彭妙娟+席偉成
摘要:運(yùn)用改進(jìn)的無(wú)單元Galerkin(Improved Element-Free Galerkin,IEFG)方法計(jì)算機(jī)場(chǎng)復(fù)合道面的位移和應(yīng)力,分析不同的節(jié)點(diǎn)數(shù)量和影響域比例參數(shù)對(duì)計(jì)算結(jié)果的影響.結(jié)果表明:節(jié)點(diǎn)數(shù)在4 000以上、影響域比例參數(shù)取2.5~3.5時(shí)計(jì)算結(jié)果較好;IEFG方法比無(wú)單元Galerkin(Element-Free Galerkin,EFG)方法的精度更高,計(jì)算速度更快.計(jì)算結(jié)果可為機(jī)場(chǎng)道面設(shè)計(jì)提供參考.
關(guān)鍵詞:改進(jìn)的移動(dòng)最小二乘法; 改進(jìn)的無(wú)單元Galerkin方法; 機(jī)場(chǎng)復(fù)合道面; 節(jié)點(diǎn)數(shù); 比例參數(shù); 位移; 應(yīng)力
中圖分類號(hào): U416.217
文獻(xiàn)標(biāo)志碼: B
Abstract:The displacement and stress of composite airfield pavement are obtained using Improved Element-Free Galerkin(IEFG) method, and the effect of different node number and proportion parameter of influence domain on calculation results is analyzed. The results show that, the calculation results are good when the number of nodes is more than 4 000 and the proportion parameter of influence domain is 2.5~3.5; the IEFG has higher calculation accuracy and efficiency than the Element-Free Galerkin(EFG) method. The calculation results can be referenced when the airfield pavements are designed.
Key words:improved moving least-squares approximation; improved element-free Galerkin method; composite airfield pavement; node number; proportion parameter; displacement; stress
0 引 言
無(wú)網(wǎng)格方法的研究已經(jīng)有近20年的歷史.國(guó)際上將基于點(diǎn)的近似、不需要在求解域內(nèi)劃分用于確定插值函數(shù)的網(wǎng)格的方法稱為無(wú)網(wǎng)格方法.[1-2]
無(wú)單元Galerkin方法(Element-Free Galerkin,EFG)是目前最重要且應(yīng)用最為廣泛的無(wú)網(wǎng)格方法之一.[3-4]EFG方法采用移動(dòng)最小二乘法建立逼近函數(shù),相對(duì)于有限元法來(lái)說(shuō)計(jì)算量較大.
程玉民等在移動(dòng)最小二乘法的基礎(chǔ)上,建立改進(jìn)的移動(dòng)最小二乘法和復(fù)變量移動(dòng)最小二乘法.[5-9]在此基礎(chǔ)上發(fā)展出改進(jìn)的無(wú)單元Galerkin(Improved Element-Free Galerkin,IEFG)方法[10-16]、邊界無(wú)單元方法[17-20]、復(fù)變量無(wú)單元Galerkin方法[21-27]和改進(jìn)的復(fù)變量無(wú)單元Galerkin方法[28-32]等.
由于改進(jìn)的移動(dòng)最小二乘法形成的方程組易于求解且不會(huì)形成病態(tài)方程組,因而IEFG方法比EFG方法具有更高的計(jì)算精度和計(jì)算效率.
目前,國(guó)內(nèi)外對(duì)機(jī)場(chǎng)復(fù)合道面的數(shù)值模擬大多采用有限元法,使用無(wú)網(wǎng)格方法對(duì)機(jī)場(chǎng)復(fù)合道面進(jìn)行力學(xué)分析的研究較少.馬翔等[33-34]基于Abaqus使用正交設(shè)計(jì)法對(duì)復(fù)合式機(jī)場(chǎng)道面載荷應(yīng)力進(jìn)行分析,林小平[35]使用有限元法對(duì)復(fù)雜條件下機(jī)場(chǎng)跑道模型進(jìn)行分析,提出瀝青加鋪層的結(jié)構(gòu)設(shè)計(jì)理論與方法.
本文建立機(jī)場(chǎng)復(fù)合道面模型,基于IEFG方法對(duì)半剛性瀝青路面和復(fù)合機(jī)場(chǎng)道面模型的位移和應(yīng)力進(jìn)行計(jì)算,分析不同節(jié)點(diǎn)布置以及不同的影響域比例參數(shù)對(duì)計(jì)算結(jié)果的影響.
1 改進(jìn)的移動(dòng)最小二乘法
3 IEFG方法在機(jī)場(chǎng)復(fù)合道面工程中的應(yīng)用
使用IEFG方法對(duì)5層結(jié)構(gòu)的機(jī)場(chǎng)復(fù)合道面二維模型進(jìn)行簡(jiǎn)化計(jì)算,分別使用布置一定節(jié)點(diǎn)數(shù)改變影響域比例參數(shù)dmax和固定影響域比例參數(shù)改變節(jié)點(diǎn)數(shù)這2種方法,驗(yàn)證適合計(jì)算模型的節(jié)點(diǎn)數(shù)和dmax值.該方法為機(jī)場(chǎng)復(fù)合道面的計(jì)算提供一種新的思路.
將載荷簡(jiǎn)化為二維平面應(yīng)變問(wèn)題下的條形均布載荷,采用B777-200B機(jī)型,輪壓為1.45 MPa,輪距為1.40 m.此外,假定各結(jié)構(gòu)層都由線彈性的各向同性、均質(zhì)材料組成,地基由彈性半空間地基假設(shè),在模型中采用有限尺寸.模型的邊界條件為:地基底部完全約束,各結(jié)構(gòu)層兩側(cè)鉸接,具體幾何參數(shù)見(jiàn)圖1,物理參數(shù)見(jiàn)表1.
3.1 節(jié)點(diǎn)數(shù)不變時(shí)考慮影響域比例參數(shù)的影響
首先布置4 941個(gè)節(jié)點(diǎn),并對(duì)輪載下方進(jìn)行局部加密,其分布見(jiàn)圖2.
影響域比例參數(shù)dmax取1.5~4.0,得到瀝青層的豎直位移,輪載下各層的豎直位移、豎直方向正應(yīng)力和剪應(yīng)力,以及輪載下各層單點(diǎn)各項(xiàng)計(jì)算結(jié)果隨dmax的變化,見(jiàn)圖3~9.
3.2 影響域比例參數(shù)不變時(shí)考慮節(jié)點(diǎn)數(shù)的影響
取影響域比例參數(shù)dmax=3.5,節(jié)點(diǎn)分布仍采用輪載下加密并改變節(jié)點(diǎn)數(shù)目分別為1 986,3 045,4 000,4 941和6 006,計(jì)算結(jié)果見(jiàn)圖10~16.
3.3 考慮水泥混凝土層板塊接縫的計(jì)算模型
在上述模型的基礎(chǔ)上,考慮水泥混凝土板塊間的接縫,使用彈性模量E=2×105 MPa的拉桿以及E=40 MPa的填縫料,泊松比均為0.3.對(duì)接縫材料進(jìn)行節(jié)點(diǎn)加密,其局部放大見(jiàn)圖17.計(jì)算瀝青層豎 直位移,見(jiàn)圖18.
3.4 計(jì)算結(jié)果分析
將影響域比例參數(shù)dmax=3.5和節(jié)點(diǎn)個(gè)數(shù)為4 941的模型計(jì)算結(jié)果與Abaqus有限元結(jié)果進(jìn)行對(duì)比,見(jiàn)圖19.
由圖19可以看出IEFG方法和有限元
法的計(jì)算結(jié)果基本一致.
綜上所述:機(jī)場(chǎng)復(fù)合道面的計(jì)算模型中影響域比例參數(shù)取值范圍應(yīng)當(dāng)為2.5~3.5,過(guò)大或過(guò)小都會(huì)對(duì)計(jì)算結(jié)果有明顯的影響;當(dāng)節(jié)點(diǎn)數(shù)超過(guò)4 000以后,隨著節(jié)點(diǎn)的增加計(jì)算結(jié)果也更趨于穩(wěn)定,在保證計(jì)算精度的同時(shí)選擇適當(dāng)?shù)墓?jié)點(diǎn)數(shù)目以提高計(jì)算效率是有必要的.
此外,在外載荷一定的情況下:豎直位移主要發(fā)生在道面的表面層;在假定各結(jié)構(gòu)層完全連續(xù)由線彈性的各向同性、均質(zhì)材料組成,且地基由彈性半空間地基假設(shè)時(shí),在豎直方向的最大正應(yīng)力主要在瀝青混凝土層中,而最大剪應(yīng)力在水泥混凝土層中.
4 結(jié) 論
1)運(yùn)用IEFG方法計(jì)算機(jī)場(chǎng)復(fù)合道面模型,并與有限元計(jì)算結(jié)果進(jìn)行對(duì)比,證明無(wú)網(wǎng)格方法在計(jì)算這類工程問(wèn)題中的有效性.
2)通過(guò)運(yùn)用IEFG方法對(duì)半剛性基層瀝青路面模型進(jìn)行計(jì)算,表明改進(jìn)的移動(dòng)最小二乘法選取正交作為基函數(shù),比傳統(tǒng)移動(dòng)最小二乘法形成的無(wú)網(wǎng)格方法計(jì)算速度更快,在滿足同樣精度的條件下所需選取的節(jié)點(diǎn)數(shù)目更少.
3)通過(guò)數(shù)值分析,得到復(fù)合機(jī)場(chǎng)道面計(jì)算模型中合適的節(jié)點(diǎn)數(shù)目和影響域比例參數(shù)的選擇范圍.在保證計(jì)算精度的同時(shí)應(yīng)該選取較少節(jié)點(diǎn)以提高計(jì)算效率.影響域比例參數(shù)過(guò)大或過(guò)小對(duì)計(jì)算結(jié)果均有不利影響,在數(shù)值計(jì)算中需要通過(guò)多次試算來(lái)確定其范圍.
4)數(shù)值計(jì)算結(jié)果表明:在外載荷一定的情況下,豎直位移主要發(fā)生在道面的表面層;在豎直方向的最大正應(yīng)力主要在瀝青混凝土層,最大剪應(yīng)力在水泥混凝土層中.
參考文獻(xiàn):
[1] CHENG Y M, WANG W Q, PENG M J, et al. Mathematical aspects of meshless methods[J]. Mathematical Problems in Engineering, 2014(1): 756297.
[2] CHENG R J, CHENG Y M. Error estimate for the finite point method[J]. Applied Numerical Mathematics, 2008, 58(6): 884-898.
[3] BELYTSCHKO T, LU Y Y, GU L. Element-free Galerkin methods[J]. International Journal for Numerical Methods in Engineering, 1994, 37(2): 229- 256.
[4] 程榮軍, 程玉民. 勢(shì)問(wèn)題的無(wú)單元Galerkin方法的誤差估計(jì)[J]. 物理學(xué)報(bào), 2008, 57(10): 6037-6046.
CHENG R J, CHENG Y M. Error estimates of element-free Galerkin method for potential problems[J]. Acta Physica Sinica, 2008, 57(10): 6037-6046.
[5] 程玉民, 陳美娟. 彈性力學(xué)的一種邊界無(wú)單元法[J]. 力學(xué)學(xué)報(bào), 2003, 35(2): 181-186.
CHENG Y M, CHEN M J. A boundary element-free method for linear elasticity[J]. Acta Mechanica Sinica, 2003, 35(2): 181-186.
[6] 陳美娟, 程玉民. 改進(jìn)的移動(dòng)最小二乘法[J]. 力學(xué)季刊, 2003, 24(2): 266-272.
CHEN M J, CHENG Y M. improved moving least-square approximation[J]. Chinese Quarterly of Mechanics, 2003, 24(2): 266-272.
[7] WANG J F, SUN F X, CHENG Y M, et al. Error estimates for the interpolating moving least-squares method[J]. Applied Mathematics and Computation, 2014, 245: 321-342.
[8] 程玉民, 彭妙娟, 李九紅. 復(fù)變量移動(dòng)最小二乘法及其應(yīng)用[J]. 力學(xué)學(xué)報(bào), 2005, 37(6): 719-723.
CHENG Y M, PENG M J, LI J H. Complex variable moving least-square approximation and its application[J]. Chinese Journal of Theoretical And Applied Mechanics, 2005, 37(6): 719-723.
[9] 程玉民, 李九紅. 彈性力學(xué)的復(fù)變量無(wú)網(wǎng)格方法[J]. 物理學(xué)報(bào), 2005, 54(10): 4463-4471.
CHENG Y M, LI J H. A meshless method with complex variables for elasticity[J]. Acta Physica Sinica, 2005, 54(10): 4463-4471.
[10] ZHANG Z, LI D M, CHENG Y M, et al. The improved element-free Galerkin method for three-dimensional wave equation[J]. Acta Mechanica Sinica, 2012, 28(3): 808-818.
[11] ZHANG Z, WANG J F, CHENG Y M, et al. The improved element-free Galerkin method for three-dimensional transient heat conduction problems[J]. Science China Physics, Mechanics & Astronomy, 2013, 56(8): 1568-1580.
[12] ZHANG Z, HAO S Y, LIEW K M, et al. The improved element-free Galerkin method for two-dimensional elastodynamics problems[J]. Engineering Analysis with Boundary Elements, 2013, 37(12): 1576-1584.
[13] WANG J F, SUN F X, CHENG Y M. An improved interpolating element-free Galerkin method with nonsingular weight function for two-dimensional potential problems[J]. Chinese Physics B, 2012, 21(9): 090204.
[14] SUN F X, WANG J F, CHENG Y M. An improved interpolating element-free Galerkin method for elasticity[J]. Chinese Physics B, 2013, 22(12): 120203.
[15] CHENG Y M, BAI F N, PENG M J. A novel Interpolating Element-Free Galerkin (IEFG) method for two-dimensional elastoplasticity[J]. Applied Mathematical Modelling, 2014, 38(21/22): 5187-5197.
[16] PENG M J, LI R X, CHENG Y M. Analyzing three-dimensional viscoelasticity problems via the Improved Element-Free Galerkin (IEFG) method[J]. Engineering Analysis with Boundary Elements, 2014(40): 104-113. DOI: 10.1016/j.enganabound.2013.11.018.
[17] CHENG Y M, PENG M J. Boundary element-free method for elastodynamics[J]. Science in China: Series G, Physics, Mechanics & Astronomy, 2005, 48(6): 641-657.
[18] PENG M J, CHENG Y M. A Boundary Element-Free Method (BEFM) for two-dimensional potential problems[J]. Engineering Analysis with Boundary Elements, 2009, 33(1): 77-82. DOI: 10.1016/j.enganabound.2008.03.005.
[19] CHENG Y M, LIEW K M, KITIPORNCHAI S. Reply to ‘Comments on ‘Boundary element-free method (BEFM) and its application to two-dimensional elasticity problems[J]. International Journal for Numerical Methods in Engineering, 2009, 78(10): 1258-1260.
[20] REN H P, CHENG Y M, ZHANG W. An Improved Boundary Element-Free Method (IBEFM) for two-dimensional potential problems[J]. Chinese Physics B, 2009, 18(10): 4065-4073.
[21] CHENG Y M, LI J H. A complex variable meshless method for fracture problems[J]. Science in China: Series G, Physics, Mechanics & Astronomy, 2006, 49(1): 46-59.
[22] 劉沛, 彭妙娟, 程玉民. 勢(shì)問(wèn)題的復(fù)變量無(wú)單元Galerkin方法[J]. 計(jì)算機(jī)輔助工程, 2009, 18(4): 11-15.
LIU P, PENG M J, CHENG Y M. Complex variables element-free Galerkin method for potential problems[J]. Computer Aided Engineering, 2009, 18(4): 11-15.
[23] PENG M J, LIU P, CHENG Y M. Complex Variable Element-Free Galerkin(CVEFG) method for two-dimensional elasticity problems[J]. International Journal of Applied Mechanics, 2009, 1(2): 367-385.
[24] PENG M J, LI D M, CHENG Y M. Complex Variable Element-Free Galerkin(CVEFG) method for elasto-plasticity problems[J]. Engineering Structures, 2011, 33(1): 127-135.
[25] 李冬明, 彭妙娟, 程玉民. 彈性大變形問(wèn)題的復(fù)變量無(wú)單元Galerkin方法[J]. 中國(guó)科學(xué): 物理學(xué) 力學(xué) 天文學(xué), 2011, 41(8): 1003-1014.
LI D M, PENG M J, CHENG Y M. Complex Variable Element-Free Galerkin(CVEFG) method for elastic large deformation problems[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2011, 41(8): 1003-1014.
[26] CHENG Y M, LI R X, PENG M J. Complex variable element-free Galerkin method for viscoelasticity problems[J]. Chinese Physics B, 2012, 21(9): 090205.
[27] CHENG Y M, WANG J F, LI R X. Complex Variable Element-Free Galerkin(CVEFG) method for two-dimensional elastodynamics problems[J]. International Journal of Applied Mechanics, 2012, 4(4): 1250042.
[28] BAI F N, LI D M, WANG J F, et al. An Improved Complex Variable Element-Free Galerkin(ICVEFG) method for two-dimensional elasticity problems[J]. Chinese Physics B, 2012, 21(2): 020204.
[29] CHENG Y M, WANG J F, BAI F N. A new complex variable element-free Galerkin method for two-dimensional potential problems[J]. Chinese Physics B, 2012, 21(9): 090203.
[30] WANG J F, CHENG Y M. A new complex variable meshless method for transient heat conduction problems[J]. Chinese Physics B, 2012, 21(12): 120206.
[31] WANG J F, CHENG Y M. New complex variable meshless method for advection-diffusion problems[J]. Chinese Physics B, 2013, 22(3): 030208.
[32] DENG Y J, LIU C, PENG M J, et al. The interpolating complex variable element-free Galerkin method for temperature field problems[J]. International Journal of Applied Mechanics, 2015, 7(2): 1550017.
[33] 馬翔, 倪富健, 陳榮生. 復(fù)合式機(jī)場(chǎng)道面載荷應(yīng)力[J]. 長(zhǎng)安大學(xué)學(xué)報(bào), 2010, 30(4): 23-27.
MA X, NI F J, CHEN R S. Load stress of composite airport pavement[J]. Journal of Changan University(Natural Science Edition), 2010, 30(4): 23-27.
[34] 馬翔, 倪富健, 顧興宇. 復(fù)合式機(jī)場(chǎng)道面結(jié)構(gòu)設(shè)計(jì)方法[J]. 交通運(yùn)輸工程學(xué)報(bào), 2010, 10(2): 36-40.
MA X, NI F J, GU X Y. Structure design method of composition airfield pavement[J]. Journal of Traffic and Transportation Engineering, 2010, 10(2): 36-40.
[35] 林小平. 復(fù)雜條件下機(jī)場(chǎng)跑道瀝青加鋪層結(jié)構(gòu)設(shè)計(jì)理論與方法[D]. 上海: 同濟(jì)大學(xué), 2007.
(編輯 武曉英)