• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Surface-Enhanced Raman Spectroscopy Study of Fresh Human Urine:A Preliminary Study

    2016-07-12 12:59:43ZHENGBinDONGJinchaoSULizhongMENGMengZHANGYuejiaoLIJianfeng
    光譜學(xué)與光譜分析 2016年6期
    關(guān)鍵詞:成份拉曼尿液

    ZHENG Bin, DONG Jin-chao, SU Li-zhong, MENG Meng,ZHANG Yue-jiao, LI Jian-feng*

    1. Department of Otolaryngology, Zhejiang Provincial People’s Hospital, Hangzhou 310014, China 2. State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and

    Surface-Enhanced Raman Spectroscopy Study of Fresh Human Urine:A Preliminary Study

    ZHENG Bin1*, DONG Jin-chao2, SU Li-zhong1, MENG Meng2,ZHANG Yue-jiao2, LI Jian-feng2*

    1. Department of Otolaryngology, Zhejiang Provincial People’s Hospital, Hangzhou 310014, China 2. State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and

    Chemical Engineering, Xiamen University, Xiamen 361005, China

    In this work, we have mainly studied SERS spectra of fresh human urine by using Au nanoparticles excited by 785 and 1 030 nm lasers, respectively. And the UV/Vis adsorption experiment of the Au nanoparticles mixed with different ratio of urine has been performed, and the obvious shifting of corresponding absorption band is observed. The result showed that the Au nanoparticles which have been synthesized by classical Fren’s method can interact with urine, and the Au nanoparticles aggregations caused by the urine have strong SERS effect. Intense and repeatable spectra of the urine samples can be quickly obtained using Au colloids, which characterized by the scanning electron microscope (SEM) and the high-resolution transmission electron microscope (HRTEM) images, and it can be confirmed that the size of the Au nanoparticles is about 55 nm with a finite variation. When different spectra can be detected under different exciting lasers, the various biofluid to Au substrate ratios can generate different intense spectra. From the spectra of 785 nm laser, we can conclude that it has lower background and higher resolution with more detail information of this system contained human urine. For the 1 030 nm laser, a portable Raman instrument is helpful for on-site clinic treatment detection. It also gets well defined information and will be a good and convenient choice for urine analysis. It should note that this peak band located at 1 006 cm-1may be the dominant nitrogen-containing component in urine. On the other hand, uric acid, urea, hypoxanthine as well as creatinine can be assigned; the other bands are still unknown, which might be attributed to biomarkers important for disease differentiation. Another result shows that different sample preparation can influence the SERS spectra with different ratio. We also have made a comparison of Raman spectra between 785 and 1 030 nm lasers to learn the difference between each other just like background and high-resolution. The current study indicates the SERS of urine might be a good choice and tool for urinalysis with potential diagnostic application, especially with the portable Raman instrument which would be an accurate and convenient approach for urine analysis. It is possible for SERS detection to be applied in not only the health diagnosis but also biological tissue in the future.

    SERS; Urine; Diagnosis; Au nanoparticle

    Introduction

    Surface-enhanced Raman spectroscopy (SERS) is vibrational spectroscopy which can provide ultra-high surface sensitivity with fingerprint information[1-2]. It has large Raman cross-sections on nanostructured gold and silver surfaces, which can realize small molecules, even single molecules level detection[3-6]. With the aim of developing diagnostic applications, increasing attention has been paid to the SERS studies of biological samples, such as blood[7-9]and urine[10-12]. Urine is excess wastes extracted from the bloodstream by the kidney, containing water, sugars, and more than 2600 different metabolites[13-15]. More importantly, urine has been universally used as samples in diagnostics for its easily available and noninvasively collected in large volumes, since it has rich biological information[16].

    Despite of the potential diagnostic value of urine, there are only a few groups studied the SERS spectra of urine using a variety of substrates and excitation wavelengths[10,12,17-18]. It was reported that the urine can be detected by SERS, including uric acid, urea, hypoxanthine and creatinine[10,18], where the change of Raman band intensity may reflect the disease information[10]. Different exciting lasers play important roles on the SERS detections of the target compounds[19]. However, there were only 785 nm[10,12]and 633 nm[18]lasers applied to detect urine. It’s also important to study SERS spectra excited by the other laser lines, such as 1 030 nm, which may provide different useful information for urine analysis.

    In the present work, we have performed SERS studies of fresh human urine using 55 nm Au nanoparticles as SERS substrate. The comparison of spectra between 785 and 1 030 nm laser are carried out, and the Raman signals with different biofluid-substrate ratios will also be discussed.

    1 Materials and methods

    1.1 Collection of urine samples

    Human urine experiments were performed with the agreement of ethical committee in our institution (Zhejiang Provincial People’s Hospital, Hangzhou, China), and the informed consent was obtained. The male volunteer was 32 years old, and he had no chronic systemic diseases or acute inflammations. Before experiments, a routine urine test of a morning urine sample was done and there were no abnormal results. After overnight fasting, midstream specimens of urine were collected in a 50 mL centrifuge tube and placed under room temperature. All the samples were obtained from the same person, and all experiments were carried out within 1 hour after the collection of urine.

    1.2 SERS substrates preparation and characterization

    1.2.1 Chemicals

    Chloroauric acid (99.99%) and sodium citrate (99.0%) were purchased from Alfa Aesar. All chemicals were used as received without further purification. Milli-Q water (~18.2 MΩ·cm) was used throughout the study.

    1.2.2 Synthesis of 55 nm Au nanoparticles

    Au nanoparticles were prepared as following[20]: 1.4 mL of 1 Wt% sodium citrate solution was added into 200 mL of 0.01 Wt% boiling HAuCl4solution. The mixture was refluxed for 1 h and then cooled down to room temperature. The structure gold nanoparticles were measured by the scanning electron microscope (SEM, Sigma-4800) and high-resolution transmission electron microscope (HRTEM, JEM-2100). The images are shown in Figs.1(a) and (b) respectively. It can be confirmed that the size of the Au nanoparticle is (55±10) nm.

    Fig.1 SEM (a) and HRTEM (b) image of (55±10) nm Au nanoparticles

    1.3 SERS and UV/Vis instrumentation

    UV/Vis absorption spectra were carried out on a UV2550 spectrophotometer (Shimadzu Corp., Japan) using a 1 cm quartz cell. SERS spectra were recorded by Xplora (HORIBA Jobin Yvon). A 50× magnification long working distance (8 mm) objective was used. The excitation wavelength was 785 nm from a He—Ne laser (power on the sample was about 10 mW), and spectrograph was equipped with a 1 200 lines·mm-1(for 785 nm excitation) grating, and a charge coupled device (CCD) camera. Before each measurement, calibration was checked using as reference the 520.6 cm-1vibrational band of a silicon wafer. For 1 030 nm spectra acquisition, a portable Raman instrument (Inspector 500, SciAps) with specifications: laser power grand: High, spectral range 100~2 500 cm-1, resolution across range 8~10 cm-1, detector cooled Type Ⅲ-Ⅳ semiconductor array. The portable Raman spectrometer can be used in situ and out of lab, which is very important for clinic treatment detection.

    1.4 Sample preparation for SERS measurements

    Before loading samples, urine was mixed well in 50 mL centrifuge tubes. Then, a 250 μL urine sample was transferred to a 1 mL quartz colorimetric cell using a micropipette. After that, a 250 μL Au nanoparticles colloid was added to the urine to make a biofluid-substrate ratio of 1∶1 for a total volume of 500 μL. And another mixture containing 50 μL urine and 450 μL Au nanoparticles colloid was also prepared to make a biofluid-substrate ratio of 1∶9. The mixtures were instantly placed under the Raman microscope for spectral acquisition. The laser was then focused in the very center of the mixtures automatically, and SERS spectra were acquired with an exposure time of 60 s.

    For 1 030 nm spectra acquisition, 500 μL mixtures (i.e., 250 μL urine+ 250 μL Au nanoparticles colloid, or 50 μL urine+450 μL Au nanoparticles colloid) were transferred to 5 mm quartz nuclear magnetic resonance (NMR) tubes and tested directly by portable Raman instrument Inspector 500 with high power and an exposure time of 10 s.

    2 Results and discussion

    2.1 UV-Vis absorption spectra

    We first performed the UV/Vis adsorption experiment. As shown in Fig.2, the absorption peak at ~520 nm was observed in both Au NPs-to-H2O ratio of 1∶1 and 9∶1, which is contributed to the Au NPs. When the Au NPs was mixed with urine with ratio of 9∶1, a shoulder absorption band at high wavelength (ca. 650 nm) appeared. We can get another absorption peak around 710 nm with the increasing of urine (Au NPs-to-urine ratio of 1∶1), while the absorption peak around 520 nm became even weaker. The above phenomenon indicates that the Au NPs are interacting with urine. The absence of absorption peak at high wavelength in urine together with water further demonstrates that absorption bands the 710 and 650 nm are caused by the mixture of Au NPs and urine. The current experiment shows the Au NPs aggregations caused by the urine, which with strong SERS effect.

    Fig.2 UV-Vis absorption spectra of mixture of Au NPs and H2O (1∶1 and 9∶1); Au NPs and urine (1∶1 and 9∶1), and H2O and urine (1∶1 and 9∶1)

    2.2 SERS of urine excited by 785 nm laser

    We then performed the SERS of urine excited by 785 nm laser. As shown in Fig.3a, primary Raman band at 1 006 cm-1in the spectra of pure urine, is attributed to the C—N stretching of urea[21-22]. This peak is the dominant nitrogen-containing component in urine and thus can be easily detected by normal Raman. The spectrum of the mixture of Au NPs and water with a volume ratio of 1∶1 is shown in Fig.3d.

    Fig.3 SERS spectra obtained with excitation at 785 nm

    a: Spectrum of pure urine;b: Spectrum of urine together with Au NPs in a sample-to-substrate ratio of 1∶9;c: Spectrum of urine together with Au NPs in a sample-to-substrate ratio of 1∶1;d: Spectrum of water and Au NPs in a sample-to-substrate ratio of 1∶1

    2.3 SERS of urine excited by 1 030 nm laser

    The SERS experiments of urine were also carried out under 1 030 nm laser. The spectrum showed in Fig.4abelongs to pure urine excited at 1 030 nm. The primary Raman band at 1 001 cm-1for pure urine is attributed to the C—N stretching of urea[21]. Spectra of the mixture of urine and Au NPs in sample-to-substrate ratios of 1∶9 and 1∶1 are illustrated in Fig.4band Fig.4c, respectively. Unlike the bands excited by 785 nm, most bands are similar as that of mixture of water and Au colloid (Fig.3d).

    Taking the spectrum Au NPs∶Urine=1∶1 as example (Fig.4c), 721, 1 500 and 1 605 cm-1are the new bands from the background. The 721 cm-1may also be attributed to C—H stretching vibration of hypoxanthine, while 1 500 and 1 605 cm-1are still uncertain, but should correspond to the urine. The results obtained from the sample of Au NPs∶Urine=1∶9 shows similar feature as that of 1∶1. The results point out that the urine excited by 785 nm give more information than that of 1 030 nm. However, the SERS of urine excited by 1 030 nm laser can also provide additional information for the urine.

    Fig.4 SERS spectra obtained with excitation at 1 030 nm

    a: Spectrum of pure urine;b: Spectrum of urine together with 55 nm Au colloids in a sample-to-substrate ratio of 1∶9;c: Spectrum of urine together with 55 nm Au colloids in a sample-to-substrate ratio of 1∶1

    2.4 Comparison between 785 and 1 030 nm spectra

    Now we will focus on the comparison of Raman spectra between 785 and 1 030 nm lasers. From the perspective of normal Raman spectra (Fig.5aandb), there is no obvious difference between 785 and 1 030 nm lasers. However, the SERS spectra of 785 and 1 030 nm lasers are difference between each other. First, comparing the SERS spectra of 1 030 nm laser (Fig.5d), the spectra of 785 nm laser have a higher resolution and it can provide more detail information about the urine (Fig.5c), such as uric acid, hypoxanthine, urea and creatinine, etc. Second, the SERS spectra background of 785 nm laser is lower than 1 030 nm laser, which is more useful for the quantitative analysis. However, 1 030 nm laser can provide other information location at 1 500 and 1 605 cm-1, which may also be useful in the diagnostic application. In addition, as the 1030 nm Raman instrument is a portable Raman instrument, and is helpful for on-site detection and it can give some qualitative test results for reference.

    Fig.5 Comparison of Raman spectra between 785 and 1 030 nm lasers

    a: Spectrum of pure urine with excitation at 785 nm;b: Spectrum of pure urine with excitation at 1 030 nm;c: Spectrum of urine together with Au NPs in a sample-to-substrate ratio of 1∶1 with excitation at 785 nm;d: Spectrum of urine together with 55 nm Au colloids in a sample-to-substrate ratio of 1∶1 with excitation at 1 030 nm

    3 Conclusions

    In conclusion, we have demonstrated a SERS study of urine using 55 nm Au NPs as SERS substrate and with excited by 785 and 1 030 nm lasers respectively. The results show that we can get the SERS information of urine in this system, and different spectra can be obtained under different exciting laser. The SERS spectra of 785 nm laser has lower background and higher resolution, it can provide more detail information of the urine. And the 1 030 nm laser instrument is a portable Raman instrument, which is helpful for on-site clinic treatment detection, and it also would be a good and convenient choice for urine analysis.

    [1] Fleischmann M, Hendra P J, Mcquillan A J. Chemical Physics Letters, 1974, 26(2): 163.

    [2] Moskovits M. Reviews of Modern Physics, 1985, 57(3): 783.

    [3] Hu J, Bing Z, Xu W, et al. Langmuir, 2002, 18(18): 6839.

    [4] Nie S M, Emory S R. Science, 1997, 275(5303): 1102.

    [5] Kneipp K, Wang Y, Kneipp H, et al. Physical Review Letters, 1997, 78(9): 1667.

    [6] Yuan Y X, Liu Y, Xu M M, et al. Journal of Electroanalytical Chemistry, 2014, 726: 44.

    [7] Drescher D, Buchner T, McNaughton D, et al. Physical Chemistry Chemical Physics, 2013, 15(15): 5364.

    [8] Lin D, Pan J J, Huang H, et al. Scientific Reports, 2014, 4(4): 4751.

    [9] Kamińska A, Witkowska E, Winkler K, et al. Biosensors and Bioelectronics, 2015, 66: 461.

    [10] Del Mistro G., Cervo S, Mansutti E, et al. Analytical and Bioanalytical Chemistry, 2015, 407(12): 3271.

    [11] Yang T X, Guo X Y, Wu Y P, et al. ACS Applied Materials and Interfaces, 2014, 6(23): 20985.

    [12] Dong R L, Weng S Z, Yang L B, et al. Analytical Chemistry, 2015, 87(5): 2937.

    [13] Kanabrocki E L, Sothern R B, Ryan M D, et al. La Clinica Terapeutica, 2008, 159(5): 329.

    [14] Ku J H, Godoy G., Amiel G E, et al. BJU International, 2012, 110(5): 630.

    [15] Mcevoy J, Millet R A, Dretchen K, et al. Psychopharmacology, 2014, 231(23): 4421.

    [16] Fogazzi G B, Garigali G. Current Opinion in Nephrology and Hypertension, 2003, 12(6): 625.

    [17] Huang S H, Wang L, Chen W S, et al. Laser Physics Letters, 2014, 11(11): 115604.

    [18] Wang T L, Chiang H K, Lu H H, et al. Optical and Quantum Electronics, 2005, 37(13-15): 1415.

    [19] Bonifacio A, Cervo S, Sergo. Analytical and Bioanalytical Chemistry, 2015, 407(27): 8265.

    [20] Li J F, Tian X D, Li S B, et al. Nature Protocols, 2013, 8(1): 52.

    [21] Premasiri W R, Clarke R H, Womble M E. Lasers in Surgery and Medicine, 2001, 28(4): 330.

    [22] Keuleers A, Desseyn H O, Rousseau B, Van Alsenoy C. Journal of Physical Chemistry A,1999, 103: 4621.

    [23] Chen J S, Feng S Y, Lin J Q, et al. Acta Laser Biology Sinica, 2011, 20(1): 98.

    [24] Trachta G, Schwarze B, Sagmuller B, et al. Journal of Molecular Structure, 2004, 693(1-3): 175.

    O657.3

    A

    表面增強(qiáng)拉曼散射光譜對人體尿液成份的初步研究

    鄭 彬1*,董金超2,蘇立眾1,蒙 萌2,張月皎2,李劍鋒2*

    1. 浙江省人民醫(yī)院耳鼻喉科,浙江 杭州 310014 2. 廈門大學(xué)固體表面物理化學(xué)國家重點實驗室,化學(xué)化工學(xué)院,福建 廈門 361005

    作為人體體液之一的尿液中含有多種人體新陳代謝的產(chǎn)物以及體內(nèi)排出的毒素,如果能夠?qū)@些組分進(jìn)行定性分析,就能夠在一定程度上有效反映人體器官的健康狀況,這是臨床醫(yī)學(xué)中重要的研究途徑。該實驗分別以785和1 030 nm激光作為源激發(fā),以具有電磁場增強(qiáng)的金納米粒子作為基底,利用表面增強(qiáng)拉曼散射光譜(SERS)對臨床實驗研究中所用的人體新鮮尿液的成份進(jìn)行快速、無損分析。通過控制金納米溶膠與尿液原液的混合比例從而來制備一系列具有不同配比的實驗樣品,并且通過實驗我們獲得其相應(yīng)的SERS光譜。由實驗結(jié)果分析可知,我們能夠有效地得到尿液中尿酸、次黃嘌呤等多種成份的SERS光譜。與此同時,我們還研究了在不同波長激光條件下的尿液的SERS光譜。相較于1 030 nm的激光,785 nm的激光得到的SERS光譜具有較高的分辨率以及較低的背景值。與此同時,利用具有1 030 nm激光的便攜式拉曼儀對實驗樣品進(jìn)行快速、無損分析,有望為臨床醫(yī)學(xué)現(xiàn)場、快速分析診斷提供幫助和支持。而且相信,SERS能夠在人類健康甚至生物組織的檢測等方面提供更加詳細(xì)的信息。

    表面增強(qiáng)拉曼光譜; 人體尿液; 臨床診斷; 金納米粒子

    2015-10-30,

    2016-02-04)

    Foundation item: Medical Science and Technology Project of Zhejiang Province (2015KYB025), and National Science Foundation of China (21522508)

    10.3964/j.issn.1000-0593(2016)06-1987-05

    Received: 2015-10-30; accepted: 2016-02-04

    Biography: ZHENG Bin, (1982—), an attending physician in Department of Otolaryngology in Zhejiang Provincial People’s Hospital e-mail: zhengbin017@163.com *Corresponding authors e-mail: Li@xmu.edu.cn

    *通訊聯(lián)系人

    猜你喜歡
    成份拉曼尿液
    賊都找不到的地方
    沒聽錯吧?用污泥和尿液制水泥
    軍事文摘(2022年16期)2022-08-24 01:50:52
    尿液檢測可能會發(fā)現(xiàn)侵襲性前列腺癌
    基于單光子探測技術(shù)的拉曼光譜測量
    電子測試(2018年18期)2018-11-14 02:30:36
    跟蹤導(dǎo)練(三)
    績優(yōu)指數(shù)成份變更與一周表現(xiàn)
    兩市主要成份指數(shù)中期成份股調(diào)整
    Variational Mode Decomposition for Rotating Machinery Condition Monitoring Using Vibration Signals
    基于相干反斯托克斯拉曼散射的二維溫度場掃描測量
    歐盟禁止在化妝品成份中使用3-亞芐基樟腦
    在线观看午夜福利视频| 久久久色成人| 性色av乱码一区二区三区2| 日韩av在线大香蕉| 琪琪午夜伦伦电影理论片6080| 听说在线观看完整版免费高清| 有码 亚洲区| 极品教师在线免费播放| 亚洲无线在线观看| 亚洲狠狠婷婷综合久久图片| 国产一区二区亚洲精品在线观看| 最近视频中文字幕2019在线8| 欧美成人性av电影在线观看| 亚洲精品久久国产高清桃花| 非洲黑人性xxxx精品又粗又长| 成年免费大片在线观看| 黄色丝袜av网址大全| 国产激情偷乱视频一区二区| 天天一区二区日本电影三级| 国产精品香港三级国产av潘金莲| 久久精品91无色码中文字幕| 国产aⅴ精品一区二区三区波| netflix在线观看网站| 大型黄色视频在线免费观看| bbb黄色大片| 亚洲久久久久久中文字幕| 国产探花极品一区二区| 国产精品久久久久久亚洲av鲁大| 欧美性猛交黑人性爽| 别揉我奶头~嗯~啊~动态视频| 精品久久久久久久久久免费视频| 久久久久久人人人人人| 国产成人福利小说| 国产麻豆成人av免费视频| 少妇的逼水好多| 日本熟妇午夜| 搡老岳熟女国产| 免费大片18禁| 成年免费大片在线观看| 免费看光身美女| 欧美av亚洲av综合av国产av| 一个人免费在线观看电影| 两人在一起打扑克的视频| 人人妻人人看人人澡| 在线观看av片永久免费下载| 一个人免费在线观看的高清视频| 国产视频内射| 亚洲最大成人中文| 国产主播在线观看一区二区| 黄片大片在线免费观看| 国产精品电影一区二区三区| 人人妻,人人澡人人爽秒播| 欧美性猛交黑人性爽| 国产麻豆成人av免费视频| 国产伦精品一区二区三区四那| 两个人的视频大全免费| 国产精品爽爽va在线观看网站| 国产精品美女特级片免费视频播放器| 国产亚洲精品av在线| 亚洲真实伦在线观看| 乱人视频在线观看| 老司机福利观看| 日本熟妇午夜| 国产欧美日韩一区二区三| 18美女黄网站色大片免费观看| 国产精品永久免费网站| 不卡一级毛片| 有码 亚洲区| bbb黄色大片| 中文字幕高清在线视频| 亚洲欧美日韩无卡精品| 天美传媒精品一区二区| 国内久久婷婷六月综合欲色啪| 亚洲精品一卡2卡三卡4卡5卡| 久久久成人免费电影| 夜夜爽天天搞| 日本一本二区三区精品| 日韩人妻高清精品专区| 男女之事视频高清在线观看| 校园春色视频在线观看| 成人特级黄色片久久久久久久| 97超视频在线观看视频| 好男人在线观看高清免费视频| 啦啦啦观看免费观看视频高清| 小说图片视频综合网站| 亚洲精品一区av在线观看| 日韩成人在线观看一区二区三区| 国产在线精品亚洲第一网站| av黄色大香蕉| 国产成+人综合+亚洲专区| 亚洲中文字幕一区二区三区有码在线看| 女人高潮潮喷娇喘18禁视频| 少妇人妻一区二区三区视频| 久久久成人免费电影| 变态另类丝袜制服| 欧美一区二区亚洲| 免费搜索国产男女视频| 最后的刺客免费高清国语| 在线观看日韩欧美| 性欧美人与动物交配| 国产v大片淫在线免费观看| 亚洲精品乱码久久久v下载方式 | 精品久久久久久久人妻蜜臀av| 中文字幕高清在线视频| 又黄又爽又免费观看的视频| 婷婷精品国产亚洲av| 日韩中文字幕欧美一区二区| 成人av一区二区三区在线看| 日本五十路高清| 最新中文字幕久久久久| 国产精品一区二区三区四区久久| 极品教师在线免费播放| 国产伦人伦偷精品视频| 性色avwww在线观看| 99riav亚洲国产免费| 国产精品一及| www日本黄色视频网| 久久国产乱子伦精品免费另类| 国产精品香港三级国产av潘金莲| 黄片小视频在线播放| 国产三级黄色录像| 久久久久久国产a免费观看| 国内毛片毛片毛片毛片毛片| av视频在线观看入口| 日日干狠狠操夜夜爽| 51午夜福利影视在线观看| 亚洲av一区综合| 欧美成人a在线观看| 欧美成人一区二区免费高清观看| 啪啪无遮挡十八禁网站| 欧美成人a在线观看| 国产亚洲av嫩草精品影院| a在线观看视频网站| 亚洲成av人片免费观看| 真人一进一出gif抽搐免费| 51国产日韩欧美| 女人被狂操c到高潮| www国产在线视频色| av片东京热男人的天堂| 99热6这里只有精品| 国产三级中文精品| 欧美又色又爽又黄视频| 亚洲美女黄片视频| 国产精品久久久久久精品电影| 99热只有精品国产| 精品乱码久久久久久99久播| 97超视频在线观看视频| 日本精品一区二区三区蜜桃| 成人特级av手机在线观看| 久久精品影院6| 九色成人免费人妻av| 19禁男女啪啪无遮挡网站| 深夜精品福利| 亚洲av美国av| 哪里可以看免费的av片| a级毛片a级免费在线| 欧美性感艳星| 我要搜黄色片| 日韩av在线大香蕉| 亚洲欧美精品综合久久99| 国产色爽女视频免费观看| 国产免费男女视频| 三级男女做爰猛烈吃奶摸视频| 精品国产亚洲在线| 国产极品精品免费视频能看的| 三级国产精品欧美在线观看| 国产99白浆流出| 中文字幕av成人在线电影| 成人三级黄色视频| 97人妻精品一区二区三区麻豆| 91麻豆精品激情在线观看国产| 美女高潮喷水抽搐中文字幕| 变态另类丝袜制服| 18禁在线播放成人免费| 欧美一区二区亚洲| 国产精品久久视频播放| 欧美成狂野欧美在线观看| 首页视频小说图片口味搜索| 欧美黄色淫秽网站| 成年女人毛片免费观看观看9| 最新在线观看一区二区三区| 日本三级黄在线观看| 成人欧美大片| 欧美最黄视频在线播放免费| 欧美乱色亚洲激情| 国产免费男女视频| 国产午夜精品论理片| 国产精品综合久久久久久久免费| 香蕉av资源在线| 国产高清有码在线观看视频| 精品日产1卡2卡| 在线播放国产精品三级| 真实男女啪啪啪动态图| 小蜜桃在线观看免费完整版高清| 亚洲无线观看免费| 又紧又爽又黄一区二区| 一区二区三区高清视频在线| 日韩精品青青久久久久久| 色在线成人网| 国内揄拍国产精品人妻在线| 丰满人妻一区二区三区视频av | 男女床上黄色一级片免费看| 久久久国产精品麻豆| 男女之事视频高清在线观看| 亚洲av第一区精品v没综合| 色精品久久人妻99蜜桃| 国产淫片久久久久久久久 | 久久欧美精品欧美久久欧美| 色在线成人网| 久久婷婷人人爽人人干人人爱| 国产成人福利小说| 天天添夜夜摸| 18禁美女被吸乳视频| 成人av在线播放网站| 夜夜夜夜夜久久久久| 在线播放国产精品三级| 天堂av国产一区二区熟女人妻| 久久精品国产亚洲av涩爱 | 麻豆国产av国片精品| 又爽又黄无遮挡网站| 真实男女啪啪啪动态图| 熟妇人妻久久中文字幕3abv| 老熟妇乱子伦视频在线观看| 悠悠久久av| 欧美日本亚洲视频在线播放| 亚洲,欧美精品.| 宅男免费午夜| 欧美性感艳星| 超碰av人人做人人爽久久 | 亚洲avbb在线观看| 国产中年淑女户外野战色| 国产欧美日韩一区二区精品| 亚洲av电影不卡..在线观看| 国产97色在线日韩免费| 在线免费观看不下载黄p国产 | 亚洲一区二区三区不卡视频| 国产精品亚洲一级av第二区| 久久欧美精品欧美久久欧美| 日本黄色片子视频| 日本一本二区三区精品| av在线蜜桃| 欧美av亚洲av综合av国产av| 色吧在线观看| 变态另类丝袜制服| 亚洲国产精品成人综合色| 黄色片一级片一级黄色片| 精品久久久久久成人av| 欧美日本视频| ponron亚洲| 97超视频在线观看视频| 亚洲精品粉嫩美女一区| 午夜福利免费观看在线| 成年人黄色毛片网站| 国产精品久久久久久久久免 | 午夜精品在线福利| 欧美另类亚洲清纯唯美| 波多野结衣巨乳人妻| 91久久精品电影网| avwww免费| 久久久久久久午夜电影| 欧美日韩福利视频一区二区| 级片在线观看| 又黄又爽又免费观看的视频| 久久欧美精品欧美久久欧美| 久久久久久久午夜电影| 国产精品美女特级片免费视频播放器| 在线观看舔阴道视频| av欧美777| 午夜福利在线观看吧| 国产高清三级在线| 成年女人看的毛片在线观看| 国产蜜桃级精品一区二区三区| 欧美zozozo另类| xxx96com| 亚洲真实伦在线观看| 叶爱在线成人免费视频播放| 一卡2卡三卡四卡精品乱码亚洲| 国产视频一区二区在线看| 99在线人妻在线中文字幕| 国产精品嫩草影院av在线观看 | 精品国产超薄肉色丝袜足j| 18禁国产床啪视频网站| 午夜精品久久久久久毛片777| 真人做人爱边吃奶动态| 精品不卡国产一区二区三区| 国产一区在线观看成人免费| 欧美一区二区国产精品久久精品| 美女cb高潮喷水在线观看| 亚洲av电影不卡..在线观看| 手机成人av网站| 日韩欧美精品v在线| 久久精品综合一区二区三区| 欧美日韩一级在线毛片| 怎么达到女性高潮| 亚洲人成网站在线播放欧美日韩| 日韩欧美精品v在线| 九九热线精品视视频播放| 久9热在线精品视频| 国产又黄又爽又无遮挡在线| 搞女人的毛片| 亚洲av成人不卡在线观看播放网| 久久久久久久午夜电影| 国产美女午夜福利| 日韩欧美国产在线观看| 变态另类成人亚洲欧美熟女| www.色视频.com| 一个人免费在线观看电影| 桃色一区二区三区在线观看| 18+在线观看网站| 12—13女人毛片做爰片一| 国产欧美日韩精品亚洲av| 一本久久中文字幕| 日韩欧美国产在线观看| 九九在线视频观看精品| 久久久成人免费电影| 黄片大片在线免费观看| 一本精品99久久精品77| 亚洲av二区三区四区| 婷婷六月久久综合丁香| 亚洲欧美一区二区三区黑人| 久久久国产成人精品二区| 亚洲午夜理论影院| 亚洲精品在线观看二区| 嫩草影院精品99| 国产中年淑女户外野战色| 99久久精品一区二区三区| 国产乱人视频| 久久久久久大精品| 国产成人av教育| 日日摸夜夜添夜夜添小说| 国内少妇人妻偷人精品xxx网站| 国产国拍精品亚洲av在线观看 | 国产高清三级在线| 国产一级毛片七仙女欲春2| 亚洲 欧美 日韩 在线 免费| 日韩 欧美 亚洲 中文字幕| 国内毛片毛片毛片毛片毛片| 久9热在线精品视频| 亚洲人成网站高清观看| 亚洲人成网站在线播放欧美日韩| 亚洲国产精品999在线| АⅤ资源中文在线天堂| 一边摸一边抽搐一进一小说| 欧美日韩福利视频一区二区| 亚洲国产中文字幕在线视频| 亚洲成av人片在线播放无| 怎么达到女性高潮| 免费无遮挡裸体视频| 丁香欧美五月| 男女之事视频高清在线观看| 国产高清有码在线观看视频| 毛片女人毛片| 嫩草影院入口| 成年免费大片在线观看| 亚洲在线观看片| 别揉我奶头~嗯~啊~动态视频| 国产成人aa在线观看| svipshipincom国产片| 亚洲va日本ⅴa欧美va伊人久久| 精品电影一区二区在线| eeuss影院久久| 嫩草影院精品99| 非洲黑人性xxxx精品又粗又长| 亚洲av成人精品一区久久| 国产精品久久久久久久电影 | 成年女人毛片免费观看观看9| 亚洲国产高清在线一区二区三| 国产欧美日韩精品亚洲av| 三级毛片av免费| 亚洲在线观看片| 国产午夜福利久久久久久| 美女黄网站色视频| 一区二区三区免费毛片| 欧洲精品卡2卡3卡4卡5卡区| 日韩欧美在线乱码| 欧美不卡视频在线免费观看| netflix在线观看网站| 久久久久精品国产欧美久久久| 最近在线观看免费完整版| 毛片女人毛片| 性色av乱码一区二区三区2| 人人妻人人澡欧美一区二区| 久久久精品欧美日韩精品| 两人在一起打扑克的视频| 国产精品99久久久久久久久| 97超视频在线观看视频| 男插女下体视频免费在线播放| 九色国产91popny在线| 在线观看免费视频日本深夜| 少妇丰满av| 亚洲七黄色美女视频| 欧美一级毛片孕妇| 欧美精品啪啪一区二区三区| 欧美在线黄色| 91久久精品国产一区二区成人 | 亚洲在线观看片| 女同久久另类99精品国产91| 国内揄拍国产精品人妻在线| 丝袜美腿在线中文| 欧美黄色淫秽网站| 欧美大码av| 在线观看66精品国产| 男女下面进入的视频免费午夜| 天天躁日日操中文字幕| 精品99又大又爽又粗少妇毛片 | 国产高清激情床上av| а√天堂www在线а√下载| 欧美一级毛片孕妇| 手机成人av网站| 国产不卡一卡二| 色播亚洲综合网| 亚洲av电影不卡..在线观看| 无限看片的www在线观看| 91av网一区二区| 欧美成人性av电影在线观看| 精品99又大又爽又粗少妇毛片 | 国产一区二区三区在线臀色熟女| 禁无遮挡网站| 日韩欧美在线二视频| 欧美精品啪啪一区二区三区| 国产主播在线观看一区二区| 欧美激情在线99| 精品久久久久久成人av| 变态另类成人亚洲欧美熟女| 色综合亚洲欧美另类图片| 午夜免费激情av| 可以在线观看毛片的网站| 伊人久久大香线蕉亚洲五| 精品久久久久久久毛片微露脸| 色视频www国产| 岛国在线观看网站| 免费av毛片视频| 国产精华一区二区三区| 日日夜夜操网爽| 国产乱人视频| 欧美性猛交黑人性爽| 国产精品亚洲av一区麻豆| 午夜日韩欧美国产| 又紧又爽又黄一区二区| 国产欧美日韩一区二区三| 国产精品嫩草影院av在线观看 | 免费av观看视频| 亚洲 国产 在线| 偷拍熟女少妇极品色| 日韩欧美在线二视频| 日本黄色视频三级网站网址| 国产精品三级大全| 成年免费大片在线观看| 免费av不卡在线播放| 3wmmmm亚洲av在线观看| 丰满人妻一区二区三区视频av | 亚洲在线自拍视频| 女人高潮潮喷娇喘18禁视频| 夜夜爽天天搞| 看片在线看免费视频| 国产三级中文精品| 欧美成人性av电影在线观看| 国产又黄又爽又无遮挡在线| 日韩免费av在线播放| 在线播放无遮挡| 男女午夜视频在线观看| 亚洲国产精品成人综合色| 亚洲av成人精品一区久久| 久久人人精品亚洲av| 91在线精品国自产拍蜜月 | 少妇丰满av| 麻豆成人午夜福利视频| 亚洲国产欧美网| 99久久精品热视频| 黄色片一级片一级黄色片| 国产午夜福利久久久久久| 色综合站精品国产| 日韩欧美在线二视频| 国产精品久久久久久亚洲av鲁大| 日韩av在线大香蕉| 午夜精品一区二区三区免费看| 成人国产一区最新在线观看| 性色av乱码一区二区三区2| 亚洲国产中文字幕在线视频| 在线天堂最新版资源| 欧美一区二区国产精品久久精品| 狂野欧美激情性xxxx| 波野结衣二区三区在线 | 制服丝袜大香蕉在线| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产美女午夜福利| 天天一区二区日本电影三级| 亚洲精品色激情综合| 精品一区二区三区视频在线 | 日韩欧美三级三区| 国产69精品久久久久777片| 亚洲人成网站在线播放欧美日韩| 国产精品自产拍在线观看55亚洲| 欧美另类亚洲清纯唯美| 好男人电影高清在线观看| 母亲3免费完整高清在线观看| 国产av麻豆久久久久久久| 男女下面进入的视频免费午夜| 操出白浆在线播放| 亚洲专区国产一区二区| 综合色av麻豆| 精品人妻一区二区三区麻豆 | 99久久99久久久精品蜜桃| 久久久成人免费电影| 色视频www国产| 在线观看av片永久免费下载| 亚洲七黄色美女视频| 啦啦啦观看免费观看视频高清| 97人妻精品一区二区三区麻豆| 99在线视频只有这里精品首页| 欧美精品啪啪一区二区三区| 国产精品一区二区三区四区久久| 亚洲人成网站在线播| 中文字幕av成人在线电影| 夜夜爽天天搞| 国产精品亚洲美女久久久| 日本精品一区二区三区蜜桃| 精品日产1卡2卡| 91久久精品电影网| 一区二区三区免费毛片| 中文资源天堂在线| 国产欧美日韩精品亚洲av| svipshipincom国产片| 久久久久亚洲av毛片大全| 精品欧美国产一区二区三| 黄色成人免费大全| 女生性感内裤真人,穿戴方法视频| 99久久成人亚洲精品观看| 日韩欧美精品v在线| 可以在线观看的亚洲视频| 欧美日韩综合久久久久久 | 三级毛片av免费| 熟女电影av网| 香蕉丝袜av| 婷婷丁香在线五月| 中文亚洲av片在线观看爽| 少妇裸体淫交视频免费看高清| 日韩大尺度精品在线看网址| 村上凉子中文字幕在线| а√天堂www在线а√下载| 一级毛片女人18水好多| 国产一区在线观看成人免费| 69人妻影院| 日日夜夜操网爽| 香蕉av资源在线| 在线播放国产精品三级| 日韩 欧美 亚洲 中文字幕| 很黄的视频免费| 国产高潮美女av| 亚洲成av人片免费观看| 国产精品一区二区三区四区免费观看 | 亚洲在线自拍视频| 亚洲欧美日韩无卡精品| bbb黄色大片| 日本黄大片高清| 久久精品91无色码中文字幕| 国产探花极品一区二区| 亚洲狠狠婷婷综合久久图片| 日日摸夜夜添夜夜添小说| 亚洲,欧美精品.| 国产精品 欧美亚洲| 五月伊人婷婷丁香| 欧美丝袜亚洲另类 | 欧美成人性av电影在线观看| 在线观看舔阴道视频| 亚洲av美国av| av黄色大香蕉| 久久精品国产自在天天线| 蜜桃亚洲精品一区二区三区| 精品电影一区二区在线| 精品熟女少妇八av免费久了| 亚洲中文字幕一区二区三区有码在线看| 中国美女看黄片| 波野结衣二区三区在线 | 午夜激情福利司机影院| 999久久久精品免费观看国产| 中国美女看黄片| 国产精品98久久久久久宅男小说| 国产高清有码在线观看视频| 国产伦在线观看视频一区| 嫩草影院精品99| 小蜜桃在线观看免费完整版高清| 国产精品日韩av在线免费观看| 国产高清三级在线| 国产精品一及| 制服人妻中文乱码| 免费av毛片视频| 国产69精品久久久久777片| 国产一区在线观看成人免费| 国产69精品久久久久777片| 国产男靠女视频免费网站| 非洲黑人性xxxx精品又粗又长| 国产精品影院久久| 99精品久久久久人妻精品| 12—13女人毛片做爰片一| 亚洲国产色片| 999久久久精品免费观看国产| 亚洲最大成人手机在线| 久久香蕉精品热| 最后的刺客免费高清国语| 九九在线视频观看精品| a在线观看视频网站| 亚洲成人免费电影在线观看| a在线观看视频网站| 九九在线视频观看精品| 国产黄a三级三级三级人| 99久久综合精品五月天人人| 中文字幕人成人乱码亚洲影| 蜜桃亚洲精品一区二区三区| 亚洲精品成人久久久久久| 国产69精品久久久久777片| 亚洲美女黄片视频| 国产精品亚洲av一区麻豆| 村上凉子中文字幕在线| 久久精品国产99精品国产亚洲性色|