王占山, 李云婷, 劉保獻, 孫 峰,張大偉,*, 周健楠, 劉兆瑩, 潘麗波
1 北京市環(huán)境保護監(jiān)測中心,北京 100048 2 中國環(huán)境科學研究院環(huán)境基準與風險評估國家重點實驗室,北京 100012
?
北京市PM2.5化學組分特征
王占山1, 李云婷1, 劉保獻1, 孫峰1,張大偉1,*, 周健楠1, 劉兆瑩1, 潘麗波2
1 北京市環(huán)境保護監(jiān)測中心,北京100048 2 中國環(huán)境科學研究院環(huán)境基準與風險評估國家重點實驗室,北京100012
摘要:對2012年8月至2013年7月期間北京市定陵、車公莊、房山和榆垡4個站點的15種PM2.5化學組分進行分析,探討各組分的時空分布特征以及有機碳(OC)、元素碳(EC)的污染特征。結(jié)果表明,4個站點PM2.5組分中和的含量較高,年均濃度分別為(22.62±21.86)、(19.39±21.06)、(18.89±19.82)、(13.20±12.80) μg/m3。各組分濃度在時間分布上多為冬季最高,夏季最低;在空間分布上多為南部高,北部低;另外濃度水平明顯高于早年間的監(jiān)測結(jié)果。受燃煤的影響,冬季OC和EC平均濃度分別為夏季濃度的3倍和2.5倍。春、夏、秋、冬季4個站點平均OC/EC比值分別為4.9、7.0、8.1和8.4,表明北京市全年均存在較嚴重的SOC污染。采用OC/EC比值法估算得出全年定陵、車公莊、房山和榆垡站二次有機碳(SOC)占OC的比例分別為57.7%、60.0%、45.6%和57.6%。定陵、車公莊、房山和榆垡站年均]比值分別為1.01、1.25、1.08和1.12,表明目前北京市排放源表現(xiàn)出固定源和移動源并重的特征。
關鍵詞:北京;PM2.5;化學組分;有機碳(OC); 無機碳(EC);二次有機碳;
近年來,關于北京市PM2.5化學組分的多點位、長時間尺度的研究比較缺乏,本研究對2012年8月至2013年7月期間北京市定陵、車公莊、房山和榆垡4個自動空氣質(zhì)量監(jiān)測子站的PM2.5化學組分進行分析,探討PM2.5各組分的濃度水平和時空分布以及OC、EC的污染特征,以期為北京市大氣污染控制提供科學依據(jù)。
1材料與方法
1.1樣品采集
PM2.5化學組分采用手工采樣,然后在實驗室分析得出其質(zhì)量濃度。采樣裝置為德潤達公司生產(chǎn)的PNS 16T-3.1/6.1型四通道小流量大氣顆粒物采樣器,采樣流量為16.67 L/min。
OC、EC以及重金屬的分析采用石英膜采樣,其他組分的分析采用Teflon濾膜采樣。一次采樣時間為24h,2012年8月至2013年7月之間每月隨機選取連續(xù)的5—7d進行連續(xù)采樣,逢重污染期間加密采樣,采樣地點見圖1。定陵站位于北京市昌平區(qū)北部,屬于城市清潔點;車公莊站位于北京市城六區(qū),屬于城區(qū)點;房山站位于北京市南部的房山區(qū),屬于郊區(qū)點;榆垡站靠近北京市南部邊界,屬于區(qū)域點。
圖1 4個監(jiān)測站點位置Fig.1 Location of the four monitor stations
1.2分析方法
測定OC和EC時使用美國Sunset Lab公司生產(chǎn)的RT-4型分析儀,不需要前處理過程,將樣品從低溫冰箱取出后,待恢復至室溫狀態(tài)后直接使用儀器測定。測定水溶性離子時,將樣品膜和空白膜分別溶解在50mL去離子水溶液中,超聲90min,用0.45μm微孔濾膜過濾,然后使用美國Dionex公司生產(chǎn)的ICS-2000和ICS-5000離子色譜儀分析,儀器檢測限均小于5μg/L。重復實驗表明,測量的相對標準偏差小于3%。測定金屬元素時,首先將試樣濾膜和空白濾膜放入到干凈的Teflon-TFM樣品消解罐中進行消解,然后加入20mL飽和硼酸溶液以絡合過量的氟離子,再進行一次密閉微波消解,消解完畢后定容至50mL。無機元素采用美國熱電公司生產(chǎn)的IntrepidⅡ-XDL光譜儀進行分析。每種組分測量前,均要使用環(huán)境保護部標準樣品研究所提供的標準樣品對儀器進行校準,平行樣品至少占分析樣品總數(shù)的10%。
2結(jié)果與討論
2.1化學組分的濃度水平
表1 PM2.5中15種化學組分的年均濃度/(μg/m3)
圖2 PM2.5中15種化學組分濃度的季節(jié)變化Fig.2 Seasonal variations of concentrations of the 15 chemical compositions in PM2.5
圖3 各站點各季節(jié)和離子濃度Fig.3 Concentrations of , and in the four stations in four seasons
圖4 2001—2010年間各城市OC、EC和水溶性離子濃度Fig.4 Concentrations of OC, EC and water-soluble ions in some cities during 2001 and 2010
2.2OC與EC分析2.2.1 OC與EC濃度水平
圖6顯示了各季節(jié)各站點OC和EC濃度水平,可以看出,OC和EC濃度呈現(xiàn)出相似的季節(jié)變化規(guī)律,即冬季最高夏季最低。4個站點夏季OC平均濃度為(13.49±6.00) μg/m3,冬季平均濃度為(39.30±29.00) μg/m3,接近夏季濃度的3倍;4個站點夏季EC平均濃度為(2.12±0.92) μg/m3,冬季平均濃度為(5.22±3.89) μg/m3,是夏季濃度的2.5倍左右,體現(xiàn)了采暖季的煤炭燃燒對OC、EC的顯著影響。OC濃度在夏季、秋季和冬季3個季節(jié)均表現(xiàn)出較明顯的從北到南依次升高的空間分布趨勢,同樣受到北京市工業(yè)布局以及區(qū)域傳輸?shù)挠绊憽?/p>
圖5 本研究中PM2.5組分特征與其他研究的對比Fig.5 Comparison of chemical characteristic of PM2.5 with previous studies
年份Years采樣地點Samplingsites研究人員ResearchersNH+4濃度ConcentrationsofNH+4/(μg/m3)1999—2000車公莊和清華園楊復沫等[26]7.181999—2004上甸子徐敬等[27]3.292003中國科學院生態(tài)環(huán)境研究中心陳永橋等[28]5.202008中國科學院大氣物理研究所郭照冰等[29]7.702008—2009中國環(huán)境科學研究院鄧利群等[30]8.352012—2013定陵、車公莊、房山、榆垡本研究13.20
圖6 各站點OC和EC濃度的季節(jié)變化Fig.6 Seasonal variations of concentrations of OC and EC in the four stations有機碳organic carbon (OC);無機碳elemental carbon (EC)
2.2.2OC/EC比值
OC/EC比值常被用來識別碳氣溶膠的排放和轉(zhuǎn)化特征以及評價和鑒別顆粒物的二次來源。EC主要來自含碳原料不完全燃燒,具有良好的穩(wěn)定性,在大氣中不會發(fā)生明顯的化學反應,因此被作為人為一次源排放的示蹤物。而OC既可以來自污染源直接排放的一次有機碳POC,又包含通過光化學反應生成的二次有機碳SOC[31]。Chow[32]等人認為,當OC/EC>2時指示大氣中有SOC生成,Castro[33]等人則認為當OC/EC>1.1時就表示有SOC存在,該比值越大則表示SOC的濃度越高。另外,除了光化學反應之外,生物質(zhì)燃燒會釋放大量的OC,而對EC的影響相對較小,因此也會產(chǎn)生較高的OC/EC比值。Zhang[34]等人在研究中國的谷類秸稈燃燒時發(fā)現(xiàn)OC/EC的平均值達到7.7。
圖7 各站點OC/EC比值的季節(jié)變化Fig.7 Seasonal variations of the ratios of OC/EC in four stations
圖7為各季節(jié)4個站點的OC/EC比值,可以看出,北京市OC/EC比值全年保持較高水平,春、夏、秋、冬季4個站點平均OC/EC比值分別為4.9、7.0、8.1和8.4,表明北京市全年均存在較嚴重的SOC污染。春季各站點的OC/EC比值較為接近,且處于相對較低水平。夏季時受光照強度增加和溫度上升對光化學反應的促進作用,OC/EC有所升高,其中定陵站夏季OC和EC濃度均為4個站的中最低,但OC/EC比值卻是4個站點中最高的,原因是夏季定陵站有較多樣本中EC濃度小于1.0 μg/m3,導致了OC與EC的比值較大,這也與在歐洲等地區(qū)域背景點的觀測結(jié)果相似[35]。秋季OC/EC比值的差異較大,最低的房山站為4.3,而榆垡站則出現(xiàn)了13.0的高值。冬季4個站OC/EC比值均處于較高水平,車公莊最高,與車公莊在冬季的EC濃度水平最低相對應,其他3個站點OC/EC比值極為接近。4個季節(jié)OC/EC比值最低的均為房山站,表明房山站的OC污染中一次源排放占的比例相對較大。
若OC和EC在時間序列上濃度分布具有較好的相關性,則說明兩者具有相同的來源或大氣擴散過程[36]。圖8為4個站點年均OC、EC濃度散點圖及擬合直線,可以看出,定陵、房山和榆垡3個站點的EC、OC濃度具有較好的相關性,而車公莊站點的相關性略差,表明車公莊站OC和EC可能具有不同的來源。
圖8 各站點年均OC、EC濃度散點圖及擬合直線Fig.8 Scatter plot and fitting line of annual concentrations of OC and EC
2.2.3二次有機碳(SOC)估算
OC中包括一次有機碳(POC)和二次有機碳(SOC),目前對于SOC復雜的大氣形成過程、凝結(jié)/分配機制尚缺乏全面認識,還不具備統(tǒng)一的對SOC直接測量的分析手段。除利用煙霧箱在特定的條件下直接模擬SOC的生成外,大氣環(huán)境中的SOC濃度一般采用間接方法進行估算,如OC與EC濃度比值法、有機分子示蹤法以及數(shù)值模型預測法[37]。其中OC與EC濃度比值法最為簡單直接,在識別和評估SOC污染中應用廣泛。
OC/EC比值法認為,污染源之間排放的顆粒物中OC與EC濃度比值是一個相對穩(wěn)定的特征值,它與排放源種類有關,當大氣顆粒物中OC/EC比值超過此值時,表示有SOC形成。根據(jù)這一理論,Turpin[38]等提出SOC的計算方法:
SOC=TOC-EC×(OC/EC)pri
式中,TOC代表總有機碳,(OC/EC)pri表示污染源平均OC/EC比值,但確定該比值需要掌握區(qū)域各污染源的排放特征,還要考慮排放日變化和季節(jié)波動以及氣象條件,具有較大的難度和不確定性。因此Castro[33]等提出根據(jù)OC/EC最低值來估算SOC:
SOC=TOC-EC×(OC/EC)min
圖9 各季節(jié)各站點SOC占OC的比例 Fig.9 The proportions of SOC in OC in the four stations in four seasons
本研究根據(jù)此公式計算了各季節(jié)各站點SOC占OC的比例,如圖9??梢钥闯?,春季SOC占比相對較低,其他3個季節(jié)占比基本保持在50%以上。分站點來看,定陵、車公莊、房山和榆垡全年SOC占OC平均比例分別為57.7%、60.0%、45.6%和57.6%,房山站相對較低,其他3個站點比例較為接近,且均超過50%。
研究人員Researchers年份Years采樣地點Samplingsites[NO-3]/[SO2-4]Huebert等[43]1988北京0.30—0.50Xu等[44]1999長江三角洲0.50—0.70Wang等[45]2001南京0.40—1.00Hu等[46]1997—2000青島0.35Fang等[47]1998—2001臺灣0.20Kim等[48-49]1999洛杉磯2—5王琳琳等Wang等[50]2009北京0.60孫韌等Sun等[51]2001—2002天津0.50周敏等Zhou等[52]2013上海1.05肖以華等Xiao等[53]2012廣州0.12
圖10 各季節(jié)各站點比值 Fig.10 The ratios ] in the four stations in four seasons
3結(jié)論
(2)受燃煤的影響,冬季OC和EC濃度明顯高于夏季。4個站點夏季OC和EC平均濃度分別為(13.49±6.00)、(2.12±0.92) μg/m3,冬季平均濃度分別為(39.30±29.00)、(5.22±3.89) μg/m3。房山、定陵和榆垡OC和EC濃度具有相對較好的相關性,表明二者可能具有相同的來源或大氣擴散過程。
(3)春、夏、秋、冬季4個站點平均OC/EC比值分別為4.9、7.0、8.1和8.4,表明北京市全年均存在較嚴重SOC污染。春季各站點OC中SOC占比相對較低,其他季節(jié)占比基本保持在50%以上;分站點來看,定陵、車公莊、房山和榆垡年均OC濃度中SOC占比分別為57.7%、60.0%、45.6%和57.6%,房山站OC濃度受一次排放源影響相對較大。
參考文獻(References):
[1]Tie X X, Wu D, Brasseur G. Lung cancer mortality and exposure to atmospheric aerosol particles in Guangzhou, China. Atmospheric Environment, 2009, 43(14): 2375- 2377.
[2]Nel A, Xia T, M?dler L, Li N. Toxic potential of materials at the nanolevel. Science, 2006, 311(5761): 622- 627.
[3]Menon S, Hansen J, Nazarenko L, Luo Y F. Climate effects of black carbon aerosols in China and India. Science, 2002, 297(5590): 2250- 2253.
[4]顏鵬, 郇寧, 張養(yǎng)梅, 周懷剛. 北京鄉(xiāng)村地區(qū)分粒徑氣溶膠OC及EC分析. 應用氣象學報, 2012, 23(3): 285- 293.
[5]曾靜, 廖曉蘭, 任玉芬, 張菊, 王效科, 歐陽志云. 奧運期間北京PM2.5、NOx、CO的動態(tài)特征及影響因素. 生態(tài)學報, 2010, 30(22): 6227- 6233.
[6]He K B, Yang F M, Ma Y L, Zhang Q, Yao X H, Chan C K, Cadle S, Chan T, Mulawa P. The characteristics of PM2.5in Beijing, China. Atmospheric Environment, 2001, 35(29): 4959- 4970.
[7]Wang Y, Zhuang G S, Tang A H, Yuan H, Sun Y L, Chen S, Zheng A H. The ion chemistry and the source of PM2.5aerosol in Beijing. Atmospheric Environment, 2005, 39(21): 3771- 3784.
[8]Yang F M, He K B, Ye B M, Chen X, Cha L, Cadle S H, Chan T, Mulawa P A. One-year record of organic and elemental carbon in fine particles in downtown Beijing and Shanghai. Atmospheric Chemistry and Physics, 2005, 5(6): 1449- 1457.
[9]Yao X H, Chan C K, Fang M, Cadle S, Chan T, Mulawa P, He K B, Ye B M. The water-soluble ionic composition of PM2.5in Shanghai and Beijing, China. Atmospheric Environment, 2002, 36(26): 4223- 4234.
[10]Wang Y, Zhuang G S, Zhang X Y, Huang K, Xu C, Tang A H, Chen J M, An Z S. The ion chemistry, seasonal cycle, and sources of PM2. 5and TSP aerosol in Shanghai. Atmospheric Environment, 2006, 40(16): 2935- 2952.
[11]徐敬, 丁國安, 顏鵬, 章建成, 王淑鳳, 孟昭陽, 張養(yǎng)梅, 劉玉徹, 張小玲. 燃放煙花爆竹對北京城區(qū)氣溶膠細粒子的影響. 安全與環(huán)境學報, 2006, 6(5): 79- 82.
[12]劉臻, 祁建華, 王琳, 陳曉靜, 石金輝, 高會旺. 青島大氣氣溶膠水溶性無機離子研究: 季節(jié)分布特征. 環(huán)境科學, 2012, 33(7): 2180- 2190.
[13]喬佳佳, 祁建華, 劉苗苗, 范得國, 石金輝, 高會旺. 青島采暖期不同天氣狀況下大氣顆粒態(tài)無機氮分布研究. 環(huán)境科學, 2010, 31(1): 29- 35.
[14]Wang Y, Zhuang G S, Sun Y L, An Z S. The variation of characteristics and formation mechanisms of aerosols in dust, haze, and clear days in Beijing. Atmospheric Environment, 2006, 40(34): 6579- 6591.
[15]Tan J H, Duan J C, He K B, Ma Y L, Duan F K, Chen Y, Fu J M. Chemical characteristics of PM2.5during a typical haze episode in Guangzhou. Journal of Environmental Sciences, 2009, 21(6): 774- 781.
[16]Wang Y, Zhuang G S, Sun Y L, An Z S. Water-soluble part of the aerosol in the dust storm season-evidence of the mixing between mineral and pollution aerosols. Atmospheric Environment, 2005, 39(37): 7020- 7029.
[17]Ho K F, Cao J J, Lee S C, Chan C K. Source apportionment of PM2. 5in urban area of Hong Kong. Journal of Hazardous Materials, 2006, 138(1): 73- 85.
[18]Shon Z H, Kim K H, Song S K, Jung K, Kim N J, Lee J B. Relationship between water-soluble ions in PM2.5and their precursor gases in Seoul megacity. Atmospheric Environment, 2012, 59: 540- 550.
[19]Pathak R K, Wu W S, Wang T. Summertime PM2.5ionic species in four major cities of China: nitrate formation in an ammonia-deficient atmosphere. Atmospheric Chemistry and Physics, 2009, 9(5): 1711- 1722.
[20]Zhao P S, Dong F, He D, Zhao X L, Zhang X L, Zhang W Z, Yao Q, Liu H Y. Characteristics of concentrations and chemical compositions for PM2.5in the region of Beijing, Tianjin, and Hebei, China. Atmospheric Chemistry and Physics, 2013, 13(9): 4631- 4644.
[21]Yang F M, Tan J H, Zhao Q, Du Z Y, He K B, Ma Y, Duan F K, Chen G, Zhao Q. Characteristics of PM2. 5speciation in representative megacities and across China. Atmospheric Chemistry and Physics, 2011, 11(11): 5207- 5219.
[22]Hagler G S W, Bergin M H, Salmon L G, Yu J Z, Wan E C H, Zheng M, Zeng L M, Kiang C S, Zhang Y H, Lau A K H, Schauer J J. Source areas and chemical composition of fine particulate matter in the Pearl River Delta region of China. Atmospheric Environment, 2006, 40(20): 3802- 3815.
[23]Kim H S, Huh J B, Hopke P K, Holsen T M, Yi S M. Characteristics of the major chemical constituents of PM2.5and smog events in Seoul, Korea in 2003 and 2004. Atmospheric Environment, 2007, 41(32): 6762- 6770.
[24]Qin Y J, Kim E, Hopke P K. The concentrations and sources of PM2.5in metropolitan New York City. Atmospheric Environment, 2006, 40(S2): 312- 332.
[25]Turpin B J, Lim H J. Species contributions to PM2.5mass concentrations: Revisiting common assumptions for estimating organic mass. Aerosol Science & Technology, 2001, 35(1): 602- 610.
[26]楊復沫, 賀克斌, 馬永亮, 張強, Cadle S H, Chan T, Mulawa P A. 北京 PM2.5化學物種的質(zhì)量平衡特征. 環(huán)境化學, 2004, 23(3): 326- 333.
[27]徐敬, 張小玲, 徐曉斌, 丁國安, 顏鵬, 于曉嵐, 程紅兵, 周懷剛. 上甸子本底站濕沉降化學成分變化與來源解析. 環(huán)境科學學報, 2008, 28(5): 1001- 1006.
[28]陳永橋, 張逸, 張曉山. 北京城鄉(xiāng)結(jié)合部氣溶膠中水溶性離子粒徑分布和季節(jié)變化. 生態(tài)學報, 2005, 25(12): 3231- 3236.
[29]郭照冰, 包春曉, 陳天蕾, 陳天, 周飛, 董瓊元, 林明月. 北京奧運期間氣溶膠中水溶性無機離子濃度特征及來源解析. 大氣科學學報, 2011, 34(6): 683- 687.
[30]鄧利群, 李紅, 柴發(fā)合, 倫小秀, 陳義珍, 王峰威, 倪潤祥. 北京東北部城區(qū)大氣細粒子與相關氣體污染特征研究. 中國環(huán)境科學, 2011, 31(7): 1064- 1070.
[31]Cabada J C, Pandis S N, Subramanian R, Robinson A, Polidori A, Turpin B. Estimating the secondary organic aerosol contribution to PM2.5using the EC tracer method special issue of aerosol science and technology on findings from the fine particulate matter supersites program. Aerosol Science and Technology, 2004, 38(S1): 140- 155.
[32]Chow J C, Watson J G, Lu Z, Lowenthal D, Frazier C, Solomon P, Thuillier R, Magliano K. Descriptive analysis of PM2.5and PM10at regionally representative locations during SJVAQS/AUSPEX. Atmospheric Environment, 1996, 30(12): 2079- 2112.
[33]Castro L M, Pio C A, Harrison R M, Smith D J. Carbonaceous aerosol in urban and rural European atmospheres: estimation of secondary organic carbon concentrations. Atmospheric Environment, 1999, 33(17): 2771- 2781.
[34]Zhang Y X, Shao M, Zhang Y H, Zeng L M, He L Y, Zhu B, Wei Y J, Zhu X L. Source profiles of particulate organic matters emitted from cereal straw burnings. Journal of Environmental Sciences, 2007, 19(2): 167- 175.
[35]Novakov T, Menon S, Kirchstetter T W, Koch D, Hansen J E. Aerosol organic carbon to black carbon ratios: Analysis of published data and implications for climate forcing. Journal of Geophysical Research: Atmospheres (1984- 2012), 2005, 110(D21), doi:10.1029/2005JD005977.
[36]周敏, 陳長虹, 王紅麗, 黃成, 蘇雷燕, 陳宜然, 李莉, 喬月珍, 陳明華, 黃海英, 張鋼鋒. 上海市秋季典型大氣高污染過程中顆粒物的化學組成變化特征. 環(huán)境科學學報, 2012, 32(1): 81- 92.
[37]鄭玫, 閆才青, 李小瀅, 王雪松, 張遠航. 二次有機氣溶膠估算方法研究進展. 中國環(huán)境科學, 2014, 34(3): 555- 564.
[38]Turpin B J, Huntzicker J J. Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentrations during SCAQS. Atmospheric Environment, 1995, 29(23): 3527- 3544.
[39]Xiao H Y, Liu C Q. Chemical characteristics of water-soluble components in TSP over Guiyang, SW China, 2003. Atmospheric Environment, 2004, 38(37): 6297- 6306.
[40]王占山, 李云婷, 陳添, 張大偉, 孫峰, 孫瑞雯, 董欣, 孫乃迪, 潘麗波. 北京市臭氧的時空分布特征. 環(huán)境科學, 2014, 35(12): 4446- 4453.
[41]王占山, 潘麗波, 李云婷, 徐文帥, 聶騰, 孫兆彬. 火電廠大氣污染物排放標準對區(qū)域酸沉降影響的數(shù)值模擬. 中國環(huán)境科學, 2014,34(9): 2420- 2429.
[42]馬井會, 顧松強, 陳敏, 施紅, 張國璉. 結(jié)合激光雷達分析上海地區(qū)一次連續(xù)浮塵天氣過程. 生態(tài)學報, 2012, 32(4): 1085- 1096.
[43]Huebert B J, Wang M X, Lü W X. Atmospheric nitrate, sulfate, ammonium and calcium concentrations in China. Tellus B, 1988, 40(4): 260- 269.
[44]Xu J, Bergin M H, Yu X, Liu G, Zhao J, Carrico C M, Baumann K. Measurement of aerosol chemical, physical and radiative properties in the Yangtze delta region of China. Atmospheric Environment, 2002, 36(2): 161- 173.
[45]Wang G H, Huang L M, Gao S X, Gao S T, Wang L S. Characterization of water-soluble species of PM10and PM2.5aerosols in urban area in Nanjing, China. Atmospheric Environment, 2002, 36(8): 1299- 1307.
[46]Hu M, He L Y, Zhang Y H, Wang M, Kim Y P, Moon K C. Seasonal variation of ionic species in fine particles at Qingdao, China. Atmospheric Environment, 2002, 36(38): 5853- 5859.
[47]Fang G C, Chang C N, Wu Y S, Fu P P, Yang C J, Chen C D, Chang S C. Ambient suspended particulate matters and related chemical species study in central Taiwan, Taichung during 1998—2001. Atmospheric Environment, 2002, 36(12): 1921- 1928.
[48]Kim B M, Teffera S, Zeldin M D. Characterization of PM2.5and PM10in the South Coast Air Basin of Southern California: Part 1- Spatial variations. Journal of the Air & Waste Management Association, 2000, 50(12): 2034- 2044.
[49]Kim B M, Teffera S, Zeldin M D. Characterization of PM2.5and PM10in the South Coast Air Basin of Southern California: Part 2- Temporal Variations. Journal of the Air & Waste Management Association, 2000, 50(12): 2045- 2059.
[50]王琳琳, 王淑蘭, 王新鋒, 徐政, 周聲圳, 袁超, 于陽春, 王韜, 王文興. 北京市2009年8月大氣顆粒物污染特征. 中國環(huán)境科學, 2011, 31(4): 553- 560.
[51]孫韌, 張文具, 董海燕, 邊瑋瓅, 陳魁. 天津市 PM10和PM2.5中水溶性離子化學特征及來源分析. 中國環(huán)境監(jiān)測, 2014, 30(2): 145- 150.
[52]周敏, 陳長虹, 喬利平, 樓晟榮, 王紅麗, 黃海英, 王倩, 陳明華, 陳宜然, 李莉, 黃成, 鄒蘭軍, 牟瑩瑩, 張鋼鋒. 2013年1月中國中東部大氣重污染期間上海顆粒物的污染特征. 環(huán)境科學學報, 2013, 33(11): 3118- 3126.
[53]肖以華, 李炯, 曠遠文, 佟富春, 習丹, 陳步峰, 史欣, 裴男才, 黃俊彪, 潘勇軍. 廣州大夫山雨季林內(nèi)外空氣TSP和PM2.5濃度及水溶性離子特征. 生態(tài)學報, 2013, 33(19): 6209- 6217.
Chemical characteristics of PM2.5in Beijing
WANG Zhanshan1, LI Yunting1, LIU Baoxian1, SUN Feng1, ZHANG Dawei1,*, ZHOU Jiannan1, LIU Zhaoying1, PAN Libo2
1BeijingMunicipalEnvironmentalMonitoringCenter,Beijing100048,China2StateKeyLabofEnvironmentalCriteriaandRiskAssessment,ChineseResearchAcademyofEnvironmentalSciences,Beijing100012,China
Abstract:The chemical compositions of samples of particulate matter up to 2.5 μm in size (PM2.5)collected from Dingling, Chegongzhuang, Fangshan, and Yufa sites in Beijing, China from August 2012 to July 2013 were analyzed to determine the spatiotemporal characteristics of 15 chemical components, including nitrogen- and sulfur-containing air pollutants and organic carbon (OC) and elemental carbon (EC). The concentrations of OC, , , and were the highest among the 15 chemical components analyzed, and the annual mean concentrations were (22.62±21.86), (19.39±21.06), (18.89±19.82), and (13.20±12.80) μg/m3, respectively. In general, concentrations of the 15 chemical components were highest in winter and lowest in summer, and concentrations were higher in southern areas and lower in northern areas.Concentrationsof observed in this study were significantly higher than those reported in previous monitoring studies. Concentrations of OC and EC in winter were 3-times and 2.5-times higher, respectively, than the corresponding levels in summer, which was attributed to higher rates of coal consumption in winter. The average ratios of OC/EC in spring, summer, autumn, and winter were 4.9, 7.0, 8.1, and 8.4, respectively, which are indicative of serious pollution levels in Beijing throughout the year. The proportions of secondary organic carbon to OC at the Dingling, Chegongzhuang, Fangshan, and Yufa sites were 57.7%, 60.0%, 45.6%, and 57.6%, respectively, which were calculated based on the OC/EC ratio. The annual ratios of ] at the Dingling, Chegongzhuang, Fangshan, and Yufa sites were 1.01, 1.25, 1.08, and 1.12, respectively.These data imply that both stationary and mobile sources are important contributors to the poor air quality in Beijing.
Key Words:Beijing; PM2.5; chemical characteristic; organic carbon (OC);elemental carbon (EC);secondary organic carbon; ]
基金項目:環(huán)保公益性行業(yè)科研專項(201409005); 國家科技支撐計劃課題(2014BAC23B03)
收稿日期:2014- 10- 14; 網(wǎng)絡出版日期:2015- 08- 18
*通訊作者
Corresponding author.E-mail: zhangdawei@bjmemc.com.cn
DOI:10.5846/stxb201410142021
王占山, 李云婷, 劉保獻, 孫峰,張大偉, 周健楠, 劉兆瑩, 潘麗波.北京市PM2.5化學組分特征.生態(tài)學報,2016,36(8):2382- 2392.
Wang Z S, Li Y T, Liu B X, Sun F, Zhang D W, Zhou J N, Liu Z Y, Pan L B.Chemical characteristics of PM2.5in Beijing.Acta Ecologica Sinica,2016,36(8):2382- 2392.