• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Surface-Enhanced Raman Spectroscopy Study of Fresh Human Urine:A Preliminary Study

    2016-07-12 12:59:43ZHENGBinDONGJinchaoSULizhongMENGMengZHANGYuejiaoLIJianfeng
    光譜學(xué)與光譜分析 2016年6期
    關(guān)鍵詞:成份拉曼尿液

    ZHENG Bin, DONG Jin-chao, SU Li-zhong, MENG Meng,ZHANG Yue-jiao, LI Jian-feng*

    1. Department of Otolaryngology, Zhejiang Provincial People’s Hospital, Hangzhou 310014, China 2. State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and

    Surface-Enhanced Raman Spectroscopy Study of Fresh Human Urine:A Preliminary Study

    ZHENG Bin1*, DONG Jin-chao2, SU Li-zhong1, MENG Meng2,ZHANG Yue-jiao2, LI Jian-feng2*

    1. Department of Otolaryngology, Zhejiang Provincial People’s Hospital, Hangzhou 310014, China 2. State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and

    Chemical Engineering, Xiamen University, Xiamen 361005, China

    In this work, we have mainly studied SERS spectra of fresh human urine by using Au nanoparticles excited by 785 and 1 030 nm lasers, respectively. And the UV/Vis adsorption experiment of the Au nanoparticles mixed with different ratio of urine has been performed, and the obvious shifting of corresponding absorption band is observed. The result showed that the Au nanoparticles which have been synthesized by classical Fren’s method can interact with urine, and the Au nanoparticles aggregations caused by the urine have strong SERS effect. Intense and repeatable spectra of the urine samples can be quickly obtained using Au colloids, which characterized by the scanning electron microscope (SEM) and the high-resolution transmission electron microscope (HRTEM) images, and it can be confirmed that the size of the Au nanoparticles is about 55 nm with a finite variation. When different spectra can be detected under different exciting lasers, the various biofluid to Au substrate ratios can generate different intense spectra. From the spectra of 785 nm laser, we can conclude that it has lower background and higher resolution with more detail information of this system contained human urine. For the 1 030 nm laser, a portable Raman instrument is helpful for on-site clinic treatment detection. It also gets well defined information and will be a good and convenient choice for urine analysis. It should note that this peak band located at 1 006 cm-1may be the dominant nitrogen-containing component in urine. On the other hand, uric acid, urea, hypoxanthine as well as creatinine can be assigned; the other bands are still unknown, which might be attributed to biomarkers important for disease differentiation. Another result shows that different sample preparation can influence the SERS spectra with different ratio. We also have made a comparison of Raman spectra between 785 and 1 030 nm lasers to learn the difference between each other just like background and high-resolution. The current study indicates the SERS of urine might be a good choice and tool for urinalysis with potential diagnostic application, especially with the portable Raman instrument which would be an accurate and convenient approach for urine analysis. It is possible for SERS detection to be applied in not only the health diagnosis but also biological tissue in the future.

    SERS; Urine; Diagnosis; Au nanoparticle

    Introduction

    Surface-enhanced Raman spectroscopy (SERS) is vibrational spectroscopy which can provide ultra-high surface sensitivity with fingerprint information[1-2]. It has large Raman cross-sections on nanostructured gold and silver surfaces, which can realize small molecules, even single molecules level detection[3-6]. With the aim of developing diagnostic applications, increasing attention has been paid to the SERS studies of biological samples, such as blood[7-9]and urine[10-12]. Urine is excess wastes extracted from the bloodstream by the kidney, containing water, sugars, and more than 2600 different metabolites[13-15]. More importantly, urine has been universally used as samples in diagnostics for its easily available and noninvasively collected in large volumes, since it has rich biological information[16].

    Despite of the potential diagnostic value of urine, there are only a few groups studied the SERS spectra of urine using a variety of substrates and excitation wavelengths[10,12,17-18]. It was reported that the urine can be detected by SERS, including uric acid, urea, hypoxanthine and creatinine[10,18], where the change of Raman band intensity may reflect the disease information[10]. Different exciting lasers play important roles on the SERS detections of the target compounds[19]. However, there were only 785 nm[10,12]and 633 nm[18]lasers applied to detect urine. It’s also important to study SERS spectra excited by the other laser lines, such as 1 030 nm, which may provide different useful information for urine analysis.

    In the present work, we have performed SERS studies of fresh human urine using 55 nm Au nanoparticles as SERS substrate. The comparison of spectra between 785 and 1 030 nm laser are carried out, and the Raman signals with different biofluid-substrate ratios will also be discussed.

    1 Materials and methods

    1.1 Collection of urine samples

    Human urine experiments were performed with the agreement of ethical committee in our institution (Zhejiang Provincial People’s Hospital, Hangzhou, China), and the informed consent was obtained. The male volunteer was 32 years old, and he had no chronic systemic diseases or acute inflammations. Before experiments, a routine urine test of a morning urine sample was done and there were no abnormal results. After overnight fasting, midstream specimens of urine were collected in a 50 mL centrifuge tube and placed under room temperature. All the samples were obtained from the same person, and all experiments were carried out within 1 hour after the collection of urine.

    1.2 SERS substrates preparation and characterization

    1.2.1 Chemicals

    Chloroauric acid (99.99%) and sodium citrate (99.0%) were purchased from Alfa Aesar. All chemicals were used as received without further purification. Milli-Q water (~18.2 MΩ·cm) was used throughout the study.

    1.2.2 Synthesis of 55 nm Au nanoparticles

    Au nanoparticles were prepared as following[20]: 1.4 mL of 1 Wt% sodium citrate solution was added into 200 mL of 0.01 Wt% boiling HAuCl4solution. The mixture was refluxed for 1 h and then cooled down to room temperature. The structure gold nanoparticles were measured by the scanning electron microscope (SEM, Sigma-4800) and high-resolution transmission electron microscope (HRTEM, JEM-2100). The images are shown in Figs.1(a) and (b) respectively. It can be confirmed that the size of the Au nanoparticle is (55±10) nm.

    Fig.1 SEM (a) and HRTEM (b) image of (55±10) nm Au nanoparticles

    1.3 SERS and UV/Vis instrumentation

    UV/Vis absorption spectra were carried out on a UV2550 spectrophotometer (Shimadzu Corp., Japan) using a 1 cm quartz cell. SERS spectra were recorded by Xplora (HORIBA Jobin Yvon). A 50× magnification long working distance (8 mm) objective was used. The excitation wavelength was 785 nm from a He—Ne laser (power on the sample was about 10 mW), and spectrograph was equipped with a 1 200 lines·mm-1(for 785 nm excitation) grating, and a charge coupled device (CCD) camera. Before each measurement, calibration was checked using as reference the 520.6 cm-1vibrational band of a silicon wafer. For 1 030 nm spectra acquisition, a portable Raman instrument (Inspector 500, SciAps) with specifications: laser power grand: High, spectral range 100~2 500 cm-1, resolution across range 8~10 cm-1, detector cooled Type Ⅲ-Ⅳ semiconductor array. The portable Raman spectrometer can be used in situ and out of lab, which is very important for clinic treatment detection.

    1.4 Sample preparation for SERS measurements

    Before loading samples, urine was mixed well in 50 mL centrifuge tubes. Then, a 250 μL urine sample was transferred to a 1 mL quartz colorimetric cell using a micropipette. After that, a 250 μL Au nanoparticles colloid was added to the urine to make a biofluid-substrate ratio of 1∶1 for a total volume of 500 μL. And another mixture containing 50 μL urine and 450 μL Au nanoparticles colloid was also prepared to make a biofluid-substrate ratio of 1∶9. The mixtures were instantly placed under the Raman microscope for spectral acquisition. The laser was then focused in the very center of the mixtures automatically, and SERS spectra were acquired with an exposure time of 60 s.

    For 1 030 nm spectra acquisition, 500 μL mixtures (i.e., 250 μL urine+ 250 μL Au nanoparticles colloid, or 50 μL urine+450 μL Au nanoparticles colloid) were transferred to 5 mm quartz nuclear magnetic resonance (NMR) tubes and tested directly by portable Raman instrument Inspector 500 with high power and an exposure time of 10 s.

    2 Results and discussion

    2.1 UV-Vis absorption spectra

    We first performed the UV/Vis adsorption experiment. As shown in Fig.2, the absorption peak at ~520 nm was observed in both Au NPs-to-H2O ratio of 1∶1 and 9∶1, which is contributed to the Au NPs. When the Au NPs was mixed with urine with ratio of 9∶1, a shoulder absorption band at high wavelength (ca. 650 nm) appeared. We can get another absorption peak around 710 nm with the increasing of urine (Au NPs-to-urine ratio of 1∶1), while the absorption peak around 520 nm became even weaker. The above phenomenon indicates that the Au NPs are interacting with urine. The absence of absorption peak at high wavelength in urine together with water further demonstrates that absorption bands the 710 and 650 nm are caused by the mixture of Au NPs and urine. The current experiment shows the Au NPs aggregations caused by the urine, which with strong SERS effect.

    Fig.2 UV-Vis absorption spectra of mixture of Au NPs and H2O (1∶1 and 9∶1); Au NPs and urine (1∶1 and 9∶1), and H2O and urine (1∶1 and 9∶1)

    2.2 SERS of urine excited by 785 nm laser

    We then performed the SERS of urine excited by 785 nm laser. As shown in Fig.3a, primary Raman band at 1 006 cm-1in the spectra of pure urine, is attributed to the C—N stretching of urea[21-22]. This peak is the dominant nitrogen-containing component in urine and thus can be easily detected by normal Raman. The spectrum of the mixture of Au NPs and water with a volume ratio of 1∶1 is shown in Fig.3d.

    Fig.3 SERS spectra obtained with excitation at 785 nm

    a: Spectrum of pure urine;b: Spectrum of urine together with Au NPs in a sample-to-substrate ratio of 1∶9;c: Spectrum of urine together with Au NPs in a sample-to-substrate ratio of 1∶1;d: Spectrum of water and Au NPs in a sample-to-substrate ratio of 1∶1

    2.3 SERS of urine excited by 1 030 nm laser

    The SERS experiments of urine were also carried out under 1 030 nm laser. The spectrum showed in Fig.4abelongs to pure urine excited at 1 030 nm. The primary Raman band at 1 001 cm-1for pure urine is attributed to the C—N stretching of urea[21]. Spectra of the mixture of urine and Au NPs in sample-to-substrate ratios of 1∶9 and 1∶1 are illustrated in Fig.4band Fig.4c, respectively. Unlike the bands excited by 785 nm, most bands are similar as that of mixture of water and Au colloid (Fig.3d).

    Taking the spectrum Au NPs∶Urine=1∶1 as example (Fig.4c), 721, 1 500 and 1 605 cm-1are the new bands from the background. The 721 cm-1may also be attributed to C—H stretching vibration of hypoxanthine, while 1 500 and 1 605 cm-1are still uncertain, but should correspond to the urine. The results obtained from the sample of Au NPs∶Urine=1∶9 shows similar feature as that of 1∶1. The results point out that the urine excited by 785 nm give more information than that of 1 030 nm. However, the SERS of urine excited by 1 030 nm laser can also provide additional information for the urine.

    Fig.4 SERS spectra obtained with excitation at 1 030 nm

    a: Spectrum of pure urine;b: Spectrum of urine together with 55 nm Au colloids in a sample-to-substrate ratio of 1∶9;c: Spectrum of urine together with 55 nm Au colloids in a sample-to-substrate ratio of 1∶1

    2.4 Comparison between 785 and 1 030 nm spectra

    Now we will focus on the comparison of Raman spectra between 785 and 1 030 nm lasers. From the perspective of normal Raman spectra (Fig.5aandb), there is no obvious difference between 785 and 1 030 nm lasers. However, the SERS spectra of 785 and 1 030 nm lasers are difference between each other. First, comparing the SERS spectra of 1 030 nm laser (Fig.5d), the spectra of 785 nm laser have a higher resolution and it can provide more detail information about the urine (Fig.5c), such as uric acid, hypoxanthine, urea and creatinine, etc. Second, the SERS spectra background of 785 nm laser is lower than 1 030 nm laser, which is more useful for the quantitative analysis. However, 1 030 nm laser can provide other information location at 1 500 and 1 605 cm-1, which may also be useful in the diagnostic application. In addition, as the 1030 nm Raman instrument is a portable Raman instrument, and is helpful for on-site detection and it can give some qualitative test results for reference.

    Fig.5 Comparison of Raman spectra between 785 and 1 030 nm lasers

    a: Spectrum of pure urine with excitation at 785 nm;b: Spectrum of pure urine with excitation at 1 030 nm;c: Spectrum of urine together with Au NPs in a sample-to-substrate ratio of 1∶1 with excitation at 785 nm;d: Spectrum of urine together with 55 nm Au colloids in a sample-to-substrate ratio of 1∶1 with excitation at 1 030 nm

    3 Conclusions

    In conclusion, we have demonstrated a SERS study of urine using 55 nm Au NPs as SERS substrate and with excited by 785 and 1 030 nm lasers respectively. The results show that we can get the SERS information of urine in this system, and different spectra can be obtained under different exciting laser. The SERS spectra of 785 nm laser has lower background and higher resolution, it can provide more detail information of the urine. And the 1 030 nm laser instrument is a portable Raman instrument, which is helpful for on-site clinic treatment detection, and it also would be a good and convenient choice for urine analysis.

    [1] Fleischmann M, Hendra P J, Mcquillan A J. Chemical Physics Letters, 1974, 26(2): 163.

    [2] Moskovits M. Reviews of Modern Physics, 1985, 57(3): 783.

    [3] Hu J, Bing Z, Xu W, et al. Langmuir, 2002, 18(18): 6839.

    [4] Nie S M, Emory S R. Science, 1997, 275(5303): 1102.

    [5] Kneipp K, Wang Y, Kneipp H, et al. Physical Review Letters, 1997, 78(9): 1667.

    [6] Yuan Y X, Liu Y, Xu M M, et al. Journal of Electroanalytical Chemistry, 2014, 726: 44.

    [7] Drescher D, Buchner T, McNaughton D, et al. Physical Chemistry Chemical Physics, 2013, 15(15): 5364.

    [8] Lin D, Pan J J, Huang H, et al. Scientific Reports, 2014, 4(4): 4751.

    [9] Kamińska A, Witkowska E, Winkler K, et al. Biosensors and Bioelectronics, 2015, 66: 461.

    [10] Del Mistro G., Cervo S, Mansutti E, et al. Analytical and Bioanalytical Chemistry, 2015, 407(12): 3271.

    [11] Yang T X, Guo X Y, Wu Y P, et al. ACS Applied Materials and Interfaces, 2014, 6(23): 20985.

    [12] Dong R L, Weng S Z, Yang L B, et al. Analytical Chemistry, 2015, 87(5): 2937.

    [13] Kanabrocki E L, Sothern R B, Ryan M D, et al. La Clinica Terapeutica, 2008, 159(5): 329.

    [14] Ku J H, Godoy G., Amiel G E, et al. BJU International, 2012, 110(5): 630.

    [15] Mcevoy J, Millet R A, Dretchen K, et al. Psychopharmacology, 2014, 231(23): 4421.

    [16] Fogazzi G B, Garigali G. Current Opinion in Nephrology and Hypertension, 2003, 12(6): 625.

    [17] Huang S H, Wang L, Chen W S, et al. Laser Physics Letters, 2014, 11(11): 115604.

    [18] Wang T L, Chiang H K, Lu H H, et al. Optical and Quantum Electronics, 2005, 37(13-15): 1415.

    [19] Bonifacio A, Cervo S, Sergo. Analytical and Bioanalytical Chemistry, 2015, 407(27): 8265.

    [20] Li J F, Tian X D, Li S B, et al. Nature Protocols, 2013, 8(1): 52.

    [21] Premasiri W R, Clarke R H, Womble M E. Lasers in Surgery and Medicine, 2001, 28(4): 330.

    [22] Keuleers A, Desseyn H O, Rousseau B, Van Alsenoy C. Journal of Physical Chemistry A,1999, 103: 4621.

    [23] Chen J S, Feng S Y, Lin J Q, et al. Acta Laser Biology Sinica, 2011, 20(1): 98.

    [24] Trachta G, Schwarze B, Sagmuller B, et al. Journal of Molecular Structure, 2004, 693(1-3): 175.

    O657.3

    A

    表面增強(qiáng)拉曼散射光譜對人體尿液成份的初步研究

    鄭 彬1*,董金超2,蘇立眾1,蒙 萌2,張月皎2,李劍鋒2*

    1. 浙江省人民醫(yī)院耳鼻喉科,浙江 杭州 310014 2. 廈門大學(xué)固體表面物理化學(xué)國家重點實驗室,化學(xué)化工學(xué)院,福建 廈門 361005

    作為人體體液之一的尿液中含有多種人體新陳代謝的產(chǎn)物以及體內(nèi)排出的毒素,如果能夠?qū)@些組分進(jìn)行定性分析,就能夠在一定程度上有效反映人體器官的健康狀況,這是臨床醫(yī)學(xué)中重要的研究途徑。該實驗分別以785和1 030 nm激光作為源激發(fā),以具有電磁場增強(qiáng)的金納米粒子作為基底,利用表面增強(qiáng)拉曼散射光譜(SERS)對臨床實驗研究中所用的人體新鮮尿液的成份進(jìn)行快速、無損分析。通過控制金納米溶膠與尿液原液的混合比例從而來制備一系列具有不同配比的實驗樣品,并且通過實驗我們獲得其相應(yīng)的SERS光譜。由實驗結(jié)果分析可知,我們能夠有效地得到尿液中尿酸、次黃嘌呤等多種成份的SERS光譜。與此同時,我們還研究了在不同波長激光條件下的尿液的SERS光譜。相較于1 030 nm的激光,785 nm的激光得到的SERS光譜具有較高的分辨率以及較低的背景值。與此同時,利用具有1 030 nm激光的便攜式拉曼儀對實驗樣品進(jìn)行快速、無損分析,有望為臨床醫(yī)學(xué)現(xiàn)場、快速分析診斷提供幫助和支持。而且相信,SERS能夠在人類健康甚至生物組織的檢測等方面提供更加詳細(xì)的信息。

    表面增強(qiáng)拉曼光譜; 人體尿液; 臨床診斷; 金納米粒子

    2015-10-30,

    2016-02-04)

    Foundation item: Medical Science and Technology Project of Zhejiang Province (2015KYB025), and National Science Foundation of China (21522508)

    10.3964/j.issn.1000-0593(2016)06-1987-05

    Received: 2015-10-30; accepted: 2016-02-04

    Biography: ZHENG Bin, (1982—), an attending physician in Department of Otolaryngology in Zhejiang Provincial People’s Hospital e-mail: zhengbin017@163.com *Corresponding authors e-mail: Li@xmu.edu.cn

    *通訊聯(lián)系人

    猜你喜歡
    成份拉曼尿液
    賊都找不到的地方
    沒聽錯吧?用污泥和尿液制水泥
    軍事文摘(2022年16期)2022-08-24 01:50:52
    尿液檢測可能會發(fā)現(xiàn)侵襲性前列腺癌
    基于單光子探測技術(shù)的拉曼光譜測量
    電子測試(2018年18期)2018-11-14 02:30:36
    跟蹤導(dǎo)練(三)
    績優(yōu)指數(shù)成份變更與一周表現(xiàn)
    兩市主要成份指數(shù)中期成份股調(diào)整
    Variational Mode Decomposition for Rotating Machinery Condition Monitoring Using Vibration Signals
    基于相干反斯托克斯拉曼散射的二維溫度場掃描測量
    歐盟禁止在化妝品成份中使用3-亞芐基樟腦
    久久久久久久久久黄片| 国产男人的电影天堂91| 国产黄色免费在线视频| 美女主播在线视频| 国产 亚洲一区二区三区 | 精品久久久久久成人av| 成人av在线播放网站| 直男gayav资源| 国产伦理片在线播放av一区| 国产白丝娇喘喷水9色精品| 国产精品综合久久久久久久免费| 美女黄网站色视频| 18禁裸乳无遮挡免费网站照片| 亚洲成人久久爱视频| 免费黄频网站在线观看国产| 一级毛片黄色毛片免费观看视频| 99热网站在线观看| 日本免费a在线| 国产成人a∨麻豆精品| 老司机影院成人| 特大巨黑吊av在线直播| 成年女人在线观看亚洲视频 | 亚洲av一区综合| 午夜福利视频精品| 美女高潮的动态| 免费黄频网站在线观看国产| 在线观看人妻少妇| 看免费成人av毛片| 亚洲真实伦在线观看| 久久久久精品久久久久真实原创| 亚洲国产av新网站| 免费无遮挡裸体视频| 久久精品国产亚洲av涩爱| 人体艺术视频欧美日本| 国产精品国产三级专区第一集| 精品国产三级普通话版| 淫秽高清视频在线观看| 久久精品国产亚洲网站| 亚洲丝袜综合中文字幕| 亚洲av中文av极速乱| 欧美精品国产亚洲| 乱系列少妇在线播放| 真实男女啪啪啪动态图| 亚洲欧美精品自产自拍| 亚洲国产欧美在线一区| 亚洲国产精品成人综合色| 超碰97精品在线观看| 日韩成人伦理影院| 少妇人妻一区二区三区视频| 淫秽高清视频在线观看| 亚洲国产色片| 成人亚洲精品av一区二区| 国产v大片淫在线免费观看| 禁无遮挡网站| 国产精品一区二区三区四区免费观看| 欧美变态另类bdsm刘玥| 成人亚洲精品av一区二区| 日本一二三区视频观看| videossex国产| 舔av片在线| 九九久久精品国产亚洲av麻豆| 日本一本二区三区精品| 日韩欧美一区视频在线观看 | av黄色大香蕉| a级毛色黄片| 久久久久久久午夜电影| 欧美日韩精品成人综合77777| 国产永久视频网站| 91午夜精品亚洲一区二区三区| 一个人看视频在线观看www免费| 国产亚洲av片在线观看秒播厂 | 日本午夜av视频| 日本黄大片高清| 午夜免费观看性视频| 日韩电影二区| 亚洲丝袜综合中文字幕| 色5月婷婷丁香| av在线老鸭窝| 国产成人一区二区在线| 免费看a级黄色片| 精品午夜福利在线看| 日韩av在线大香蕉| 午夜福利成人在线免费观看| 免费av观看视频| 国产午夜福利久久久久久| eeuss影院久久| 久久久精品94久久精品| 最近手机中文字幕大全| 99久久人妻综合| 久久久久久久久久成人| 日产精品乱码卡一卡2卡三| 亚洲精品色激情综合| 搡老妇女老女人老熟妇| 亚洲国产成人一精品久久久| 国产毛片a区久久久久| 国产极品天堂在线| 2018国产大陆天天弄谢| 成年人午夜在线观看视频 | 99久国产av精品| 小蜜桃在线观看免费完整版高清| 国产永久视频网站| 青春草亚洲视频在线观看| 亚洲精品日本国产第一区| 直男gayav资源| 九草在线视频观看| 汤姆久久久久久久影院中文字幕 | 男女国产视频网站| 丝袜美腿在线中文| 成年免费大片在线观看| 国产精品不卡视频一区二区| 免费大片黄手机在线观看| av播播在线观看一区| 亚洲av成人av| 在线观看免费高清a一片| 美女高潮的动态| 国产欧美日韩精品一区二区| 国产黄色免费在线视频| 综合色av麻豆| 国产亚洲一区二区精品| 欧美日本视频| 亚洲精品乱码久久久久久按摩| 国产成人免费观看mmmm| 一夜夜www| 一级黄片播放器| 天堂网av新在线| 人人妻人人澡人人爽人人夜夜 | 日韩一本色道免费dvd| 日韩大片免费观看网站| 亚州av有码| 欧美成人a在线观看| 欧美3d第一页| 亚洲性久久影院| 国产一级毛片七仙女欲春2| 色综合亚洲欧美另类图片| 搡老妇女老女人老熟妇| 欧美 日韩 精品 国产| 亚洲欧美成人精品一区二区| 国产成人精品福利久久| 又大又黄又爽视频免费| 日日干狠狠操夜夜爽| 国产中年淑女户外野战色| 一级黄片播放器| 看黄色毛片网站| 少妇熟女aⅴ在线视频| 久久精品人妻少妇| 精品久久国产蜜桃| 亚洲欧美一区二区三区国产| 国产伦精品一区二区三区四那| 成人毛片60女人毛片免费| 亚洲美女视频黄频| 少妇裸体淫交视频免费看高清| 乱系列少妇在线播放| 一级毛片aaaaaa免费看小| av.在线天堂| 菩萨蛮人人尽说江南好唐韦庄| 国产高清有码在线观看视频| 欧美成人午夜免费资源| 亚洲欧美中文字幕日韩二区| 高清毛片免费看| 免费av不卡在线播放| 色吧在线观看| 国产单亲对白刺激| 亚洲经典国产精华液单| 亚洲欧洲日产国产| 蜜桃久久精品国产亚洲av| 亚洲电影在线观看av| 国产成人福利小说| 中文字幕免费在线视频6| 99视频精品全部免费 在线| 国产亚洲91精品色在线| 91精品国产九色| 在线a可以看的网站| 亚洲精品乱久久久久久| 三级国产精品片| 一个人看视频在线观看www免费| 男女下面进入的视频免费午夜| videossex国产| 成人欧美大片| 亚洲欧美日韩无卡精品| 能在线免费看毛片的网站| 亚洲三级黄色毛片| 91av网一区二区| 午夜福利在线观看吧| 大又大粗又爽又黄少妇毛片口| 国产黄色免费在线视频| 午夜福利视频精品| 成人午夜精彩视频在线观看| 免费播放大片免费观看视频在线观看| 久久久久精品性色| 欧美日本视频| 亚洲国产av新网站| 国产黄色视频一区二区在线观看| 国产黄片美女视频| a级毛片免费高清观看在线播放| 亚洲一区高清亚洲精品| 久久精品久久久久久久性| 日韩欧美一区视频在线观看 | 男人狂女人下面高潮的视频| 精品一区二区三区人妻视频| 成人午夜高清在线视频| 欧美97在线视频| 国产黄色免费在线视频| 日韩欧美精品免费久久| kizo精华| 亚州av有码| 国产乱来视频区| 99久久九九国产精品国产免费| 国产精品一及| 美女高潮的动态| 三级男女做爰猛烈吃奶摸视频| 国产一区亚洲一区在线观看| 麻豆av噜噜一区二区三区| 99久久九九国产精品国产免费| av又黄又爽大尺度在线免费看| 三级毛片av免费| 看免费成人av毛片| 久久精品综合一区二区三区| 免费看日本二区| 亚洲成人av在线免费| 一边亲一边摸免费视频| 啦啦啦啦在线视频资源| 午夜福利在线观看免费完整高清在| 丰满乱子伦码专区| 高清毛片免费看| av网站免费在线观看视频 | 波多野结衣巨乳人妻| 日韩伦理黄色片| 精品一区二区三区视频在线| 黄色一级大片看看| 亚洲欧洲日产国产| 国产在视频线在精品| 成人毛片a级毛片在线播放| av在线天堂中文字幕| 精品人妻一区二区三区麻豆| 国产三级在线视频| 免费大片18禁| 亚洲av成人精品一区久久| 亚洲av日韩在线播放| 综合色丁香网| 国产午夜精品一二区理论片| 亚洲18禁久久av| 极品教师在线视频| 蜜臀久久99精品久久宅男| 能在线免费看毛片的网站| 欧美人与善性xxx| 高清av免费在线| 亚洲精品国产av蜜桃| 日韩欧美 国产精品| 少妇猛男粗大的猛烈进出视频 | 国产av在哪里看| 亚洲va在线va天堂va国产| 久久久久免费精品人妻一区二区| 国产黄a三级三级三级人| 99热这里只有精品一区| 久久99精品国语久久久| 国产片特级美女逼逼视频| 伦理电影大哥的女人| 色哟哟·www| 99久久人妻综合| 久久99精品国语久久久| 国产精品美女特级片免费视频播放器| 插逼视频在线观看| 日日干狠狠操夜夜爽| 日韩欧美一区视频在线观看 | 国产精品人妻久久久久久| 色综合亚洲欧美另类图片| 国产视频内射| 亚洲欧美精品自产自拍| 欧美日韩国产mv在线观看视频 | 一级爰片在线观看| 国产真实伦视频高清在线观看| 亚洲av免费高清在线观看| 大香蕉久久网| 超碰av人人做人人爽久久| 中文字幕久久专区| 日本wwww免费看| 国产精品美女特级片免费视频播放器| 国产一级毛片七仙女欲春2| 国产亚洲最大av| 亚洲国产精品国产精品| 欧美日韩精品成人综合77777| 精品欧美国产一区二区三| 日韩一区二区视频免费看| 1000部很黄的大片| 麻豆精品久久久久久蜜桃| 久久精品国产亚洲av天美| 特级一级黄色大片| 精品一区二区三区人妻视频| 美女黄网站色视频| 久久午夜福利片| 蜜桃亚洲精品一区二区三区| 成年版毛片免费区| 久久久成人免费电影| 亚洲精品久久午夜乱码| 欧美zozozo另类| 老司机影院成人| 午夜免费观看性视频| 中文欧美无线码| 欧美zozozo另类| 18禁动态无遮挡网站| 波野结衣二区三区在线| 又大又黄又爽视频免费| av卡一久久| 别揉我奶头 嗯啊视频| 人人妻人人澡人人爽人人夜夜 | 久久久精品94久久精品| 韩国高清视频一区二区三区| 91狼人影院| 日本wwww免费看| 亚洲精品久久午夜乱码| 免费看日本二区| 久久久久久久久久久免费av| 99久久精品热视频| 日韩欧美精品免费久久| 中文在线观看免费www的网站| 国产黄色免费在线视频| 能在线免费观看的黄片| 国产成人精品久久久久久| 久久韩国三级中文字幕| 欧美人与善性xxx| 一级片'在线观看视频| videos熟女内射| av国产免费在线观看| 简卡轻食公司| 麻豆久久精品国产亚洲av| 综合色av麻豆| 夜夜爽夜夜爽视频| xxx大片免费视频| 水蜜桃什么品种好| 九草在线视频观看| 亚洲精品久久午夜乱码| 麻豆成人av视频| 高清av免费在线| 乱码一卡2卡4卡精品| 亚洲熟女精品中文字幕| 麻豆av噜噜一区二区三区| 日韩欧美 国产精品| 性色avwww在线观看| 一个人看视频在线观看www免费| 久久精品综合一区二区三区| 成人欧美大片| 国产精品一区二区三区四区久久| 亚洲图色成人| 日韩中字成人| 超碰97精品在线观看| 久久久亚洲精品成人影院| 中文乱码字字幕精品一区二区三区 | 欧美区成人在线视频| 日韩av在线大香蕉| av福利片在线观看| 欧美成人一区二区免费高清观看| 黄色配什么色好看| 啦啦啦中文免费视频观看日本| 97超碰精品成人国产| 日韩av免费高清视频| 真实男女啪啪啪动态图| 欧美日韩精品成人综合77777| a级毛色黄片| 日韩精品青青久久久久久| 国语对白做爰xxxⅹ性视频网站| 在线a可以看的网站| 一区二区三区免费毛片| 在线天堂最新版资源| 青春草亚洲视频在线观看| 欧美变态另类bdsm刘玥| 噜噜噜噜噜久久久久久91| 国产成人午夜福利电影在线观看| 成人漫画全彩无遮挡| 中文字幕av在线有码专区| 国产一区二区亚洲精品在线观看| 国产在线男女| 激情 狠狠 欧美| 日韩成人伦理影院| 免费观看性生交大片5| 搞女人的毛片| 一区二区三区四区激情视频| 国产精品1区2区在线观看.| 美女内射精品一级片tv| 欧美日韩一区二区视频在线观看视频在线 | 少妇的逼好多水| 欧美潮喷喷水| 精品一区在线观看国产| 国产精品99久久久久久久久| 一二三四中文在线观看免费高清| 在线a可以看的网站| 国语对白做爰xxxⅹ性视频网站| 全区人妻精品视频| av女优亚洲男人天堂| 两个人的视频大全免费| 99热6这里只有精品| 国产极品天堂在线| 免费在线观看成人毛片| 寂寞人妻少妇视频99o| 久久97久久精品| 成人美女网站在线观看视频| 日韩中字成人| 国产精品一二三区在线看| 人妻夜夜爽99麻豆av| 欧美成人a在线观看| 国产亚洲精品av在线| 亚洲熟妇中文字幕五十中出| 免费看日本二区| 男的添女的下面高潮视频| 亚洲精品久久午夜乱码| 美女被艹到高潮喷水动态| 久久这里只有精品中国| 简卡轻食公司| 不卡视频在线观看欧美| 国产国拍精品亚洲av在线观看| 精品99又大又爽又粗少妇毛片| 永久免费av网站大全| 欧美成人a在线观看| 精品国内亚洲2022精品成人| 精品久久久久久电影网| 国产单亲对白刺激| 麻豆久久精品国产亚洲av| 嫩草影院精品99| 欧美97在线视频| 亚洲熟女精品中文字幕| 欧美高清性xxxxhd video| 亚洲国产av新网站| 欧美一级a爱片免费观看看| 有码 亚洲区| 看黄色毛片网站| 综合色丁香网| av福利片在线观看| 麻豆成人午夜福利视频| 国产精品福利在线免费观看| 欧美成人午夜免费资源| 国产精品一区二区三区四区久久| 免费av观看视频| 搡老妇女老女人老熟妇| 大陆偷拍与自拍| 国产亚洲av嫩草精品影院| 我的老师免费观看完整版| 少妇人妻精品综合一区二区| 亚洲欧美日韩无卡精品| 亚洲美女搞黄在线观看| 在线免费观看的www视频| av专区在线播放| 亚洲最大成人av| 99re6热这里在线精品视频| av卡一久久| 大陆偷拍与自拍| 午夜免费激情av| 国内少妇人妻偷人精品xxx网站| 非洲黑人性xxxx精品又粗又长| 精品人妻视频免费看| 国产单亲对白刺激| 精品人妻视频免费看| 亚洲成人一二三区av| 国产精品国产三级专区第一集| 午夜福利视频1000在线观看| 老司机影院毛片| 舔av片在线| 国产毛片a区久久久久| 一本久久精品| 最近中文字幕2019免费版| 亚洲欧美中文字幕日韩二区| 边亲边吃奶的免费视频| 欧美xxxx性猛交bbbb| 91aial.com中文字幕在线观看| 国产精品国产三级国产专区5o| 国产av在哪里看| 国产乱来视频区| 久久精品熟女亚洲av麻豆精品 | 校园人妻丝袜中文字幕| 99久久九九国产精品国产免费| 日日干狠狠操夜夜爽| 精品国产露脸久久av麻豆 | 亚洲人成网站在线播| 国产精品一及| 久久久久性生活片| 亚洲欧美日韩无卡精品| 国产 一区 欧美 日韩| 久久久成人免费电影| 一级毛片aaaaaa免费看小| 免费电影在线观看免费观看| 日韩欧美一区视频在线观看 | 非洲黑人性xxxx精品又粗又长| 久久精品国产亚洲av涩爱| 日本爱情动作片www.在线观看| 久久鲁丝午夜福利片| 欧美日韩在线观看h| 看黄色毛片网站| 黄片无遮挡物在线观看| 午夜精品在线福利| 免费观看在线日韩| 好男人视频免费观看在线| 亚洲经典国产精华液单| 搡老妇女老女人老熟妇| 国产在视频线在精品| 在线观看av片永久免费下载| 亚洲高清免费不卡视频| a级一级毛片免费在线观看| 91久久精品电影网| 美女xxoo啪啪120秒动态图| 午夜视频国产福利| 久久精品夜夜夜夜夜久久蜜豆| 欧美 日韩 精品 国产| 亚洲精品日韩在线中文字幕| 精品久久久精品久久久| 中文资源天堂在线| 一级二级三级毛片免费看| 色5月婷婷丁香| 夫妻午夜视频| 精品久久久久久成人av| 亚洲自拍偷在线| 肉色欧美久久久久久久蜜桃 | 国产亚洲精品av在线| 有码 亚洲区| 久久久久久久久久久丰满| 国内揄拍国产精品人妻在线| 亚洲国产色片| 久久热精品热| 久久久久九九精品影院| 欧美激情国产日韩精品一区| 3wmmmm亚洲av在线观看| 久久精品国产亚洲网站| 成人亚洲精品一区在线观看 | 国产国拍精品亚洲av在线观看| 亚洲精品乱码久久久v下载方式| 亚洲激情五月婷婷啪啪| 国产精品嫩草影院av在线观看| 亚洲,欧美,日韩| 九九久久精品国产亚洲av麻豆| 久久精品夜色国产| 午夜福利在线观看免费完整高清在| 亚洲最大成人av| 观看免费一级毛片| 深夜a级毛片| 国产精品蜜桃在线观看| 亚洲精品亚洲一区二区| 国产麻豆成人av免费视频| 精品国产一区二区三区久久久樱花 | 亚洲国产av新网站| av黄色大香蕉| 最近最新中文字幕免费大全7| 成人鲁丝片一二三区免费| 亚洲精品日韩在线中文字幕| 亚洲av免费高清在线观看| 精品久久久噜噜| 国产欧美另类精品又又久久亚洲欧美| 中文字幕制服av| 日日啪夜夜撸| 中国国产av一级| 免费少妇av软件| 有码 亚洲区| 精品人妻一区二区三区麻豆| 五月伊人婷婷丁香| 久久久久久久久大av| 看非洲黑人一级黄片| 日日啪夜夜爽| 国产一区亚洲一区在线观看| 亚洲av不卡在线观看| 亚洲,欧美,日韩| 一级a做视频免费观看| 亚洲图色成人| 欧美bdsm另类| 久久久久久久国产电影| 久久99精品国语久久久| 乱系列少妇在线播放| 男人舔奶头视频| 春色校园在线视频观看| 黄色欧美视频在线观看| 婷婷六月久久综合丁香| 国产精品伦人一区二区| 搡女人真爽免费视频火全软件| 男人狂女人下面高潮的视频| 午夜福利在线在线| 蜜桃亚洲精品一区二区三区| 国产精品av视频在线免费观看| 日韩欧美国产在线观看| 国产欧美另类精品又又久久亚洲欧美| 亚洲精品456在线播放app| 欧美不卡视频在线免费观看| 视频中文字幕在线观看| 亚洲av中文字字幕乱码综合| 久久久精品欧美日韩精品| 波多野结衣巨乳人妻| 床上黄色一级片| 欧美一级a爱片免费观看看| 亚洲美女视频黄频| 最近2019中文字幕mv第一页| 麻豆成人av视频| 欧美zozozo另类| 日韩一区二区视频免费看| 高清av免费在线| 日韩在线高清观看一区二区三区| 亚洲美女视频黄频| 好男人在线观看高清免费视频| 日日啪夜夜撸| av黄色大香蕉| 国产亚洲午夜精品一区二区久久 | 国产成人精品一,二区| 国产男人的电影天堂91| 精品99又大又爽又粗少妇毛片| 婷婷色综合大香蕉| 久久草成人影院| 777米奇影视久久| 亚洲三级黄色毛片| av一本久久久久| 亚洲经典国产精华液单| 精品久久久精品久久久| 人人妻人人澡人人爽人人夜夜 | 非洲黑人性xxxx精品又粗又长| 久久亚洲国产成人精品v| 久久精品熟女亚洲av麻豆精品 | 97人妻精品一区二区三区麻豆| 秋霞在线观看毛片| 全区人妻精品视频| av卡一久久| 国产一区有黄有色的免费视频 | 有码 亚洲区| 亚洲最大成人手机在线|