• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of Thermal Field Distribution in Winter over Beijing from1985 to 2015 Using Landsat Thermal Data

    2016-07-12 12:47:27ZHOUXueyingSUNLinWEIJingJIAShangfengTIANXinpengWUTong
    光譜學(xué)與光譜分析 2016年11期
    關(guān)鍵詞:熱場(chǎng)結(jié)果表明顆粒物

    ZHOU Xue-ying, SUN Lin, WEI Jing, JIA Shang-feng, TIAN Xin-peng, WU Tong

    Geomatics College, Shandong University of Science and Technology, Qingdao 266590, China

    Analysis of Thermal Field Distribution in Winter over Beijing from1985 to 2015 Using Landsat Thermal Data

    ZHOU Xue-ying, SUN Lin*, WEI Jing, JIA Shang-feng, TIAN Xin-peng, WU Tong

    Geomatics College, Shandong University of Science and Technology, Qingdao 266590, China

    Heat supply, automobile exhaust, industrial production and decrease of thermal inertia in winter caused by the decrease of vegetation coverage leads to an obvious difference in the distribution of the land thermal field in the winter compared with other seasons. The Urban thermal field distribution in the winter directly affects the spread of air pollutants, which has important implications for analyzing the contribution of the thermal field to particulate air pollution. Atmospheric transmissivity and atmospheric upwelling/downwelling radiance in simulations are first calculated using the moderate spectral resolution atmospheric transmittance algorithm and computer model (MODTRAN). Then, we solve the radiative transfer model of the thermal infrared band by constructing a look-up table. In addition, the accuracy estimation is performed using the simulated data, showing that when the error range of emissivity and water vapor content are confined to ±0.005 and ±0.6, respectively, the temperature retrieval error are less than 0.348 and 2.117 K, respectively indicating the high retrieval accuracy of the method. In addition, the long-term sequenced Landsat TM and ETM+ data were selected to retrieve land surface temperature (LST) during 1985-2015. The analysis of the temporal and spatial distribution of thermal fields in Beijing show that the spatial and temporal variations are observable. The spatial variation covers four levels: high temperature is distributed within the second ring, low temperature loops are distributed between the second and the fifth ring, high temperature is distributed in the outer suburb areas and the lowest temperature is distributed in the western mountainous areas. Meanwhile, the temporal variation of thermal field distribution changed a great deal during the rapid development in the past 3 decades: the low temperature loop expanded from the third to the sixth ring; the intensity and scope of the heat island effect within the second ring increased gradually.

    Beijing; Winter; Thermal field distribution; LST; Landsat

    Introduction

    The acceleration of urbanization in Beijing since the 1980s has greatly changed the city environment. This affects the urban thermal field distribution[1]and directly influences the spread of air pollutants. The temperature in Beijing’s surrounding regions in the winter is lower compared with the temperature in the summer, which is influenced by the heat supply and exhaust gas emissions, etc. High temperatures appear in central Beijing in the winter, leading to a lower atmospheric pressure and impeding the diffusion of pollutants[2]. Meanwhile, coal burning causes the volume of pollutants to float to the central city as village residents warms themselves in the winter. Therefore, the study of the thermal field distribution and its variation in Beijing in the winter has great significance for understanding of the contribution of urban heat island to air pollution.

    Remote sensing techniques play a crucial role in analyzing spatial temperature distributions. With the development of remote sensing technology, researches of urban thermal field distribution and variation have been widely performed using remote sensing techniques and multi-source remote sensing data. Gallo K P,et al. analyzed the thermal field distribution of 15 cities in Seattle using advanced very high resolution radiometer(VHRR) data of the NOAA satellite, which showed that the vegetation index has a strong relationship with the surface properties of suburb areas, and in the meantime, the urban heat island effect phenomenon has been evaluated using NDVI[3]; M. Stathopoulou et al. analyzed the urban heat island effect of coastal cities in Greece using AVHRR data from the NOAA satellite, which showed that port cities in Greece have obvious heat island effects caused by the dense population distribution, road network construction and frequent human activities[4]; Yang Yingbao et al. quantitatively analyzed the temporal and spatial characteristics of the heat island effect in Nanjing by combining Landsat TM data with MODIS data, which showed that the heat island effect is more apparent during the daytime and that the autumn the season has the strongest heat island effect while winter season has the weakest heat island effect[5]; U Rajasekar et al. monitored the strength of the heat island effect and spatial-temporal variation rules in Indianapolis by constructing a non-parametric model with TM and ETM+ data[6]; L Liu et al. performed a LST distribution retrieval in Hong Kong, indicating that the heat island effect primarily occurred in three suburb areas: Kowloon Island, northern Hong Kong Island and Hong Kong International Airport[7].

    LST spatial distribution retrieval using remote sensing images in the thermal infrared band is a crucial method for analyzing the urban thermal field distribution. Presently, the complete algorithms of LST retrieval primarily include the single channel algorithm, multi-channel algorithm and multi-angle algorithm. The single channel algorithm refers to the acquisition of LST through radiant energy obtained by one thermal infrared channel on the satellite sensor, which is widely applied to the satellite sensor with only one thermal infrared band. With atmospheric vertical profile data (temperature, humidity and pressure profiles), this method can be used to determine the surface temperature through the use of an atmosphere transfer model. JC Price et al. firstly proposed a single channel formulation to standard meteorological soundings at a time near the overpass of an NOAA operational satellite, by which the retrieval accuracy of LST reached ±2~3 K[8]; Jiménez-Munoz presented an improved methodology to retrieve LST from AVHRR 4 and TM 6 using only water vapor as the input variable, and the results turned out that the mean RMSE was lower than 2 K for AVHRR channel 4 and 1.5 K for TM band 6[9]. A multi-channel algorithm is developed based on thermal data from several wavebands. Represented by the split-window algorithm, the algorithm was initially applied to AVHRR channels 4 and 5 to eliminate the atmospheric influence through radiant brightness differences of the two channels. First, Prabhakara proposed a split-window algorithm and applied it to the retrieval of sea surface temperatures[10]; later, this algorithm was amended and applied to the retrieval of LST; Rozenstein et al. applied the split-window algorithm to high-resolution Landsat 8 satellite[11]; Wan et al. modified the algorithm and applied it to the LST products of MODIS data[12]. A multi-angle algorithm means eliminating the atmospheric influence through various atmospheric paths under different observation angles. Chedin et al. simulated sea surface temperatures (SST) by a single-channel, double-viewing angle method using METEOSAT and TIROS-N and obtained a that the mean and the standard deviation between the retrieved and observed surface temperature of 0.2 and 1.2 K, respectively[13]; Sobrino et al. estimated the LST and SST using LOWTRAN-7 simulations from the Along-Track Scanning Radiometer (ATSR) data, and accuracies of approximately 1.5 K in LST are achievable[14]; He Liming et al. proposed that without atmospheric vertical profile data, the LST, which is retrieved by atmospheric-corrected AMTIS single-channel and multi-angle thermal infrared images, has a difference of 1K from the measured data[15].

    This paper analyzes the thermal field distribution over Beijing in the winter using sequenced, long-term and high-resolution Landsat data. Landsat data over the most recent 30 years was retrieved. The LST was based on a different temporal scale based on the thermal infrared radiative transfer model. The thermal field distribution of Beijing was finally analyzed.

    1 Data Sources

    The landsat series is a land satellite program of NASA, collecting images from approximately 705 km above the surface in a sun-synchronous orbit with a 16-day revisiting period. The primary sensors include MSS, TM, ETM+ and OLI, which contain several discrete spectral channels, of which the spatial resolution of multi spectral channel is 30 m. The spatial resolutions for different thermal infrared channels are distinct, in which TM and ETM+ are 120 and 60 m respectively. So far, the Landsat series has been widely used in the retrieval of agriculture, forestry, natural disaster and environmental pollution monitoring[16-19].

    In order to analyze the temporal and spatial variation rules of the thermal field distribution of Beijing in the winter from 1985 to 2015, this paper takes one Landsat image every five years as the research data. To guarantee its spatial integrity, images applied in this paper are of high quality. The cloud cover of the selected image is lower than 3% and Beijing is under free-cloud conditions. In addition, two of the high-quality images during December and the next January are selected to perform the experiment. Meanwhile, we try to maintain the same imaging time for the consistency of the phenological period over the 7 scenes from 1985 to 2015. Table 1 shows the specific data source information.

    Table 1 Data source information

    2 Surface Temperature Retrieval

    2.1 Retrieval principle

    The energy obtained by the thermal infrared radiation sensor includes three parts: the thermal radiance obtained by the sensor reflected by the land surface and then weakened by the atmosphere, the atmospheric downwelling radiance that is weakened again by the atmosphere after surface reflection, and the thermal radiance received by the sensor and atmospheric upwelling radiance. It can be derived from the equation

    (1)

    (2)

    2.2 Determination of surface emissivity

    The land surface can be simplified as a natural surface, urban area and water area, in which the natural surface is defined as composed of bare soil and vegetation. The emissivity of natural surface!pixelsεcan be calculated from the following equation[20]

    ε=PvRvεv+(1-Pv)Rsεs+dε

    (3)

    whereεvandεsare the land surface emissivity (LSE) of vegetation and bare soil on the corresponding bands, respectively. For Landsat TM and ETM+,εv=0.986 07 andεs=0.972 15;RvandRsare the temperature retios of vegetation and bare soil, respectively, which are defined as follows

    Rv=B6(Tv)/B6(Ts)

    RS=B6(Tbs)/B6(Ts)

    (4)

    whereB6(Tv) andB6(Tbs) are the thermal radiant energy of vegetation and bare soil for the thermal infrared band, respectively;B6(Ts) is the radiant energy emitted by the land surface under the average surface temperatureTs. Similarly, urban areas can be defined as a mixture of urban and vegetation, thus, the LSE estimation equation is defined as follows

    ε=PvRvεv+(1-Pv)Rmεm+dε

    (5)

    whereRmis the temperature ratio of construction. The temperature ratio of different land surface types can be calculated by the vegetation coverage as well

    Rv=0.933 2+0.058 5Pv

    (6)

    Rs=0.990 2+0.106 8Pv

    (7)

    Rm=0.988 6+0.128 7Pv

    (8)

    (9)

    wherePvis the vegetation coverage, which can be calculated by the Normalized Difference Vegetation Index (NDVI) . NDVIvand NDVISare NDVI of fully vegetation-covered pixels and bare soil pixels, valued at 0.7 and 0.05, respectively. Generally,dε=0 if the land surface is comparatively smooth; if the land surface has large altitude differences, the value ofdεcan be estimated according to the ratio of vegetation[21]. Water, whose emissivity is 0.995[22-23], is extracted through the modified normalized difference water index (MNDWI).

    2.3 The determination of atmospheric transmittance and upwelling/downwelling

    MODTRAN is adopted to simulate atmospheric upwelling/downwelling radiance and transmittance for the retrieval of LST. MODTRAN was developed jointly by the Air Force Research Laboratory/Space Vehicles Directorate and Spectral Sciences, Inc. using the FORTRAN language. It is mainly applied to accurately simulate of atmospheric transmittance and LST.

    An atmospheric model and the water vapor content are needed in the simulation. MODTRAN 4 supplies several atmospheric models, in which the mid-latitude winter atmosphere is selected in this paper according to the condition of the research area and data source. The water vapor abundance is obtained from the parameter calculation tool for atmospheric correction that is published by NASA, and was proposed by Barsi in 2003. The Atmospheric Correction Parameter Calculator uses the National Centers for Environmental Prediction (NCEP) modeled atmospheric global profiles for a particular date, time and location as input[24]. Although the available data provided by NASA begins from 2000, the water vapor content that cannot be obtained is replaced by that of the same date from the previous year because the influence of water vapor in the whole research area is synthetic, and the water vapor content in the winter has small variations.

    2.4 Accuracy validation

    The data used in this paper are previous images, and there is no measurement that corresponds to them. Validation of the LST retrieval accuracy is performed by simulating the theoretical error of retrieved LST within the possible error range of each parameter via the radiative transfer model. LST retrieval is primarily affected by the surface emissivity and atmospheric water vapor content. With the aim of simulating error of retrieved LST using the above two parameters, atmospheric parameters are first simulated with the MODTRAN model, which is used to build the look-up table. Then the radiance value is obtained with the corresponding temperature, water vapor content and emissivity value. The retrieval of the corresponding LST can be conducted through the radiative transfer model in combination with the obtained radiance, water vapor content and emissivity data. The retrieved LST data are finally compared with the original standard data.

    As major factors that affect retrieval accuracy, the influences of the emissivity and water vapor content on LST retrieval are analyzed separately. Taking emissivity as independent variable and confining it to an error range of ±0.005 with an interval of 0.001, the error range of LST is 0.068~0.348 K; taking the water vapor content as the independent variable and confining it to ±0.6 with an interval of 0.1, the LST error range is 0.318~2.117 K, indicating that the error range of the retrieved LST by the method is generally low.

    3 Thermal field distribution analysis over Beijing in winter

    Based on the above theories, this paper retrieves the winter LST from 1985 to 2015 in Beijing using Landsat TM/ETM+ data. Fig.1 is the spatial distribution of LST. The spatial distribution of the thermal field includes four parts: the western mountainous area, the suburbs, the area between the fifth and second ring and area within the second ring. The western, northwestern and northeastern parts of Beijing have lower temperatures because the vegetation coverage is relatively high. The suburb area has an overall higher land surface temperature, and an obvious annular belt of low temperature appears between the second and fifth ring. The LST of area within the central second ring is higher than that of the outer ring. Related studies prove that in an urban area, LST during the day is lower than in the suburb area in the winter, showing a distinct cold island effect[2]. In terms of time sequence, the LST of the western forest region increases during the early period of development. Owing to the measurements of returning farmland to forest and forest protection, the LST decreases gradually as the increase of forestland area yet when observing the overall variation, the annular belt of low temperature increases continuously with the expansion of the urban area.

    Fig.1 LST retrievals from 1985 to 2015 in Beijing

    The mountainous area has the lowest LST in Beijing; in addition, the heat distribution differs remarkably as time changes. The mountains inside Beijing are approximately 2 000 m above sea level. As air temperature decreases with the increase of vertical height (the temperature drops approximately 0.6 ℃ for every 100 m increase in altitude), the surface temperature of the mountain area is the lowest. Moreover, the temperature between sunny slopes and shady slopes is distinct. Temperature differences in the mountainous area increased during 1985—2004, and large-scale low temperatures decreased gradually as the total temperatures increased; from 2010 to 2015, the low-temperature area expands due to the implementation of Beijing-Tianjin Sandstorm Source Control project. During this period, the forest coverage rate in Beijing increased by 5.7% according to figures released by the Landscaping department.

    In order to analyze the temporal and spatial variation rules of the LST over central Beijing, the area between the ixth and the second ring is selected, as shown in Fig.2. Fig.3 shows the temperature distribution within the sixth ring, in which the blue outline marks the sixth and the second rings. The black area presents the region in which temperature is higher than average land temperature, while the white area presents the opposite. The red circle approximates the low temperature loop region, which gradually expands over the past 30 years, as is shown in Fig.3. Overall, the low temperature area is mainly distributed near the third ring in 1985 but expanded to the fifth ring in 2010 and the sixth ring in 2015 because of the accelerated urbanization process and continuous development of urban areas. Moreover, the low temperature area distributed radially in 2015, which was closely related to the construction of highway and railways and the surrounding economic development.

    Fig.2 Scope of the study area

    Fig.3 Distribution of low-LST urban areas in Beijing

    The area within the second ring is the developed area with the most intensive population and the most frequent human activity. As shown in Fig.3, the overall LST is higher than that of surrounding areas, except for the water area A. With the aim of at analyzing the thermal field variation rule within the second ring, we performed a quantitative analysis on the LST variation with the Thermal Field Variance Index (TFVI)[25].

    Table 2 Threshold division standard of the ecological evaluation index

    TFVI=(T-TMEAN)/TMEAN

    (10)

    whereTis the LST of a specific point in the remote sensing image, andTMEANis the average LST value of the research area. As shown in Table 2, TFVI is classified into six grades in accordance with the ecological evaluation index.

    Fig.4 shows the TFVI distribution within the second ring (the black outline) between 1985—2015, showing that the intensity of the heat island effect was lower before 1990; however, the weak heat island effect dominated until 2004 when a medium heat island effect appeared in the central region. Moreover, the medium and strong heat island effects emerged in 2010, and the total intensity continuously strengthened. A strong and powerful heat island effect continued in 2015, when an extremely strong heat island effect emerged. To give a more intuitive presentation of the variation trend of the heat island effect, Fig.5 gives the proportion of intensity within the second ring, in which none, weak and medium intensity is shown in the histogram since the proportion of other intensities is small. It is observed that the area with no heat island effect decreases gradually, from 91.80% to 41.81%; meanwhile, the area with a weak heat island effect increases from 8.05% to 33.96% and the area with medium heat island effect increases significantly, from 0.15% to 20.20%.

    Fig.4 Distribution of urban heat island intensity in the second ring area of Beijing from 1985 to 2015

    Fig.5 Area proportion of heat island effect intensity

    4 Conclusion

    This paper calculates three key atmospheric parameters using the MODTRAN atmospheric the radiative transfer model and solves radiative transfer equation of thermal infrared band by building a look-up table. The theoretical accuracy is evaluated through a simulation method, indicating the high retrieval accuracy and stability of the algorithm. We process Landsat TM/ETM+ data over the past 30 years for Beijing and perform LST retrieval based on a thermal infrared radiative transfer model. Then, we analyze the spatial distribution rule over Beijing in the winter, and the results show that the thermal field spatial distribution covers four parts: the area within the second ring has the highest temperature, resulting in the obvious heat island effect; the area between the fifth and second ring has an obvious low temperature loop; the temperature of the suburb area is high, and the temperature in the western mountainous area is the lowest. In addition, the temporal distribution rule indicates that the low temperature loop expands from the third to the sixth ring with the development of urbanization; in general, the intensity of the heat island effect within the second ring becomes stronger. Considering the long time span of the selected data and the difficulties in obtaining the measured LST data, this paper only evaluates the theoretical accuracy of the algorithm. Further research work will be focused on a more objective and reliable accuracy validation method.

    [1] Wang Y, Xiao Y. Remote Sensing for Land & Resources, 2014, 26(3): 146.

    [2] Wang J, Wang K, Wang P, Journal of Remote Sensing, 2007, 11(3): 330.

    [3] Gallo K P, Mcnab A L, Karl T R, et al. Journal of Applied Meteorology, 2010, 325(5):899.

    [4] Stathopoulou M, Cartalis C, Keramitsoglou I. International Journal of Remote Sensing, 2004, 25(12): 2301.

    [5] Yang Y, Su W, Jiang N. Remote Sensing Technology & Application, 2006, 21(6): 488.

    [6] Rajasekar U, Weng Q. International Journal of Remote Sensing, 2009, 30(30): 3531.

    [7] Liu L, Zhang Y. Remote Sensing, 2011, 3(7): 1535.

    [8] Price J C. Remote Sensing of Environment, 1983, 13(4): 353.

    [10] Prabhakara C, Dalu G, Kunde V G. Journal of Geophysical Research, 1974, 79(33): 5039.

    [11] Rozenstein O, Qin Z, Derimian Y, et al. Sensors, 2014, 14(4): 5768.

    [12] Wan Z, Dozier J. IEEE Transactions on Geoscience & Remote Sensing, 1996, 34(4): 892.

    [13] Chedin A, Scott N A, Berroir A. Journal of Applied Meteorology, 1982, 21(4): 613.

    [14] Sobrino J A, Li Z L, Stoll M P, et al. International Journal of Remote Sensing, 1996, 17(11): 2089.

    [15] He L, Yan G, Li X, et al. Journal of Infrared Millimeter Waves, 2006, 25(6): 429.

    [16] Cristóbal J, Jiménez-Muoz J C, Sobrino J A, et al. Journal of Geophysical Research Atmospheres, 2009, 114(D8).

    [17] Sun L, Wei J, Bilal M, et al. Remote Sensing, 2016.

    [18] Chen Q, Zhang J, Zhang L. Journal of Agricultural Science, 2012, 4(3): 563.

    [19] Sun L, Wei J, Duan D H, et al. Journal of Atmospheric and Solar-Terrestrial Physics, 2016, 142: 43.

    [20] Qin Z, Li W, Gao M, et al. Proceedings of SPIE—The International Society for Optical Engineering, 2006, 6366: 636618-636618-8.

    [21] Song T, Duan Z, Liu J, et al. Journal of Remote Sensing, 2015, 19(3): 1993.

    [22] Xu H. Journal of Remote Sensing, 2005.

    [23] Qin Z, Li W,Xu B, et al. Remote Sensing for Land & Resources, 2004.

    [24] Barsi J A, Barker J L, Schott J R. An Atmospheric Correction Parameter Calculator for a Single Thermal Band Earth-Sensing Instrument[C]//Geoscience and Remote Sensing Symposium, 2003. IGARSS ’03. Proceedings. 2003 IEEE International. IEEE, 2003,5: 3014-3016.

    [25] Zhang Y, Yu T, Gu X, et al. Journal of Remote Sensing, 2006, 10(5): 789-797.

    *通訊聯(lián)系人

    TP79

    A

    利用Landsat熱紅外數(shù)據(jù)研究1985年—2015年北京市冬季熱場(chǎng)分布

    周雪瑩,孫 林*,韋 晶,夾尚豐,田信鵬,吳 桐

    山東科技大學(xué)測(cè)繪科學(xué)與工程學(xué)院,山東 青島 266590

    由于北京城市中心區(qū)冬季供暖、汽車(chē)尾氣、工業(yè)生產(chǎn)等因素的影響,以及冬季植被覆蓋減少導(dǎo)致地表熱慣量降低,致使北京市冬季地表熱場(chǎng)與其他季節(jié)差異明顯。冬季城市熱場(chǎng)分布直接影響冬季大氣顆粒物等污染物的擴(kuò)散速度,因此,研究熱場(chǎng)分布對(duì)了解城市熱場(chǎng)在大氣顆粒物污染中的貢獻(xiàn)具有重要的意義。首先利用MODTRAN大氣輻射傳輸模型計(jì)算大氣透過(guò)率、大氣上行輻射與大氣下行輻射三個(gè)關(guān)鍵參數(shù),通過(guò)構(gòu)建查找表解算熱紅外波段輻射傳輸方程。使用數(shù)據(jù)模擬的手段評(píng)價(jià)了該方法的精度,結(jié)果表明,當(dāng)比輻射率和水汽分別在±0.005和±0.6的誤差范圍內(nèi)波動(dòng)時(shí),溫度反演的誤差分別小于0.348和2.117 K,表明該方法可達(dá)到較高的反演精度。選擇長(zhǎng)時(shí)間序列Landsat TM、ETM+數(shù)據(jù),進(jìn)行地表溫度反演,得到1985年—2015年北京市的地表溫度?;诜囱莸牡乇頊囟确治隽吮本┦袩釄?chǎng)的時(shí)空分布。結(jié)果表明,北京冬季熱場(chǎng)分布在空間上可分為四個(gè)層次: 北京市二環(huán)內(nèi)溫度較高、二環(huán)到五環(huán)內(nèi)低溫環(huán)狀特征明顯、外圍郊區(qū)溫度高以及北京西部的山區(qū)溫度最低;隨著近30年來(lái)北京市的快速發(fā)展,熱場(chǎng)分布在長(zhǎng)時(shí)間序列中發(fā)生了明顯的改變: 隨著北京城市的不斷擴(kuò)張,環(huán)狀低溫區(qū)域也不斷擴(kuò)大,從三環(huán)擴(kuò)展到六環(huán);城市二環(huán)以?xún)?nèi)熱島效應(yīng)隨時(shí)間推移而增強(qiáng),且分布范圍擴(kuò)大。

    北京;冬季;熱場(chǎng)分布;地表溫度;Landsat

    2016-04-17,

    2016-08-21)

    Foundation item: National Key Technology Research and Development Program of the Ministry of Science and Technology of China(2012BAH27B00), National Science Foundation for Distinguished Young Scholars of Shandong Province(JQ201211)

    10.3964/j.issn.1000-0593(2016)11-3772-08

    Received: 2016-04-17,accepted: 2016-08-21

    Biography: ZHOU Xue-ying,(1992—),postgraduate of Geomatics College, Shandong University of Science and Technology e-mail: zhouxueying666@hotmail.com *Corresponding author e-mail: sunlin6@126.com

    猜你喜歡
    熱場(chǎng)結(jié)果表明顆粒物
    動(dòng)力系統(tǒng)永磁同步電動(dòng)機(jī)流體和熱場(chǎng)的計(jì)算分析
    熱場(chǎng)中Cu-Nb-C球磨納米粉的尺寸生長(zhǎng)與合金化研究
    云南化工(2021年6期)2021-12-21 07:30:54
    專(zhuān)利名稱(chēng):一種藍(lán)寶石晶體生長(zhǎng)爐的鎢鉬熱場(chǎng)防短路裝置
    南平市細(xì)顆粒物潛在來(lái)源分析
    用于高品質(zhì)發(fā)動(dòng)機(jī)的熱場(chǎng)集成模擬方法
    錯(cuò)流旋轉(zhuǎn)填料床脫除細(xì)顆粒物研究
    多層介質(zhì)阻擋放電處理柴油機(jī)尾氣顆粒物
    發(fā)達(dá)國(guó)家顆粒物污染防治經(jīng)驗(yàn)對(duì)我國(guó)的啟示
    體育鍛煉也重要
    闊世瑪與世瑪用于不同冬小麥品種的安全性試驗(yàn)
    26uuu在线亚洲综合色| 久久毛片免费看一区二区三区| 久久影院123| 久久热在线av| av一本久久久久| 一二三四中文在线观看免费高清| 久久综合国产亚洲精品| 日日摸夜夜添夜夜爱| 国产免费一区二区三区四区乱码| 国产免费视频播放在线视频| 国精品久久久久久国模美| 男男h啪啪无遮挡| 午夜老司机福利剧场| 亚洲国产最新在线播放| 一区二区三区乱码不卡18| 99久久综合免费| 亚洲国产最新在线播放| 亚洲国产精品成人久久小说| 韩国高清视频一区二区三区| 一个人免费看片子| 欧美人与善性xxx| 香蕉丝袜av| 国产成人精品久久久久久| 日产精品乱码卡一卡2卡三| 国产精品一国产av| 亚洲国产av影院在线观看| 亚洲国产欧美在线一区| 青春草亚洲视频在线观看| 国产亚洲欧美精品永久| 视频区图区小说| 亚洲天堂av无毛| av播播在线观看一区| 国产 一区精品| 日本vs欧美在线观看视频| 亚洲美女视频黄频| 桃花免费在线播放| 女人精品久久久久毛片| 久久久久人妻精品一区果冻| 亚洲婷婷狠狠爱综合网| 国产精品99久久99久久久不卡 | 精品少妇内射三级| 久久狼人影院| 性色av一级| 少妇猛男粗大的猛烈进出视频| 国产精品国产三级国产av玫瑰| 高清黄色对白视频在线免费看| 成年人免费黄色播放视频| 午夜影院在线不卡| 欧美国产精品va在线观看不卡| 午夜福利视频精品| 天堂俺去俺来也www色官网| 成年人午夜在线观看视频| 国产免费一区二区三区四区乱码| 在线免费观看不下载黄p国产| 成年av动漫网址| kizo精华| 亚洲欧美一区二区三区黑人 | 国产在线免费精品| 男女下面插进去视频免费观看 | 亚洲图色成人| 999精品在线视频| av黄色大香蕉| 精品亚洲成a人片在线观看| 国产在线免费精品| 国产成人精品久久久久久| 街头女战士在线观看网站| 国产精品成人在线| 日韩精品有码人妻一区| 亚洲伊人久久精品综合| 精品国产乱码久久久久久小说| 男女边吃奶边做爰视频| 久久青草综合色| 最近手机中文字幕大全| 黄色视频在线播放观看不卡| 一边摸一边做爽爽视频免费| 狠狠精品人妻久久久久久综合| 成年动漫av网址| 熟女av电影| 另类亚洲欧美激情| 国产精品.久久久| 亚洲av日韩在线播放| 中文字幕另类日韩欧美亚洲嫩草| 久久国产精品大桥未久av| 久久99一区二区三区| 哪个播放器可以免费观看大片| 婷婷色综合大香蕉| 成人18禁高潮啪啪吃奶动态图| 中国国产av一级| 91精品国产国语对白视频| 亚洲,一卡二卡三卡| 一区二区三区乱码不卡18| 97人妻天天添夜夜摸| 久热久热在线精品观看| 午夜福利视频在线观看免费| 赤兔流量卡办理| 一级毛片黄色毛片免费观看视频| 日产精品乱码卡一卡2卡三| 搡女人真爽免费视频火全软件| 男女高潮啪啪啪动态图| 欧美少妇被猛烈插入视频| 精品卡一卡二卡四卡免费| 国产精品一区www在线观看| 秋霞在线观看毛片| 久久这里有精品视频免费| 岛国毛片在线播放| 精品国产一区二区三区久久久樱花| 边亲边吃奶的免费视频| 日韩伦理黄色片| 久久久久视频综合| 免费大片18禁| 少妇 在线观看| 亚洲精品一区蜜桃| 亚洲,欧美精品.| videosex国产| 国产黄色免费在线视频| 香蕉国产在线看| 一级a做视频免费观看| 国语对白做爰xxxⅹ性视频网站| 曰老女人黄片| 国产日韩欧美亚洲二区| 夜夜爽夜夜爽视频| 捣出白浆h1v1| 亚洲一区二区三区欧美精品| freevideosex欧美| 亚洲精品乱久久久久久| 国产成人av激情在线播放| 最近手机中文字幕大全| 99热这里只有是精品在线观看| 国产色爽女视频免费观看| 午夜福利,免费看| 欧美激情 高清一区二区三区| 寂寞人妻少妇视频99o| 精品一区二区免费观看| 亚洲婷婷狠狠爱综合网| 少妇熟女欧美另类| 久久这里有精品视频免费| 国产福利在线免费观看视频| 国产欧美另类精品又又久久亚洲欧美| 日韩免费高清中文字幕av| 三上悠亚av全集在线观看| av黄色大香蕉| 日韩在线高清观看一区二区三区| 五月开心婷婷网| 久久免费观看电影| 国产片特级美女逼逼视频| 成年动漫av网址| 交换朋友夫妻互换小说| 少妇的丰满在线观看| 美女福利国产在线| 香蕉精品网在线| 免费看不卡的av| 亚洲精品自拍成人| 亚洲成人手机| 欧美老熟妇乱子伦牲交| 人人妻人人澡人人看| 一级毛片我不卡| 日韩一区二区视频免费看| 亚洲av欧美aⅴ国产| 97在线视频观看| 欧美 亚洲 国产 日韩一| a级毛色黄片| 内地一区二区视频在线| 日韩在线高清观看一区二区三区| 日韩成人伦理影院| 中文天堂在线官网| 美女主播在线视频| 日本猛色少妇xxxxx猛交久久| av国产精品久久久久影院| 狂野欧美激情性bbbbbb| 免费黄频网站在线观看国产| 国产免费现黄频在线看| 人人妻人人澡人人看| 男男h啪啪无遮挡| 成年人午夜在线观看视频| 一级毛片电影观看| 国产精品久久久久成人av| 如何舔出高潮| 精品人妻在线不人妻| 亚洲第一区二区三区不卡| 99香蕉大伊视频| 久久久久视频综合| av在线播放精品| 精品一区二区三区视频在线| 久久久精品区二区三区| 日韩欧美一区视频在线观看| 国产av码专区亚洲av| 国产熟女午夜一区二区三区| 欧美精品av麻豆av| 美国免费a级毛片| 国产欧美日韩一区二区三区在线| 国产精品久久久久久久电影| 在线观看美女被高潮喷水网站| 欧美日韩亚洲高清精品| 国产深夜福利视频在线观看| 在线观看美女被高潮喷水网站| 观看美女的网站| 人妻系列 视频| av视频免费观看在线观看| 欧美精品一区二区大全| 日韩中文字幕视频在线看片| 日韩一区二区三区影片| 国产精品国产av在线观看| av.在线天堂| 少妇人妻 视频| 天美传媒精品一区二区| 国产精品久久久久久精品古装| 午夜福利乱码中文字幕| 精品熟女少妇av免费看| av免费在线看不卡| 热re99久久国产66热| 国产成人欧美| 国产毛片在线视频| 欧美精品国产亚洲| 久久精品夜色国产| 国产成人精品久久久久久| 人人妻人人添人人爽欧美一区卜| 精品人妻一区二区三区麻豆| 日本av免费视频播放| av不卡在线播放| 少妇的逼水好多| 精品国产一区二区久久| 最近的中文字幕免费完整| videosex国产| 天堂8中文在线网| 精品亚洲成国产av| 国产精品偷伦视频观看了| 中文字幕精品免费在线观看视频 | 国产欧美另类精品又又久久亚洲欧美| 18禁观看日本| 蜜臀久久99精品久久宅男| av电影中文网址| 人妻一区二区av| 日韩中文字幕视频在线看片| 超碰97精品在线观看| 久久久欧美国产精品| 亚洲图色成人| av线在线观看网站| 人妻一区二区av| 亚洲av欧美aⅴ国产| 大片电影免费在线观看免费| 97精品久久久久久久久久精品| 免费人成在线观看视频色| 男女免费视频国产| 美女国产视频在线观看| 精品少妇内射三级| 亚洲精品一区蜜桃| 国产av码专区亚洲av| 免费不卡的大黄色大毛片视频在线观看| 咕卡用的链子| 日韩制服丝袜自拍偷拍| 成人亚洲精品一区在线观看| 18禁裸乳无遮挡动漫免费视频| 亚洲精品中文字幕在线视频| 欧美亚洲 丝袜 人妻 在线| 精品久久久精品久久久| 成人亚洲精品一区在线观看| 亚洲色图综合在线观看| av视频免费观看在线观看| 少妇人妻久久综合中文| 熟妇人妻不卡中文字幕| 国产一区二区三区av在线| 欧美日韩av久久| 久久精品人人爽人人爽视色| 亚洲精品av麻豆狂野| 久久这里有精品视频免费| 美女国产视频在线观看| 黑人巨大精品欧美一区二区蜜桃 | 国语对白做爰xxxⅹ性视频网站| 欧美人与善性xxx| 国产激情久久老熟女| 亚洲少妇的诱惑av| 一区二区av电影网| 久久av网站| 高清av免费在线| 免费在线观看黄色视频的| 久久国产亚洲av麻豆专区| av在线老鸭窝| 如日韩欧美国产精品一区二区三区| 午夜91福利影院| 一区二区日韩欧美中文字幕 | 国产精品一国产av| 国产成人欧美| 又黄又粗又硬又大视频| 欧美日韩成人在线一区二区| 1024视频免费在线观看| 久久人人爽av亚洲精品天堂| 久久久久久久大尺度免费视频| 五月玫瑰六月丁香| 性色av一级| 黑丝袜美女国产一区| 国产片内射在线| 久久久久久久国产电影| 人成视频在线观看免费观看| 久久 成人 亚洲| 国产av一区二区精品久久| 久久免费观看电影| 精品少妇内射三级| 99国产精品免费福利视频| 欧美精品国产亚洲| av线在线观看网站| 一级片免费观看大全| 国产综合精华液| 日本91视频免费播放| 18在线观看网站| 丝袜美足系列| 99九九在线精品视频| 99久久人妻综合| 亚洲精品aⅴ在线观看| 久久韩国三级中文字幕| 99国产精品免费福利视频| av又黄又爽大尺度在线免费看| 麻豆精品久久久久久蜜桃| av.在线天堂| 国产综合精华液| av视频免费观看在线观看| 七月丁香在线播放| 亚洲国产欧美日韩在线播放| 蜜臀久久99精品久久宅男| 99久久精品国产国产毛片| 久久鲁丝午夜福利片| 精品一区在线观看国产| 午夜免费观看性视频| 日韩制服骚丝袜av| 香蕉精品网在线| 一级,二级,三级黄色视频| 欧美日韩国产mv在线观看视频| 深夜精品福利| www.熟女人妻精品国产 | 满18在线观看网站| 一本久久精品| 久久久国产精品麻豆| 久久人人爽av亚洲精品天堂| 亚洲人成网站在线观看播放| 国产精品人妻久久久影院| 狠狠精品人妻久久久久久综合| 汤姆久久久久久久影院中文字幕| 水蜜桃什么品种好| 国产成人精品无人区| 国产精品久久久久久av不卡| 久久久久精品人妻al黑| 欧美性感艳星| 欧美变态另类bdsm刘玥| 高清av免费在线| 乱码一卡2卡4卡精品| 日韩中字成人| 久久久久久久大尺度免费视频| 久久99蜜桃精品久久| 午夜激情av网站| 大话2 男鬼变身卡| 欧美人与性动交α欧美软件 | 成年人午夜在线观看视频| 亚洲成色77777| 9色porny在线观看| 18+在线观看网站| 国产成人精品婷婷| 男人舔女人的私密视频| 最黄视频免费看| 国产精品一二三区在线看| 看免费成人av毛片| 久久综合国产亚洲精品| 午夜福利乱码中文字幕| 少妇的逼好多水| 国产免费又黄又爽又色| 免费不卡的大黄色大毛片视频在线观看| 自线自在国产av| 国产一区二区三区av在线| 狂野欧美激情性bbbbbb| 久久久亚洲精品成人影院| 欧美人与性动交α欧美软件 | 少妇人妻精品综合一区二区| 久久免费观看电影| 少妇熟女欧美另类| 国产精品国产三级专区第一集| 人妻少妇偷人精品九色| 纵有疾风起免费观看全集完整版| 老司机影院成人| 国产av码专区亚洲av| 青青草视频在线视频观看| 免费看不卡的av| 国产激情久久老熟女| 欧美精品高潮呻吟av久久| 我的女老师完整版在线观看| 午夜福利视频在线观看免费| 国产精品国产三级国产av玫瑰| 男人舔女人的私密视频| 精品久久久久久电影网| 伊人久久国产一区二区| 菩萨蛮人人尽说江南好唐韦庄| 中文字幕免费在线视频6| 久久99蜜桃精品久久| 国产69精品久久久久777片| 18禁国产床啪视频网站| 一级毛片电影观看| 考比视频在线观看| 久久午夜综合久久蜜桃| 亚洲国产精品999| 有码 亚洲区| 国产免费又黄又爽又色| 欧美国产精品一级二级三级| 午夜免费男女啪啪视频观看| 搡老乐熟女国产| 亚洲人成网站在线观看播放| 黑人欧美特级aaaaaa片| 熟女av电影| 免费大片18禁| 捣出白浆h1v1| 黄色毛片三级朝国网站| 大陆偷拍与自拍| 激情五月婷婷亚洲| 国产精品不卡视频一区二区| 9色porny在线观看| 免费大片黄手机在线观看| xxxhd国产人妻xxx| 国产一区二区激情短视频 | 免费看av在线观看网站| 久久精品国产自在天天线| 久久久久久久大尺度免费视频| 99热国产这里只有精品6| 国产欧美日韩一区二区三区在线| 亚洲欧美成人综合另类久久久| 国产爽快片一区二区三区| 国产欧美日韩综合在线一区二区| 日韩制服丝袜自拍偷拍| 菩萨蛮人人尽说江南好唐韦庄| 极品少妇高潮喷水抽搐| 十分钟在线观看高清视频www| 国产精品麻豆人妻色哟哟久久| 亚洲成国产人片在线观看| 国产色爽女视频免费观看| 亚洲成国产人片在线观看| 巨乳人妻的诱惑在线观看| 在线观看三级黄色| 日韩欧美一区视频在线观看| 成人影院久久| 亚洲久久久国产精品| 日本爱情动作片www.在线观看| 免费看光身美女| 久久97久久精品| 人人妻人人澡人人爽人人夜夜| 精品卡一卡二卡四卡免费| 中文字幕另类日韩欧美亚洲嫩草| www日本在线高清视频| 国产成人精品无人区| 久久久久国产精品人妻一区二区| 亚洲精品,欧美精品| 啦啦啦啦在线视频资源| 少妇被粗大猛烈的视频| 日日啪夜夜爽| 国产精品免费大片| 午夜福利,免费看| 一区二区三区四区激情视频| 国产精品.久久久| 在线观看国产h片| 久久久久久久久久成人| 天美传媒精品一区二区| 成人亚洲精品一区在线观看| 又黄又粗又硬又大视频| 日韩av在线免费看完整版不卡| 51国产日韩欧美| 丝袜人妻中文字幕| 超碰97精品在线观看| 99香蕉大伊视频| 国产深夜福利视频在线观看| 久久久久视频综合| tube8黄色片| 日韩中文字幕视频在线看片| 男女无遮挡免费网站观看| 一级毛片电影观看| 看免费成人av毛片| 高清欧美精品videossex| 亚洲成av片中文字幕在线观看 | 国产精品女同一区二区软件| www.av在线官网国产| 18禁在线无遮挡免费观看视频| 人体艺术视频欧美日本| 最近2019中文字幕mv第一页| 成人手机av| 国产69精品久久久久777片| 精品酒店卫生间| 一二三四中文在线观看免费高清| 成年美女黄网站色视频大全免费| 欧美国产精品va在线观看不卡| a级毛片在线看网站| 国产成人欧美| 一本色道久久久久久精品综合| 免费人成在线观看视频色| 欧美少妇被猛烈插入视频| 捣出白浆h1v1| 亚洲四区av| 亚洲精品自拍成人| 亚洲国产成人一精品久久久| 亚洲成国产人片在线观看| 午夜免费男女啪啪视频观看| 国产1区2区3区精品| 欧美日韩一区二区视频在线观看视频在线| 黄色视频在线播放观看不卡| 哪个播放器可以免费观看大片| 久久精品国产鲁丝片午夜精品| 国产成人精品婷婷| 亚洲精品美女久久久久99蜜臀 | 久久久久久久久久久久大奶| 妹子高潮喷水视频| 亚洲伊人久久精品综合| 另类亚洲欧美激情| 一二三四中文在线观看免费高清| 纵有疾风起免费观看全集完整版| 国产精品久久久久久久久免| 亚洲国产欧美在线一区| 日韩成人伦理影院| 亚洲婷婷狠狠爱综合网| 91午夜精品亚洲一区二区三区| 妹子高潮喷水视频| 亚洲成国产人片在线观看| 宅男免费午夜| 亚洲婷婷狠狠爱综合网| 亚洲一区二区三区欧美精品| av线在线观看网站| av一本久久久久| 久久久国产精品麻豆| 人妻少妇偷人精品九色| 免费播放大片免费观看视频在线观看| 日韩精品免费视频一区二区三区 | 久热这里只有精品99| 国产精品一区二区在线不卡| 成人亚洲精品一区在线观看| 亚洲人与动物交配视频| 午夜av观看不卡| 极品少妇高潮喷水抽搐| 国产日韩一区二区三区精品不卡| 久久精品国产亚洲av涩爱| 9191精品国产免费久久| 成人毛片60女人毛片免费| 免费看av在线观看网站| av又黄又爽大尺度在线免费看| 亚洲,欧美,日韩| 午夜老司机福利剧场| 国产精品 国内视频| 女人被躁到高潮嗷嗷叫费观| 国产亚洲欧美精品永久| 免费看光身美女| 老司机影院成人| 观看av在线不卡| 午夜影院在线不卡| 久久精品久久精品一区二区三区| 天堂中文最新版在线下载| 婷婷色av中文字幕| 看非洲黑人一级黄片| 亚洲精品久久成人aⅴ小说| 久久 成人 亚洲| 日韩人妻精品一区2区三区| 18禁动态无遮挡网站| 精品午夜福利在线看| 亚洲精品美女久久av网站| 久久久久网色| 五月伊人婷婷丁香| 日韩视频在线欧美| 国产免费视频播放在线视频| 成人毛片a级毛片在线播放| 超碰97精品在线观看| 777米奇影视久久| 亚洲国产日韩一区二区| 亚洲精品日本国产第一区| 国产 一区精品| 久久狼人影院| 中文字幕av电影在线播放| 亚洲精品aⅴ在线观看| 国产爽快片一区二区三区| 久久久精品94久久精品| 国产成人精品在线电影| 国产亚洲精品久久久com| 免费观看a级毛片全部| 老女人水多毛片| 久久久久人妻精品一区果冻| 免费观看av网站的网址| 啦啦啦啦在线视频资源| 啦啦啦在线观看免费高清www| 午夜福利,免费看| 色婷婷久久久亚洲欧美| 五月伊人婷婷丁香| 午夜视频国产福利| 欧美日韩视频高清一区二区三区二| 精品国产一区二区三区久久久樱花| 免费日韩欧美在线观看| 日韩欧美一区视频在线观看| 男男h啪啪无遮挡| 亚洲激情五月婷婷啪啪| 亚洲av在线观看美女高潮| 两个人看的免费小视频| 满18在线观看网站| 久久人人97超碰香蕉20202| 丰满乱子伦码专区| 老司机影院毛片| 欧美成人午夜精品| 成人国产av品久久久| 久久久久国产精品人妻一区二区| 色婷婷av一区二区三区视频| 亚洲精品一二三| 在现免费观看毛片| 日韩中字成人| 国产不卡av网站在线观看| 国产精品久久久久成人av| 欧美人与性动交α欧美精品济南到 | 亚洲色图综合在线观看| 人成视频在线观看免费观看| 97在线人人人人妻| 久久综合国产亚洲精品| 亚洲精品aⅴ在线观看| 亚洲伊人色综图| 午夜免费鲁丝| 男女下面插进去视频免费观看 | 国产亚洲午夜精品一区二区久久| 国产免费现黄频在线看| 麻豆精品久久久久久蜜桃| 大片电影免费在线观看免费| 日韩熟女老妇一区二区性免费视频|