• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sensitivity Enhancement in Uranium Determination by UV-Visible Spectroscopy Using Ion Imprinted Polymer

    2016-07-12 12:58:55TulinMehmetYAMAN
    光譜學(xué)與光譜分析 2016年6期

    Tulin M, Mehmet YAMAN

    Firat University, Sciences Faculty, Department of Chemistry, Elazig, Turkey

    Sensitivity Enhancement in Uranium Determination by UV-Visible Spectroscopy Using Ion Imprinted Polymer

    Firat University, Sciences Faculty, Department of Chemistry, Elazig, Turkey

    There is need to determination of uranium concentration at ppb level in environmental matrices. Due to low sensitivity of FAAS, UV-Visible Spectroscopy is generally used as measurement technique. In this study, ion-imprinted polymers (IIP) were prepared for uranyl ion (imprint ion) by formation of ternary (salicylaldoxime and 4-vinylpyridine) complex in 2-methoxy ethanol (porogen) following copolymerization with methacrylic acid (MAA) as a functional monomer and ethylene glycol dimethacrylate (EGDMA) as crosslinking monomer using 2,2-azobisisobutyronitrile as initiator. The synthesized polymers were characterized by FT-IR and TGA analysis. Arsenazo Ⅲ in 3 M HClO4was used as complexing agent in the measurement step. The optimal pH for preconcentration was found to be between 3.5~6.5 values. The developed method was applied to uranium (Ⅵ) determination in natural water samples.

    Uranium; Ion imprinted polymer; Arsenazo Ⅲ; UV-vis Spectroscopy

    Introduction

    Uranium and its compounds are highly toxic which cause progressive or irreversible renal injury and in acute cases may lead to kidney failure and death. The inhalation of uranium compounds results in deposition of uranium in the lungs and reaches kidneys through blood stream. The tolerable daily intake of uranium is established by World Health Organization (WHO) as 0.6 μg·kg-1of body weight per day[1]. The WHO, United States and European United-Member States related with Health drinking water guidelines fixed the maximum uranium concentration in drinking waters to be less than 10~30 μg·L-1[2-4]. The inhalation of uranium compounds results in deposition of uranium in lungs and reaches kidneys through blood stream. The uranium concentration of seawaters is about 3.0 ng·mL-1, below 2.0 ng·mL-1in freshwaters. Thus, highly sensitive methods are required for preconcentration and determination of uranium in water samples. Traditionally used neutron activation analysis (NAA) and more popular ICP-mass spectrometry (ICP-MS) are the techniques which are widely sought after for the determination of not only uranium, thorium and their radionuclides but also other actinides. However, the direct analysis of geological and environmental samples by NAA or ICP-MS is still difficult because of the very low concentrations of uranium and thorium and also the presence of complex matrix. Unlike other trace metals such as copper, lead cadmium and nickel[5-14], sensitivity of uranium by flame AAS is too poor due to the formation of refractory oxides in the flame region and has been used only scarcely. Even with the use of high temperatures and a nitrous oxide-acetylene flame, a poor sensitivity is achieved for uranium, approximately 50 g·mL-1for 1% absorbance, while the nitrous oxide-acetylene flame gives an absorbance reading of about 0.09 for 1 000 g·mL-1uranium if sufficient alkali has been added to suppress ionization[15]. GFAAS is useful for the trace determination of uranium (Ⅵ) and is sensitive unlike FAAS[16]. On the other hand, the interference due to matrix (in case of real sample analysis) is more pronounced and is not that popular. Energy dispersive, wavelength dispersive and total reflectance X-ray fluorescence spectrometric techniques are multi-element techniques but requires elaborate sample preparation, in addition to being not sensitive for liquid samples. Inductively coupled plasma atomic emission spectrometry (ICP-AES) is also multi-elemental technique but cannot be used for differentiating various radionuclides of uranium and thorium. Although the measurement of the fluorescence of the uranyl ion-ligand is one of the used methods for determining trace amounts of uranium, this method is of low accuracy as well as repeatability. So, researchers have focused to UV-vis. Spectrometry for U determination after preconcentration procedures[17-20]. For the spectrophotometric determination of uranium, several organic and inorganic reagents have been used among which are Arsenazo Ⅲ (2,7-bis(2-arsenophenylazo)-1,8-dihydroxynaphthalene-3,6-disulfonic acid disodium salt), morin, calmagite, pyrocathecol viole and dibenzoylmethane[17-20]. One way of achieving high sorption capacity is by the use of ligands of small size which can extensively functionalize an appropriate crosslinked polymer. In addition to the nature of the reagents, the role of the medium of determination is also very important. Various procedures have been reported for the determination of uranium in organic and mineral acid media. Arsenazo Ⅲ was found to be more stable in perchloric acid than in acids, such as sulfuric, hydrochloric and nitric acids[17-20]. Nitric acid among them, being an oxidizing agent, can easily decompose azo-dyes at room temperature[17-20]. On the other hand, because of the low concentration of uranium in water, the formation of complexes with these reagents by other trace elements, and the similarity of the absorption curve of the uranium complex with the curves of the complexes formed by other trace elements, most spectrophotometric determinations of uranyl ion are applied by a separation and preconcentration step. Among preconcentration methods, the imprinted polymer has greater selectivity for the target ion than does either the monomer ionophore or the unimprinted polymer. The polymer also provides remarkable concentration efficiency and good selectivity for the uranyl ion. The unique shape of the uranyl ion may be expected to lead to much greater selectivity and high adsorption capacity for the uranyl ion by molecular imprinting than for other metal ions. Briefly, ion imprinted molecular polymeric adsorbents are popular in recent years[21-27].

    In this study, ion-imprinted polymers (IIPs) were prepared for uranyl ion by formation of ternary (salicylaldoxime and 4-vinylpyridine) complex in 2-methoxy ethanol following copolymerization with methacrylic acid (MAA) as a functional monomer and ethylene glycol dimethacrylate (EGDMA) as crosslinking monomer using 2,2-azobisisobutyronitrile as initiator. Then, the supported U was removed from resin and determined by UV-Vis. Spectrometry.

    1 Experimental

    1.1 Reagents

    1.2 Instrumentation

    A Digital pH meter 100 (Cyberscan) was used for pH measurements. FT-IR spectra were recorded in the frequency range 4 000~400 cm-1by KBr pellet method using Perkin Elmer FT-IR. Temperature controlled rotary shaking machine was used for shaking. UV-Vis spectrometry (PG instruments-T80+) was used for determination of U. ICP-MS was also used to determine U in some samples for check the accuracy.

    1.3 Synthesis of ion-imprinted and control polymers

    As a result, ion-imprinted polymers (IIPs) were prepared for uranyl ion by formation of ternary (salicylaldoxime and 4-vinylpyridine) complex in 2-methoxy ethanol following copolymerization with methacrylic acid (MAA) as a functional monomer and ethylene glycol dimethacrylate (EGDMA) as crosslinking monomer using 2,2-azobisisobutyronitrile as initiator. Control polymer (CP) was also prepared under identical experimental conditions without using imprint ion. The above synthesized polymers were characterized by FT-IR analysis techniques.

    1.4 Removal of imprint ion from the polymer

    The imprint ion was removed from 2 g of the synthesized polymer by stirring with 100 mL of 4.0 mol·L-1HCl for 1 h, two times, and 100 mL of 2 mol·L-1HCL. The activated polymer obtained after filtration was dried in an oven at 80 ℃ to get leached ion-imprinted polymer for possible selective extraction of uranium (Ⅵ) from dilute aqueous solution. The effect of various leachants: HCl, HNO3or H2SO4(2.0 and 4.0 mol·L-1) was studied.

    Fig.1 Scheme of imprinted uranium removal and preconcentration steps

    1.5 Preconcentration procedure

    A 0.1 g of activated (U removed) IIP was added to the 100 mL solutions of 10~500 ppb U and the pH of these solutions were adjusted to 4.5 by addition of 10 mL of CH3COOH/CH3COONa buffer. The solutions were stirred for 30 min. After that, the uranyl ions preconcentrated on polymers were eluted by heating and evaporating added 5 mL of concentrated nitric acid to the polymer. Then, 10 mL of 3 mol·L-1HClO4was added, stirred and filtrated. The clear solution was measured for U. The detailed scheme steps were given in Figure 1.

    1.6 Determination of uranium by UV-Vis. spectrophotometry

    The uranyl ion content in eluent was determined spectrophotometrically using the modified Arsenazo Ⅲ method. Two mL of Arsenazo Ⅲ in 3 mol·L-1HClO4were added to 2.0 mL of eluent. After stirring and waiting for 30 min to equilibrate the complex, the absorbance of uranium (Ⅵ)-Arsenazo Ⅲ complex was measured at 651.0 nm. The calibration solutions were also measured in this way. Using calibration curve, U concentrations in the samples studied were found. Spectra of different U solutions were displayed in Fig.2.

    Fig.2 UV-Vis spectra of different U solutions

    Related with statistically consideration, One-Way Analyses of Variance (ANOVA) were conducted to test the equality of mean values for each sample of interest. One of the pairwise comparisoo tests, Tukey HSD, was carried out to find which of the sample means is different from each other. SPSS (version 15) statistical program was used for all statistical computations. Statistical significance was considered when P was equal to=or higher than 0.05.

    2 Results and Discussion

    2.1 FT-IR spectra and TGA for characterization of IIP

    Fig.3 FTIR spectrum of IIP

    Fig.4 TGA curve of the synthesized IIP

    2.2 Optimization of reagent species and concentrations in measurement step

    As it is described above, the nature of the reagents and the role of the medium of determination are very important in UV-Vis. Spectrophotometric measurement. Morine, pyrocathecol and Arsenazo Ⅲ were examined to determine maximum absorbance using the same concentrations of uranyl ions. Arsenazo Ⅲ was found the best reagent for this purpose. Then, the same concentrations of perchloric, sulfuric, hydrochloric and nitric acids were used in dilution procedure at the measurement step to determine the best solvent. Maximum absorbance signals were obtained by using perchloric acid. Thus, different concentrations of perchloric acid were examined to determine maximum sensitivity. The obtained results were given in Table 1.

    Table 1 Effect of HClO4 concentration on absorbance signal of 10 mg·L-1 U

    2.3 Effect of pH

    2.4 Optimization of other experimental variables in preconcentration procedure

    It was found that 30 min of stirring time for the preconcentration at pH 4.5 is enough for maximum recovery. The results obtained depending on nature of eluent, eluent concentration and eluent volume are summarized in Table 2. It was found that hydrochloric acid alone offers quantitative elution of imprinted uranium (Ⅵ). The required minimum concentration of HCl was found to be 4.0 mol·L-1to elute the imprinted uranium (Ⅵ). Further, the increase of the initial volume of solution up to 500 mL did not affect the quantitative recovery of uranium (Ⅵ). So, calibration curve and real samples were also carried out using 500 mL of solutions.

    Fig.5 Effect of pH on preconcentration

    Table 2 Effect of acid species and concentration on leaching of uranium (Ⅵ)

    ParameterRecovery/%1.0mol·L-1HCl602.0mol·L-1HCl703.0mol·L-1HCl804.0mol·L-1HCl921.0mol·L-1HNO3632.0mol·L-1HNO3683.0mol·L-1HNO3824.0mol·L-1HNO3931.0mol·L-1H2SO4502.0mol·L-1H2SO4604.0mol·L-1H2SO4753-times30min.4mol·L-1HCl873-times60min.4mol·L-1HCl923-times120min.4mol·L-1HCl92

    2.5 Calibration graph and accuracy studies

    Under the optimum conditions described above, the calibration curve was linear over the concentration range 2.0~50 μg·L-1of uranium (Ⅵ) using 500 mL of initial solutions according Fig.1. The linear equation with regression is as follows.

    Y=22.692x+0.269 7 R2=0.999 9

    where correlation coefficient is 0.999 9,Yis the absorbance andxis the concentration in μg·L-1. The LOD and LOQ were found to be 0.7 and 2.0 μg·L-1. All the statistical calculations are based on the average of triplicate readings for each standard solution in the given range. Some sample solutions were determined by ICP-MS to check the accuracy of results. It was found that there are no significant differences (the recoveries higher than 90% were obtained for the results from UV-Vis and ICP-MS) between the data obtained by the UV-Vis and ICP-MS methods using t test at a confidence level of 90%. Furthermore, A recovery test was performed by determining the spiked concentration in the samples in which 20 μg·L-1of uranium (Ⅵ) was added. The recoveries of uranium (Ⅵ) from real water were 96%±7% which could make the procedure a reliable method. Related the selectivity studies, Fe, Ca, Mg, Ni, Al, Mn, Zn, Cr and Co metal ions were added to U solutions. The results from Table 3 show that those ions do not affect quantitative determination of uranyl ions from solutions by using the optimized method.

    Table 3 Effect of metal ions on recovery of U

    2.6 Applications

    The applicability of the method was tested to the natural water samples. The ground, river and Lake waters were subjected to uranium analysis by employing the developed preconcentration method in conjunction with the Arsenazo Ⅲ spectrophotometric method. The obtained results for the studied water samples were given in Table 4. It was found that uranium in river and ground water is under sensitivity (2.0 μg·L-1) of the developed method. The mean U concentration in Lake Van Water was found to be 60 μg·L-1.

    Table 4 Results obtained for real samples.

    3 Conclusions

    [1] Zhivin S, Laurier D, Canu I G. International Journal of Radiation Biology, 2014, 90(11): 1104.

    [2] World Health Organization. WHO, Geneva, 4th ed. 2011. 430.

    [3] EU 98/83/ECD, European Commission Directive, Related with Drinking Water Quality Intended for Human Consumption, European Commission, Brussels, Belgium, 1998.

    [4] United States Environmental Protection Agency, National Primary Drinking Water Regulations, EPA 816-F-09-0004, http://water.epa.gov/drink/contaminants/index.cfm#Inorganic. 2009.

    [5] Ozen O A, Songur A, Sarsilmaz M, et al. Journal of Trace Elements in Medicine and Biology, 2003, 17(3): 207.

    [6] Yaman M, Kaya G, Simsek M. International Journal of Gynecological Cancer, 2007, 17: 220.

    [7] Yaman M, Cokol N. Atomic Spectroscopy, 2004, 25(4): 185.

    [8] Yaman M, Kaya G, Yekeler H. World Journal of Gastroenterology, 2007, 13(4): 612.

    [9] Yaman M, Gucer S. Analyst, 1995, 120: 101.

    [10] Yaman M. Journal of Analytical Atomic Spectrommetry, 1999, 14: 275.

    [11] Yaman M, Atici D, Bakirdere S, et al. Journal of Medicinal Chem., 2005, 48(2): 630.

    [12] Kaya G, Akdeniz I, Yaman M. Atomic Spectroscopy, 2008, 29(3): 99.

    [13] Yaman M. Analytical Biochemistry, 2005, 339: 1.

    [14] Kaya G, Yaman M. Talanta, 2008, 75: 1127.

    [15] Santos J S, Teixeira L S G, Dos Santos W N L, et al. Anal. Chim. Acta, 2010, 674: 143.

    [16] Shamsipur M, Ghiasvand A R, Yamini Y. Anal. Chem., 1999, 71: 4892.

    [17] Park C, Huang H, Cha K. Bull. Corean Chem., 2001, 22: 84.

    [18] Jauberty L, Drogat N, Decossas J L, et al. Talanta, 2013, 115: 751.

    [19] Ozdemir S, Kilinc E. Microchim. Acta, 2012, 178: 389.

    [20] Golmohammadi H, Radhidi A, Safdari S J. Chemistry and Chemical Technology, 2012, 6(3): 245.

    [21] Khan M H, Warwick P, Evans N. Chemosphere, 2006, 63: 1165.

    [22] Singh D K, Mishra S. Anal. Chim. Acta, 2009, 644: 42.

    [23] Metilda P, Gladis J M,et al. Anal. Chim. Acta, 2007, 587: 263.

    [24] Gladis J M,Rao T P. Microchim. Acta, 2004, 146: 251.

    [25] Metilda P, Gladis J M, Rao T P. Anal. Chim. Acta, 2004, 512: 63.

    [26] Monier M, Alatawi R A S, Abdel-Latif D A. Journal of Molecular Recognition, 2015, 28: 306.

    [27] Qian J, Zhang S, et al. Rsc. Advances, 2015, 5: 4153.

    [28] Say R, Ersoz A, Denizli A. Separation Science And Technology, 2003, 38(14): 3431.

    [29] Yaman M, Ince M, Erel E, et al. Clean-Soil Air Water, 2011, 39: 530.

    [30] Kolpakova M. Procedia Earth Planetary Sci., 2014, 10: 164.

    O657.3

    A

    Foundation item: the Scientific Investigate Projects of Firat University, Turkey (FF.14.10)

    10.3964/j.issn.1000-0593(2016)06-1992-06

    Received: 2015-10-14; accepted: 2016-02-02

    Biography: Professor Yaman received his Ph.D. in 1990 from the University of Inonu, Malatya-Turkey e-mail: myaman@firat.edu.tr; ijpacmy@gmail.com

    欧美激情 高清一区二区三区| 亚洲av成人av| 久久亚洲真实| 亚洲国产中文字幕在线视频| 国产伦在线观看视频一区| 精品国产亚洲在线| 黄片小视频在线播放| 欧美在线一区亚洲| 非洲黑人性xxxx精品又粗又长| 日韩欧美国产在线观看| 久久精品亚洲精品国产色婷小说| 国产精品久久久久久亚洲av鲁大| 淫秽高清视频在线观看| e午夜精品久久久久久久| 日日摸夜夜添夜夜添小说| 亚洲成人免费电影在线观看| 亚洲av美国av| 一级作爱视频免费观看| 日日爽夜夜爽网站| 老熟妇仑乱视频hdxx| 国产精品二区激情视频| 欧美人与性动交α欧美精品济南到| 中文字幕最新亚洲高清| 亚洲中文字幕一区二区三区有码在线看 | 久久亚洲真实| 国产aⅴ精品一区二区三区波| 777久久人妻少妇嫩草av网站| 欧美日本亚洲视频在线播放| 欧美日韩乱码在线| 欧美黄色淫秽网站| 好看av亚洲va欧美ⅴa在| 悠悠久久av| 男女下面进入的视频免费午夜 | 91av网站免费观看| 十八禁人妻一区二区| 成熟少妇高潮喷水视频| 久久精品亚洲精品国产色婷小说| 激情在线观看视频在线高清| 精品不卡国产一区二区三区| 欧美日本亚洲视频在线播放| 18禁美女被吸乳视频| 黄色片一级片一级黄色片| 精品久久久久久久久久免费视频| 一边摸一边做爽爽视频免费| 国产高清激情床上av| 欧美日韩乱码在线| 成人亚洲精品av一区二区| 9191精品国产免费久久| 亚洲成人精品中文字幕电影| 午夜亚洲福利在线播放| 国产区一区二久久| 国产熟女xx| 久久国产精品影院| 伊人久久大香线蕉亚洲五| 亚洲精品美女久久久久99蜜臀| 亚洲精品久久国产高清桃花| 成人18禁在线播放| 午夜两性在线视频| 免费在线观看完整版高清| 国产精品久久视频播放| 国内久久婷婷六月综合欲色啪| 超碰成人久久| 在线观看一区二区三区| 国产成人精品久久二区二区91| 老司机午夜十八禁免费视频| 女人爽到高潮嗷嗷叫在线视频| 亚洲专区中文字幕在线| 天天添夜夜摸| 国产亚洲欧美98| 热re99久久国产66热| 免费在线观看影片大全网站| 国产三级黄色录像| 嫁个100分男人电影在线观看| 午夜老司机福利片| 精品久久久久久久人妻蜜臀av| 999久久久精品免费观看国产| 岛国视频午夜一区免费看| 国产精华一区二区三区| 成人18禁高潮啪啪吃奶动态图| 一区二区三区激情视频| 国产av不卡久久| 一级作爱视频免费观看| 熟妇人妻久久中文字幕3abv| 黄色女人牲交| 久9热在线精品视频| 啦啦啦韩国在线观看视频| 99久久久亚洲精品蜜臀av| 亚洲熟妇熟女久久| 少妇的丰满在线观看| 欧美性长视频在线观看| 久久精品国产清高在天天线| 欧美日韩一级在线毛片| 国产熟女xx| 国产又爽黄色视频| 俺也久久电影网| 精品一区二区三区av网在线观看| 久久欧美精品欧美久久欧美| 久久精品国产亚洲av高清一级| 色av中文字幕| 国产亚洲av高清不卡| 在线免费观看的www视频| 给我免费播放毛片高清在线观看| 麻豆一二三区av精品| 久久欧美精品欧美久久欧美| 亚洲国产精品成人综合色| 日本三级黄在线观看| 麻豆成人av在线观看| 88av欧美| 欧美黄色淫秽网站| 国产亚洲精品久久久久久毛片| 99精品欧美一区二区三区四区| 男人操女人黄网站| 久久精品国产综合久久久| 在线视频色国产色| 十八禁人妻一区二区| 啦啦啦观看免费观看视频高清| 麻豆久久精品国产亚洲av| 午夜福利18| av在线天堂中文字幕| 欧美性猛交黑人性爽| 免费人成视频x8x8入口观看| 夜夜躁狠狠躁天天躁| 国产爱豆传媒在线观看 | 亚洲免费av在线视频| 两性午夜刺激爽爽歪歪视频在线观看 | 九色国产91popny在线| 超碰成人久久| 深夜精品福利| 国产亚洲欧美98| 欧美不卡视频在线免费观看 | 国产精品免费一区二区三区在线| 一进一出抽搐动态| 老司机在亚洲福利影院| www.999成人在线观看| 黄色片一级片一级黄色片| 波多野结衣巨乳人妻| 亚洲一区二区三区色噜噜| 美女高潮喷水抽搐中文字幕| 午夜激情福利司机影院| 国产精品98久久久久久宅男小说| 久久精品影院6| 热99re8久久精品国产| 国产精品亚洲美女久久久| 国产主播在线观看一区二区| 久久午夜亚洲精品久久| 99国产精品一区二区三区| 久久精品aⅴ一区二区三区四区| 两性夫妻黄色片| 亚洲中文日韩欧美视频| 午夜福利一区二区在线看| 两性夫妻黄色片| 色播在线永久视频| 久久精品aⅴ一区二区三区四区| 欧美成狂野欧美在线观看| 精品卡一卡二卡四卡免费| 亚洲第一av免费看| 好男人在线观看高清免费视频 | 亚洲精华国产精华精| 国产成人av激情在线播放| 男人舔奶头视频| 亚洲欧美一区二区三区黑人| 亚洲人成网站高清观看| 国产精品久久久av美女十八| 波多野结衣高清作品| 亚洲色图 男人天堂 中文字幕| 99久久99久久久精品蜜桃| 无遮挡黄片免费观看| 欧美黑人巨大hd| 精品国内亚洲2022精品成人| 在线观看一区二区三区| 嫁个100分男人电影在线观看| 亚洲avbb在线观看| 成年版毛片免费区| 国产一区二区激情短视频| 在线av久久热| 亚洲电影在线观看av| 国产三级黄色录像| 欧洲精品卡2卡3卡4卡5卡区| 又紧又爽又黄一区二区| 日韩 欧美 亚洲 中文字幕| 久久天躁狠狠躁夜夜2o2o| 成人国语在线视频| 午夜激情av网站| 久久久久久久久久黄片| 欧美黄色淫秽网站| 亚洲成人久久性| 免费看美女性在线毛片视频| 看免费av毛片| 久热这里只有精品99| bbb黄色大片| 岛国在线观看网站| 变态另类丝袜制服| 亚洲欧洲精品一区二区精品久久久| ponron亚洲| 亚洲av第一区精品v没综合| 久久久久久久久免费视频了| 日韩 欧美 亚洲 中文字幕| 好男人在线观看高清免费视频 | 男人的好看免费观看在线视频 | 色在线成人网| 在线观看免费午夜福利视频| 久热爱精品视频在线9| 国产午夜精品久久久久久| www国产在线视频色| 一区二区三区激情视频| 啪啪无遮挡十八禁网站| 午夜日韩欧美国产| 欧美黑人欧美精品刺激| 欧美另类亚洲清纯唯美| 久久久久久九九精品二区国产 | 午夜久久久在线观看| 亚洲国产欧美日韩在线播放| 亚洲七黄色美女视频| 精品一区二区三区av网在线观看| 久久亚洲精品不卡| 欧美日韩福利视频一区二区| 国产亚洲av高清不卡| av在线天堂中文字幕| 观看免费一级毛片| 午夜福利欧美成人| 老司机午夜十八禁免费视频| 黄色 视频免费看| 亚洲欧美一区二区三区黑人| 精品卡一卡二卡四卡免费| 亚洲激情在线av| 亚洲欧美激情综合另类| 悠悠久久av| 免费搜索国产男女视频| 国产免费男女视频| 女性生殖器流出的白浆| 日本在线视频免费播放| 国产爱豆传媒在线观看 | 亚洲五月天丁香| 国产成人精品久久二区二区免费| 99热只有精品国产| 精品久久蜜臀av无| 国产午夜福利久久久久久| 精品国产乱码久久久久久男人| 国产精品一区二区免费欧美| 日韩精品免费视频一区二区三区| 99久久精品国产亚洲精品| 一区二区三区激情视频| 中亚洲国语对白在线视频| 99久久99久久久精品蜜桃| 免费在线观看完整版高清| 久久久久国产一级毛片高清牌| 午夜视频精品福利| 桃红色精品国产亚洲av| 亚洲午夜精品一区,二区,三区| 亚洲精品粉嫩美女一区| 观看免费一级毛片| 久久99热这里只有精品18| 很黄的视频免费| 精品国产亚洲在线| 1024视频免费在线观看| 亚洲av五月六月丁香网| 久久人妻福利社区极品人妻图片| 波多野结衣巨乳人妻| 免费电影在线观看免费观看| 熟女少妇亚洲综合色aaa.| 自线自在国产av| 桃红色精品国产亚洲av| www日本在线高清视频| 国产精品日韩av在线免费观看| svipshipincom国产片| 18禁观看日本| 中文字幕人妻熟女乱码| 欧美三级亚洲精品| 麻豆av在线久日| 无限看片的www在线观看| 亚洲精品粉嫩美女一区| 91大片在线观看| 欧美av亚洲av综合av国产av| 99久久精品国产亚洲精品| 麻豆久久精品国产亚洲av| 中亚洲国语对白在线视频| 成人特级黄色片久久久久久久| 日韩欧美免费精品| 亚洲国产日韩欧美精品在线观看 | 欧美日本视频| 久久久久久国产a免费观看| 一本精品99久久精品77| 国产精品久久久人人做人人爽| 久久久国产成人精品二区| 欧美一区二区精品小视频在线| 丝袜人妻中文字幕| 国产精品99久久99久久久不卡| 免费高清在线观看日韩| 日日摸夜夜添夜夜添小说| 久久中文看片网| 校园春色视频在线观看| 一级a爱片免费观看的视频| 久9热在线精品视频| 一级黄色大片毛片| 亚洲国产欧美一区二区综合| 曰老女人黄片| 91av网站免费观看| 搡老熟女国产l中国老女人| 中文字幕人妻丝袜一区二区| 欧美大码av| 国产不卡一卡二| 欧美色欧美亚洲另类二区| 少妇粗大呻吟视频| 中文字幕人妻熟女乱码| 日韩欧美 国产精品| www.www免费av| 老熟妇乱子伦视频在线观看| 亚洲七黄色美女视频| 中文资源天堂在线| 国产精品爽爽va在线观看网站 | 日韩欧美一区二区三区在线观看| 亚洲avbb在线观看| 国内揄拍国产精品人妻在线 | 亚洲 国产 在线| 亚洲色图 男人天堂 中文字幕| 又紧又爽又黄一区二区| 这个男人来自地球电影免费观看| 国产精品免费视频内射| 欧美成人一区二区免费高清观看 | 国产成人精品久久二区二区免费| 久久久久久大精品| 看黄色毛片网站| 久久久水蜜桃国产精品网| 日本一本二区三区精品| 欧美黑人欧美精品刺激| 啦啦啦观看免费观看视频高清| 欧美激情 高清一区二区三区| 色尼玛亚洲综合影院| 国产在线观看jvid| 色综合欧美亚洲国产小说| 无遮挡黄片免费观看| 欧美色欧美亚洲另类二区| 嫩草影视91久久| 在线观看免费午夜福利视频| 91字幕亚洲| 久久香蕉激情| 男人舔女人的私密视频| 中文字幕精品亚洲无线码一区 | 在线观看免费日韩欧美大片| 国产亚洲精品久久久久久毛片| 日本 欧美在线| 又黄又爽又免费观看的视频| 亚洲黑人精品在线| 国产精品99久久99久久久不卡| 欧美zozozo另类| 在线观看舔阴道视频| 国产精品久久久人人做人人爽| aaaaa片日本免费| 亚洲精品在线美女| 禁无遮挡网站| 曰老女人黄片| or卡值多少钱| 精品国产乱子伦一区二区三区| av中文乱码字幕在线| 大香蕉久久成人网| 一区二区三区激情视频| 后天国语完整版免费观看| 国产一区二区三区视频了| 亚洲成av人片免费观看| 欧美亚洲日本最大视频资源| 一级作爱视频免费观看| 少妇粗大呻吟视频| 三级毛片av免费| 午夜福利高清视频| 午夜激情福利司机影院| 久久人人精品亚洲av| 99久久精品国产亚洲精品| av中文乱码字幕在线| xxxwww97欧美| 国产精品久久久av美女十八| 亚洲国产中文字幕在线视频| 精品国产美女av久久久久小说| 精品欧美一区二区三区在线| 欧美亚洲日本最大视频资源| av视频在线观看入口| 中文字幕高清在线视频| 日韩视频一区二区在线观看| 91九色精品人成在线观看| 亚洲九九香蕉| 欧美国产精品va在线观看不卡| 搡老妇女老女人老熟妇| 欧美激情久久久久久爽电影| 麻豆av在线久日| 欧美成人午夜精品| 男人操女人黄网站| 自线自在国产av| 精品无人区乱码1区二区| 欧美又色又爽又黄视频| 十分钟在线观看高清视频www| 最好的美女福利视频网| 成年女人毛片免费观看观看9| 国产又爽黄色视频| 成人18禁在线播放| 男女床上黄色一级片免费看| 久久青草综合色| 久久久水蜜桃国产精品网| 国产精品野战在线观看| 国产精品av久久久久免费| 香蕉久久夜色| 满18在线观看网站| 一级黄色大片毛片| 好男人在线观看高清免费视频 | 91麻豆av在线| 男人舔奶头视频| 青草久久国产| 一二三四在线观看免费中文在| 亚洲精品久久国产高清桃花| 国产成人欧美| 操出白浆在线播放| 女人高潮潮喷娇喘18禁视频| 人妻久久中文字幕网| 草草在线视频免费看| 欧美大码av| 波多野结衣高清作品| 中文字幕av电影在线播放| 一个人免费在线观看的高清视频| 成人永久免费在线观看视频| 亚洲aⅴ乱码一区二区在线播放 | 日韩欧美三级三区| 真人做人爱边吃奶动态| 性色av乱码一区二区三区2| 国产精品国产高清国产av| 母亲3免费完整高清在线观看| 精品福利观看| 午夜免费激情av| 精品一区二区三区视频在线观看免费| 18禁黄网站禁片午夜丰满| 国内少妇人妻偷人精品xxx网站 | 日韩精品免费视频一区二区三区| 最新美女视频免费是黄的| 亚洲精品美女久久av网站| 在线国产一区二区在线| 国产高清有码在线观看视频 | 一本大道久久a久久精品| or卡值多少钱| 亚洲自偷自拍图片 自拍| 国产黄色小视频在线观看| 老司机在亚洲福利影院| 91国产中文字幕| 免费在线观看影片大全网站| 国产视频内射| 午夜a级毛片| 成人18禁高潮啪啪吃奶动态图| 国产av不卡久久| 一区二区三区国产精品乱码| 日本免费a在线| 午夜激情av网站| 国产亚洲av嫩草精品影院| 午夜福利高清视频| 久久草成人影院| 国产精品久久久人人做人人爽| 亚洲在线自拍视频| 国产精品自产拍在线观看55亚洲| 免费无遮挡裸体视频| 91国产中文字幕| 国产爱豆传媒在线观看 | 精品国产乱子伦一区二区三区| 成人亚洲精品一区在线观看| 国产亚洲精品久久久久5区| 国产亚洲精品综合一区在线观看 | 亚洲avbb在线观看| 中文字幕人妻丝袜一区二区| 中文资源天堂在线| 最近最新免费中文字幕在线| ponron亚洲| 少妇的丰满在线观看| 在线永久观看黄色视频| 窝窝影院91人妻| 俄罗斯特黄特色一大片| 欧美精品亚洲一区二区| 中文字幕人妻熟女乱码| 一级a爱片免费观看的视频| 亚洲欧洲精品一区二区精品久久久| 天堂√8在线中文| 好看av亚洲va欧美ⅴa在| 亚洲国产欧美一区二区综合| 一区二区三区高清视频在线| 久久精品国产99精品国产亚洲性色| 一区二区日韩欧美中文字幕| 夜夜躁狠狠躁天天躁| 黄色视频,在线免费观看| 国产亚洲精品av在线| 女性生殖器流出的白浆| 99国产精品99久久久久| 欧美日韩中文字幕国产精品一区二区三区| 香蕉久久夜色| www.www免费av| 大型黄色视频在线免费观看| 色av中文字幕| 久久精品影院6| 热re99久久国产66热| av视频在线观看入口| 久久久久久免费高清国产稀缺| 黄片大片在线免费观看| 一级黄色大片毛片| 18禁裸乳无遮挡免费网站照片 | 亚洲国产欧美一区二区综合| 国产精品综合久久久久久久免费| 91麻豆av在线| 一二三四社区在线视频社区8| 欧美乱码精品一区二区三区| 久久天躁狠狠躁夜夜2o2o| 国内少妇人妻偷人精品xxx网站 | 美女高潮到喷水免费观看| 免费在线观看视频国产中文字幕亚洲| 一本久久中文字幕| 国产亚洲精品第一综合不卡| 91大片在线观看| 亚洲狠狠婷婷综合久久图片| 国产精品一区二区精品视频观看| 欧美日韩福利视频一区二区| 午夜a级毛片| 啦啦啦韩国在线观看视频| 黄频高清免费视频| 成人特级黄色片久久久久久久| 在线看三级毛片| 国产蜜桃级精品一区二区三区| 一级毛片女人18水好多| 满18在线观看网站| 国产高清视频在线播放一区| 欧美另类亚洲清纯唯美| 国产一区二区激情短视频| 婷婷亚洲欧美| 女警被强在线播放| 亚洲精品久久成人aⅴ小说| 免费在线观看日本一区| 亚洲av熟女| 999精品在线视频| 成年女人毛片免费观看观看9| 欧美黄色片欧美黄色片| 欧美绝顶高潮抽搐喷水| 亚洲色图 男人天堂 中文字幕| 国产成人系列免费观看| 怎么达到女性高潮| 欧美zozozo另类| 午夜福利高清视频| √禁漫天堂资源中文www| 19禁男女啪啪无遮挡网站| 激情在线观看视频在线高清| 亚洲成人久久爱视频| 国内揄拍国产精品人妻在线 | 中文字幕人妻丝袜一区二区| 日本熟妇午夜| 欧美色视频一区免费| 国产真人三级小视频在线观看| 看免费av毛片| 夜夜爽天天搞| 国产精品影院久久| 最近最新中文字幕大全电影3 | 操出白浆在线播放| 最好的美女福利视频网| 成年免费大片在线观看| avwww免费| 国产又黄又爽又无遮挡在线| 变态另类丝袜制服| 国产亚洲精品av在线| 国产成人精品无人区| 亚洲午夜精品一区,二区,三区| a级毛片在线看网站| 亚洲中文字幕日韩| 麻豆国产av国片精品| 久久欧美精品欧美久久欧美| 首页视频小说图片口味搜索| 波多野结衣av一区二区av| 亚洲国产中文字幕在线视频| 亚洲,欧美精品.| 在线国产一区二区在线| 一夜夜www| 精品少妇一区二区三区视频日本电影| 好男人在线观看高清免费视频 | 国产极品粉嫩免费观看在线| 国产av在哪里看| 国产区一区二久久| 国产一区在线观看成人免费| 国内久久婷婷六月综合欲色啪| 亚洲精品美女久久久久99蜜臀| 黑人操中国人逼视频| 欧美日韩乱码在线| 亚洲av五月六月丁香网| 嫁个100分男人电影在线观看| 国产精品综合久久久久久久免费| 桃色一区二区三区在线观看| 日韩精品免费视频一区二区三区| 国产aⅴ精品一区二区三区波| 日韩三级视频一区二区三区| 精品国产国语对白av| 人成视频在线观看免费观看| 久久精品91蜜桃| 成年人黄色毛片网站| av天堂在线播放| 午夜福利成人在线免费观看| 18禁国产床啪视频网站| 久久青草综合色| 久久人妻福利社区极品人妻图片| 国产黄片美女视频| 欧美色视频一区免费| 人人妻人人澡欧美一区二区| 成年女人毛片免费观看观看9| 丰满的人妻完整版| 国产激情欧美一区二区| 亚洲九九香蕉| 久热爱精品视频在线9| 嫁个100分男人电影在线观看| 黄色 视频免费看| 夜夜夜夜夜久久久久| 在线观看一区二区三区| 91老司机精品| 91成年电影在线观看| 美女国产高潮福利片在线看| 高清毛片免费观看视频网站| 欧美+亚洲+日韩+国产| 国产v大片淫在线免费观看| 久久天堂一区二区三区四区| 亚洲精品av麻豆狂野| 久久久水蜜桃国产精品网|