ZHANG Dingyong, ZHAO Jinzhou, ZHAO Lei, YI Pili,LIU Hongtao. Analysis on stress field of refracturing fissure generation[J]. Petroleum Geology and Recovery Efficiency, 2004, 11(4): 58-59.
[12] 趙延林,曹平,趙陽(yáng)升,林杭,汪亦顯.雙重介質(zhì)溫度場(chǎng)-滲流場(chǎng)-應(yīng)力場(chǎng)耦合模型及三維數(shù)值研究[J].巖石力學(xué)與工程學(xué)報(bào),2007,26(增刊2):4024-4031. ZHAO Yanlin, CAO Ping, ZHAO Yangsheng, LIN Hang,WANG Yixian. Dual media model for thermo-Hydromechanical coupling and 3D numerical simulation [J]. Chinese Journal of Rock Mechanics and Engineering,2007, 26(S2): 4024-4031.
[13] 王鴻勛,張士誠(chéng).水力壓裂設(shè)計(jì)數(shù)值計(jì)算方法[M].北京:石油工業(yè)出版社,1998. WANG Hongxun, ZHANG Shicheng. Numerical methods of hydraulic fracturing design[M]. Beijing: Petroleum Industry Press, 1998.
(修改稿收到日期 2016-04-08)
〔編輯 李春燕〕
Post-fracturing productivity computation method of horizontal well with consideration to stress field variation: along the minimum principal stress in horizontal wellbore
YANG Lifeng1, 2, ZHONG Taixian3, CHEN Chaofeng4, DING Yunhong1, 2, LIU Zhe1, 2
1. CNPC Key Laboratory for Reformation of Oil and Gas Reserνoirs, Langfang, Hebei 065007, China; 2. Langfang Branch of PetroChina Research Institute of Petroleum Exploration and Deνelopment, Langfang, Hebei 065007, China; 3. CNPC Science and Technology Management Department,Beijing 100007, China; 4. PetroChina Xinjiang Oilfield Company, Karamay, Xinjiang 834000, China
The effect of reservoir stress variation on the fracture morphology is usually not considered in the simulation calculation on staged fracturing productivity of horizontal wells in low permeability and ultra-low permeability oil and gas reservoirs, leading to large calculation errors. In this paper, the 2D induced stress field computation model was combined with the estimated staged fracturing time interval in each stage to calculate the effect of the existing artificial fractures on the stress field variation and predict the artificial fracture morphology in subsequent fracturing. Then, based on the prediction results, a geologic model was established, and the 3D threephase black-oil model was used to calculate the post-fracturing productivity of horizontal wells. Finally, a staged fracturing productivity computation method of horizontal wells with consideration to the stress field variation in case of existence of artificial fractures was defined. According to the study results, when the stress field variation is considered, the artificial fracture morphology would change
low permeability; ultra-low permeability; horizontal well section; stress field; productivity simulation
楊立峰(1979-),2002年畢業(yè)于中國(guó)石油大學(xué)(北京)油氣田開(kāi)發(fā)專業(yè),碩士研究生,現(xiàn)主要從事水力壓裂技術(shù)的研究工作。通訊地址:(065007)河北省廊坊市萬(wàn)莊石油分院44#信箱。電話:010-69213712。E-mail:yanglifeng_9500@126.comobviously, from the expected transverse fractures to T-like artificial fractures, and some transverse fractures would be far away from the planned perforation location. The field application in the JM reservoir shows that the five-year cumulative production of horizontal wells obtained with consideration to the existence of 8 transverse fractures is 5.6% different from that without consideration to the stress field variation. This verifies the necessity that the stress field variation should be considered in calculating the staged fracturing productivity of horizontal wells.
TE357.1
A
1000 - 7393( 2016 ) 03 - 0347- 05
10.13639/j.odpt.2016.03.014
YANG Lifeng, ZHONG Taixian, CHEN Chaofeng, DING Yunhong, LIU Zhe. Post-fracturing productivity computation method of horizontal well with consideration to stress field variation: along the minimum principal stress in horizontal wellbore[J]. Oil Drilling & Production Technology, 2016, 38(3): 347-351.
國(guó)家科技重大專項(xiàng)“低滲、特低滲油氣儲(chǔ)層高效改造關(guān)鍵技術(shù)”(編號(hào):2011ZX05013-03);中國(guó)石油天然氣股份有限公司科技重大專項(xiàng)“特低、超低滲油藏高效改造關(guān)鍵技術(shù)研究”(編號(hào):2011B-1202)。
引用格式:楊立峰,鐘太賢,陳超峰,丁云宏,劉哲. 考慮應(yīng)力場(chǎng)變化的水平井壓后產(chǎn)能計(jì)算方法——水平井井筒沿最小主應(yīng)力方向[J].石油鉆采工藝,2016,38(3):347-351.