• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Research on the Preparation and Chromaticity Coordinates Shift Mechanism of Organic White Light Top-Emitting Devices

    2016-07-12 12:49:41WANGGuanghuaZHAOHuiqiongDENGRongbinDUANYuSUNHaoZHANGXiaodanZHOUQinQIANJinmeiWANRuiminJIHuaxiaJIRongbin
    光譜學(xué)與光譜分析 2016年11期
    關(guān)鍵詞:能量轉(zhuǎn)移基色白光

    WANG Guang-hua,ZHAO Hui-qiong,DENG Rong-bin,DUAN Yu,SUN Hao,ZHANG Xiao-dan,ZHOU Qin,QIAN Jin-mei,WAN Rui-min,JI Hua-xia,JI Rong-bin

    1. Yunnan Olightek Opto-Electronic Technology Co., Ltd., Kunming 650223, China 2. Kunming Institute of Physics, Kunming 650223, China

    Research on the Preparation and Chromaticity Coordinates Shift Mechanism of Organic White Light Top-Emitting Devices

    WANG Guang-hua1,2,ZHAO Hui-qiong1,2,DENG Rong-bin1,DUAN Yu1,2,SUN Hao1,ZHANG Xiao-dan1,2,ZHOU Qin1,QIAN Jin-mei1,WAN Rui-min1,2,JI Hua-xia1,JI Rong-bin2

    1. Yunnan Olightek Opto-Electronic Technology Co., Ltd., Kunming 650223, China 2. Kunming Institute of Physics, Kunming 650223, China

    The top emission organic light-emitting devices were fabricated on the multi-layers metal anode with co-doping method in single host system. In experiment, the multilayer Al/Mo/MoO3anode on silicon are deposited, systematically analyzed the effect MoO3thickness on the reflectance and found the mechanism of the MoO3thickness variation to the reflectivity of Al/Mo/MoO3on silicon. Experimental results showed that the luminous intensity of blue, green and red appear to change according to the current density increase, and compared with the red intensity, the luminous intensity of blue and green gradually increased. The emission in this host-guest co-doping system is considered to usually involve two emission mechanisms, energy transfer and carrier trapping, and the energy transfer and carrier trapping between the host-guest should be responsible for chromaticity coordinates shift of organic white emitting light devices. In addition, through further study, it is proved the electroluminescence intensity of dopant linearly decrease with the driving voltage applied to the device by theoretical and experimental results.

    White organic light-emitting diode; Color-shift; Energy transfer; Carrier trapping

    Introduction

    Organic light-emitting diodes (OLEDs) have attracted much attention because of their particular advantages with high resolution, fast response, self-luminous, high image quality, compact size, very low power, and can be prepared on flexible substrate, to be recognized as the most ideal and the most promising next generation display technology[1-2]. White light emission is usually obtained by doping an active host material with several dyes or by using a multilayer structure with two or more emitting layers, in this case, different dopants can conceivably compete with one another under different driving conditions due to differences in the exciton energy and shifts in the recombination zone. Consequently, the color performance will vary with different driving conditions, which inevitably presents additional difficulties for lighting applications and down-conversion displays with backlight units of WOLED and color filters. For these applications, CIE coordinates variation during operation will distort the color of the illuminated object and will suffer from distortions of the pixel emitting color and non-uniform color distribution over the panel under the same driving conditions. Unfortunately, many WOLEDs, except a few with an optimized device structure design, show the variation in color with the bias voltage or current, regardless of their structures as a single layer or multilayer. Therefore, in order to demand for different lighting and displays applications, WOLED must be developed with high efficiency and long operation life, besides with high color stability. In this work, we report on efficient WOLEDs that possess one luminous layer with co-evaporation methods, and briefly discussed the chromaticity coordinates shift mechanism of white organic light emitting devices and to shed light on the rational structure design of high quality WOLEDs with small or no color shifts.

    1 Experiments

    The organic light-emitting devices are prepared on the 1 600-nm-SiO2-coated silicon substrate. Prior to the deposition, the silicon substrate was ultrasonically washed with acetone, alcohol, deionized water successively. After blowing with N2gas, the silicon substrate are placed into plasma cleaning machine to further wash, then deposited multi-layers metal anode with thermal evaporation system on substrate. Then the substrate was transferred into a vacuum chamber for film deposition, the devices were fabricated by the thermal evaporation of the organic materials on the multi-layers metal anode. The organic layers and electrode were deposited by vacuum vapor deposition at <2×10-4Pa, and the thicknesses of these deposited layers and the evaporation rate of individual material were monitored in vacuum with quartz crystal monitors. The typical device structure was metal anode (60 nm)/HIL(15 nm)/HTL(10 nm)/EML(20 nm)//ETL(15 nm)/EIL(10 nm)LiF(1 nm)/Mg∶Ag(10 nm)/ITO(35 nm), where ITO is used the out-coupling layers and encapsulation layers of top-emission organic light-emitting devices. The active area of the devices was controlled at 20 mm2. The electroluminescence spectra were measured using a PR655 spectrophotometer. The luminance-current versus voltage characteristics were measured simultaneously with a Keithley 2400 voltage-current source. All measurements were carried out at room temperature under ambient conditions.

    2 Results and discussion

    2.1 Preparation of white organic light emitting devices

    Recently, the use of MoO3as an anode buffer layer in OLEDs offers advantages such as less contamination, easy thermal deposition and energy level matching with organic molecules[3]. It has been experimentally proven that the use of MoO3and MoO3doped hole-transporting material as anode modification layers significantly reduces the operational voltage and improves the efficiency and lifetime of OLEDs. First of all, two layer structure anode was prepared on silicon substrate with high reflectivity metal Al and the electrochemical stability metal Mo, the surface of metal anode were treated by the hybrid plasma of oxygen and nitrogen with different time, the experimental results showed that according to the increasing of treating time, the metal Mo of anode gradually turned into a metal oxide at the surface, and the metal oxide layer produced additional series resistance, which lead to the driving voltage increase. At the same time, the thickness variations of oxide layer lead a change in the optical properties of the surface of the anode, such as reflectance and transmittance. In order to evaluate the effect of anode surface oxide layer change on the optical properties, in experiment, based on the transfer matrix theory and optical constants of metal and oxide molybdenum in Fig.1, the reflection of multilayer anode were numerically calculated with matlab program. From the experimental results in Fig.2, it can be seen that the reflectance of anode gradually increase with the thickness increase of MoO3layer, the reason why is that the refractive index (n) of molybdenum is higher than oxide molybdenum, but the extinction coefficient (k) of molybdenum is smaller than oxide molybdenum. Since the extinction coefficient of materials is proportional to absorption coefficient, the relation can be written as

    (1)

    Fig.1 Optical constants of molybdenum and oxide molybdenum

    the higher the extinction coefficient (k) of materials, the stronger the absorption coefficient (α), therefore, the reflectivity of multilayer anode (silicon/Al/Mo/MoO3) films increases as the MoO3thickness increases, but the MoO3thin films layers should be sufficiently thin that it contribute negligibly to the OLED series resistance. In this experiment, the MoO3thickness is preferably controlled at 1 nm.

    Fig.2 The reflectivity of multilayer anode with different MoO3 thickness

    Fig.3 The absorption and photoluminescence spectra of host or guest

    There are many approaches to realize white emission[4], e.g.,WOLEDs structures with blue/yellow (or red) emitters or red/green/blue ones, a single emission material with broad emission wavelength range or several side chains as emission moieties, blue OLEDs together with a yellow down-conversion layer, stacked WOLEDs, micro-cavity-based WOLEDs, etc. In this paper, we doped a red and green guest into a blue host as emissive layer by co-deposition to prepare WOLEDs. Fig.3 shows the absorption and photoluminescence spectra of host or guest in emissive layer. There is complex energy transfer mechanism in co-doping system of the emissive layer, the energy of host materials can be transferred to efficient guest materials, and increase luminous efficiency and operation life of WOLEDs. The energy transfer coefficient is related to the F?rster radius and the space distance among different organic molecular and the F?rster radius is directly proportional to the overlapping area between the photoluminescence spectra of host materials and absorption spectrum of guest materials, the larger the overlap area, the greater the radius[5]. It can be seen that there are overlapping between the photoluminescence spectra of host materials and absorption spectrum of green guest materials, and between the photoluminescence spectra of green materials and absorption spectrum of red materials from Fig.3, which illustrate that the energy is easy transferred among the host and guest materials. It can be seen that form the energy level diagram of host or guest in emissive layer in Fig.4, owing to the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy level of the red dopant fall within that of the host, the carrier trapping is possible, and electrons and holes are respectively trapped by the low-energy dopant under a low bias voltage.

    Fig.4 The energy level diagram of host or guest in emissive layer

    2.2 Normalized electroluminescence spectra and chromaticity coordinate

    Fig.5 shows the current density-chromaticity coordinate characteristics of the white OLEDs fabricated. It can be seen that from the Fig.5, the device color coordinates CIEx gradually decreased, while the CIEy remained stable with the increase of current density. Fig.6 shows the EL spectrum for devices. As can be seen from Fig.6(a), as the current density increase, the luminous intensity of blue, green and red appear to change. And compared with the red intensity, the luminous intensity of blue and green gradually increased. As far as we know, the emission in host-guest of co-doping system is considered to involve two emission mechanisms, energy transfer and carrier trapping. For an efficient energy transfer, it requires a significant spectral overlap between the photo-luminescent (PL) spectrum of the host and the absorption spectrum of the dopant. While for efficient carrier trapping, the highest occupied molecular orbital (HOMO) or lowest unoccupied molecular orbital (LUMO) energy level of the dopant must fall within that of the host. There are both electron and hole trapping for red guest, electron trapping for green guest in Fig.4. In this carrier trapping controlled device, electrons and holes are respectively trapped by the low-energy dopant under a low bias and the traps are gradually filled with the increasing electric field, resulting in a faster increase of the current [this case is usually called trap charge limited current (TCLC)][6]. Until all traps are filled, the current starts to increase more slowly [known as space-charge limited current (SCLC)]. In our doping system, carrier trapping is one of key factors that brings the color stability problem in WOLEDs as the driving voltage or current increases. From the above results, we can see that the emission intensity ratio of the dopant to the host changes in device, this means there also exists a good overlap between the emission of the blue light host and the absorption of the green, or red light guest, the emission from such a WOLED system include both carrier trapping and energy transfer mechanisms, and in such a situation a large change of the EL spectra or chromaticity occurs with the driving voltage or current.

    Fig.5 The relation between the current density and chromaticity coordinate of white organic Light emitting devices

    2.3 Chromaticity coordinates shift mechanism

    In order to further systematically analyze the chromaticity coordinates shift mechanism of organic white emitting light devices, the integral area of normalized electroluminescence spectra of devices at different current density were calculated, the proportion accounting for the integral area of blue+green and red were respectively obtained, and the detailed experimental results were listed in table 1. From the table, one can see that the integral area and the proportion of normalized EL spectra of clue+green gradually increase, at the same time the integral area and the proportion of red gradually decrease according to the change of the current density from 5~100 mA·cm-2. In addition, the experimental results indicate that the variation trend of the integral red area and proportion is consistent with color coordinate values CIEX, which make out the chromaticity coordinates shift of organic white light top-emitting devices in this co-doping system is mainly related to the variation of red percentage in white normalized EL spectra, and give rise to CIEX value change with the current density increase. From the relation between the red electroluminescence intensity and drive voltage in Fig.7, it can be found that the red portion in white normalized EL spectra of OLED devices linearly decrease with the drive voltage increase.

    Fig.6 The normalized electroluminescence spectra of OLEDs at different current density

    Table 1 The Integral area of normalized electroluminescence spectra at different current density and color coordinate values

    To Table 2

    blue+green80.93969.71%320red35.16930.29%white116.10810.30640.3661blue+green85.08771.16%440red34.48328.84%white119.57010.30120.366blue+green85.11971.41%560red34.07428.59%white119.19310.29770.3665blue+green85.04971.69%680red33.58628.31%white118.63510.29630.3666blue+green85.04072.11%7100red32.89527.89white117.93510.29450.367

    Fig.7 The relation between the red electroluminescence intensity and drive voltage

    In co-doping system of single-EML WOLEDs, when the electron and hole are trapped by the low-energy dopant under the low bias or current density, the energy transfer between the host and guest can not be effectively performed, and the electroluminescence intensity of host and guest do not simultaneously proportionally increase, which bring about the chromaticity coordinates shift of organic white light top-emitting devices with the variation of voltage or current density. Some previous research results also showed that if electron and hole are trapped by dopant[7-8], the luminous intensity of dopant will be restrained at different voltage, and it is difficult to distinguish the contribution of color evolution which the electron or hole bring about, this also hinder us to further clarify the mechanism behind the problem that result in the chromaticity coordinates shift of organic white light top-emitting devices with the variation of voltage or current density. On the other hand, the dopant luminescence can be divided into two parts, one originate from the energy transfer between host-guest system, and other come from the exciton trapped by dopant, it is also difficult to distinguish which one is the predominant contribution.

    On account of the LUMO energy level of dopant is low than host, some electron trapping will come into being in dopant, so the dopant molecule captured carriers will lose opportunity to accept energy transfer and radiate. Base an the boltzmann distribution law, the specific value of the trapped electron number (Nt) by dopant at LUMO energy level and the free electron number (Nf) at LUMO energy level of host can be expressed as

    (2)

    WhereNdopantandNhostrespectively stand for the molecular number of host and dopant. If the electron charge isQ,Nfcan be described as the following equation

    Nf=jST/Q=jSL2/μVQ

    (3)

    whereLis thickness of OLEDs,μis represents the electron mobility,Vis the driving voltage applied to the device. According to the space-charge-limited currents (SCLC), the relation between the current and voltage in insulator with shallow level trap can be written as

    j∝μV2

    (4)

    Fromtheaboverelationship,itcanbeobtained

    Nf∝V

    (5)

    andtherelationbetweenthedopantmolecularnumbertrappingelectronandthedrivingvoltageappliedtothedevicecanbeacquired.Asfarasweknow,thedopantmolecularacceptingenergytransferfromhostandthecorrespondinghostmoleculararenotoverlapbetweenthemintheco-dopingsystemofsingle-EMLWOLEDswithlowdopantconcentration,wellthentheelectroluminescenceintensityofdopantisproportionaltothedopantmolecularthatcanacceptenergytransferfromhost.Forthereasonthattheelectroluminescenceintensityofdopantcanbewrittenas

    I=A-BV

    (6)

    WhereAandBis positive constant. From the above relation, it is can be found that the electroluminescence intensity of dopant linearly decrease in line with the driving voltage applied to the device, the theoretical results is completely consistent with the experimental one in Fig.5, the relation between the electroluminescence intensity of dopant and the driving voltage applied to the device is linearly fitted, it is can be seen that the fitting line is well matched with the experimental results, and obtainingAandBvalue is respectively 19.41 and 2.31 from the function.

    3 Conclusion

    In summary, the top emission organic light-emitting devices were fabricated by the thermal evaporation of the organic materials on (Al/Mo/MoO3) multi-layers anode, by doping the red and green guest into the blue host as emissive layer to prepare WOLEDs. Experimental results showed that according to the current density increase the luminous intensity of blue, green and red appear to change. Compared with the red intensity, the luminous intensity of blue and green gradually increased. And the emission in this host-guest co-doping system is considered to involve two emission mechanisms, energy transfer and carrier trapping, energy transfer and carrier trapping between the host-guest should be responsible for chromaticity coordinates shift of organic white emitting light devices, and it is proved the electroluminescence intensity of dopant linearly decrease in line with the driving voltage applied to the device by theoretical and experimental results.

    [1] Tang C W, Vanslyke S A. Appl. Phys. Lett., 1987, 51(12): 913.

    [2] Kido J, Kimura M, Nagai K. Science, 1995, 267: 1332.

    [3] Wang Fengxia, Qiao Xianfeng, Xiong Tao, et al. Organic Electronics, 2008, (9): 985.

    [4] Zhao Fangchao, Zhang Zhiqiang, Liu Yipeng, et al. Organic Electronics, 2012,(13): 1049.

    [5] Jou Jwo-Huei, Chen Po-Wei, Chen Yu-Lin, et al. Organic Electronics, 2013,(14): 47.

    [6] Du Xiaoyang, Huang Yun, Tao Silu, et al. Dyes and Pigments, 2015,(115): 149.

    [7] Lee Jonghee, Lee Joo-Won, Cho Nam Sung, et al. Current Applied Physics, 2014, (14): 84.

    [8] Kim Nam Ho, Kim You-Hyun, Yoon Ju-An, et al. Journal of Luminescence, 2013, (143): 723.

    O461.2

    A

    頂發(fā)射白光OLED器件制備及其色坐標(biāo)漂移機(jī)制研究

    王光華1,2, 趙惠瓊1,2, 鄧榮斌1, 段 瑜1,2, 孫 浩1, 張?bào)愕?,2, 周 琴1, 錢(qián)金梅1, 萬(wàn)銳敏1,2, 季華夏1, 姬榮斌2

    1. 云南北方奧雷德光電科技股份有限公司,云南 昆明 650223 2. 昆明物理研究所,云南 昆明 650223

    采用了高反射率金屬Al和電化學(xué)性能穩(wěn)定的金屬M(fèi)o,在硅基底上制備了多層結(jié)構(gòu)的 Al/Mo/MoO3陽(yáng)極,并研究了不同MoO3厚度下多層陽(yáng)極的反射率。在此基礎(chǔ)上,通過(guò)發(fā)光層共摻雜制備了頂部發(fā)光OLED器件,并對(duì)器件發(fā)光機(jī)制進(jìn)行了系統(tǒng)研究和分析。實(shí)驗(yàn)結(jié)果表明: 采用發(fā)光層共摻雜制備的頂部發(fā)光OLED器件的色坐標(biāo),隨電流密度或電壓的增加而發(fā)生漂移;OLED器件色坐標(biāo)漂移的原因是三基色發(fā)光強(qiáng)度隨電流密度的增加,逐漸偏離了形成白光(0.33, 0.33)所需三基色強(qiáng)度比例值,導(dǎo)致了OLED器件的色坐標(biāo)發(fā)生了漂移,其機(jī)制是發(fā)光層中主-客之間能量轉(zhuǎn)移和陷阱共同作用的結(jié)果。進(jìn)一步研究發(fā)現(xiàn),在不同電壓下,紅光發(fā)光強(qiáng)度隨驅(qū)動(dòng)電壓(或電流密度)增大而線性地減小。

    有機(jī)電致發(fā)光器件;色坐標(biāo)漂移;能量轉(zhuǎn)移;陷阱

    2015-11-06,

    2016-03-21)

    Foundation item: The National Natural Science Foundation of China(61604064), The General Program of Applied Basic Research (2016FB112) of Yunnan

    10.3964/j.issn.1000-0593(2016)11-3758-06

    Received: 2015-11-06; accepted: 2016-03-21

    猜你喜歡
    能量轉(zhuǎn)移基色白光
    多基色顯示系統(tǒng)基色亮度求解及討論
    念 舊
    基色與混合色
    獵熊的孩子
    基于納米金與納米銀簇間表面等離子增強(qiáng)能量轉(zhuǎn)移效應(yīng)特異性檢測(cè)microRNA
    白光LED無(wú)線通信的研究進(jìn)展
    白光(選頁(yè))
    中國(guó)房地產(chǎn)業(yè)(2016年9期)2016-03-01 01:26:18
    能量轉(zhuǎn)移型鋰電池組均衡電路的設(shè)計(jì)與研究
    K(5P)與H2的反應(yīng)碰撞和電子-振動(dòng)能量轉(zhuǎn)移
    好男人电影高清在线观看| 美女福利国产在线| 免费日韩欧美在线观看| 女人高潮潮喷娇喘18禁视频| videosex国产| 久久九九热精品免费| 精品欧美一区二区三区在线| 亚洲欧美一区二区三区久久| 欧美+亚洲+日韩+国产| 91精品三级在线观看| 久久精品成人免费网站| 国产精品一区二区免费欧美| 天堂俺去俺来也www色官网| 午夜福利乱码中文字幕| 久久免费观看电影| svipshipincom国产片| 久久人人爽av亚洲精品天堂| 激情视频va一区二区三区| 80岁老熟妇乱子伦牲交| 又大又爽又粗| 久久久久精品国产欧美久久久| 大片免费播放器 马上看| 久久婷婷成人综合色麻豆| 欧美变态另类bdsm刘玥| 18在线观看网站| 国产精品久久电影中文字幕 | 一边摸一边抽搐一进一出视频| 国产男靠女视频免费网站| 五月开心婷婷网| 久久久国产成人免费| 亚洲情色 制服丝袜| 美女国产高潮福利片在线看| 天堂俺去俺来也www色官网| 国产精品亚洲一级av第二区| 亚洲色图av天堂| 又紧又爽又黄一区二区| 欧美亚洲日本最大视频资源| 精品亚洲乱码少妇综合久久| 男女无遮挡免费网站观看| 日韩欧美三级三区| 国产精品一区二区在线观看99| 亚洲av日韩在线播放| 一区二区三区精品91| 热99re8久久精品国产| 亚洲avbb在线观看| 脱女人内裤的视频| 亚洲色图av天堂| 97在线人人人人妻| 亚洲第一青青草原| 少妇裸体淫交视频免费看高清 | 午夜视频精品福利| 亚洲国产欧美在线一区| 大香蕉久久网| 考比视频在线观看| 亚洲精品美女久久久久99蜜臀| 90打野战视频偷拍视频| 色精品久久人妻99蜜桃| 欧美日韩福利视频一区二区| 一进一出抽搐动态| √禁漫天堂资源中文www| 久久久久久久久免费视频了| 日日爽夜夜爽网站| 国产老妇伦熟女老妇高清| 日韩中文字幕欧美一区二区| 人人妻,人人澡人人爽秒播| 亚洲精品久久成人aⅴ小说| 国产一区二区激情短视频| 欧美日韩福利视频一区二区| 免费在线观看视频国产中文字幕亚洲| 国产又色又爽无遮挡免费看| 午夜福利在线观看吧| 色尼玛亚洲综合影院| 久久精品亚洲熟妇少妇任你| 精品亚洲成国产av| 天堂中文最新版在线下载| 久久精品国产99精品国产亚洲性色 | 中文字幕色久视频| 亚洲色图av天堂| 久热这里只有精品99| 日韩人妻精品一区2区三区| 亚洲欧洲日产国产| 蜜桃国产av成人99| 大陆偷拍与自拍| 99久久精品国产亚洲精品| 99香蕉大伊视频| 最近最新中文字幕大全电影3 | 亚洲三区欧美一区| 国产在线免费精品| 操美女的视频在线观看| 又黄又粗又硬又大视频| 午夜福利欧美成人| 久久久久久久久久久久大奶| 我的亚洲天堂| 久久人人97超碰香蕉20202| 90打野战视频偷拍视频| 美女扒开内裤让男人捅视频| 国产精品99久久99久久久不卡| 久久毛片免费看一区二区三区| 丝袜人妻中文字幕| 日本av手机在线免费观看| 午夜视频精品福利| 精品免费久久久久久久清纯 | 青青草视频在线视频观看| 日韩一区二区三区影片| 在线天堂中文资源库| 免费在线观看黄色视频的| 美女福利国产在线| 一区福利在线观看| 别揉我奶头~嗯~啊~动态视频| 日日摸夜夜添夜夜添小说| www.自偷自拍.com| 欧美在线一区亚洲| 久久久久精品国产欧美久久久| 丰满饥渴人妻一区二区三| 一二三四社区在线视频社区8| 视频区图区小说| 在线观看舔阴道视频| 天天躁狠狠躁夜夜躁狠狠躁| 久久天躁狠狠躁夜夜2o2o| 制服人妻中文乱码| 日韩制服丝袜自拍偷拍| 免费女性裸体啪啪无遮挡网站| 老司机午夜福利在线观看视频 | 十八禁网站免费在线| 午夜老司机福利片| 国产精品国产高清国产av | 国产亚洲欧美在线一区二区| 2018国产大陆天天弄谢| 激情视频va一区二区三区| 成年人免费黄色播放视频| 免费不卡黄色视频| 亚洲三区欧美一区| 日韩欧美免费精品| 人人妻人人添人人爽欧美一区卜| videos熟女内射| 久久99一区二区三区| 色尼玛亚洲综合影院| 国产一区二区三区视频了| 国产精品.久久久| e午夜精品久久久久久久| 五月天丁香电影| 日韩精品免费视频一区二区三区| 18在线观看网站| 啦啦啦在线免费观看视频4| 精品亚洲乱码少妇综合久久| a级毛片在线看网站| 久久热在线av| 91成人精品电影| 欧美激情高清一区二区三区| 久久久国产成人免费| 757午夜福利合集在线观看| 久久精品亚洲熟妇少妇任你| 国产高清视频在线播放一区| 国产xxxxx性猛交| 久久精品人人爽人人爽视色| 日韩大码丰满熟妇| 久久久久视频综合| 亚洲av片天天在线观看| 丝袜在线中文字幕| 巨乳人妻的诱惑在线观看| 黄色视频,在线免费观看| 亚洲色图 男人天堂 中文字幕| 国产亚洲午夜精品一区二区久久| 免费在线观看视频国产中文字幕亚洲| 男人舔女人的私密视频| 一本一本久久a久久精品综合妖精| 国产午夜精品久久久久久| 超色免费av| 亚洲欧洲精品一区二区精品久久久| 亚洲午夜精品一区,二区,三区| 91成人精品电影| 久久久欧美国产精品| 无人区码免费观看不卡 | 丝袜喷水一区| 日韩视频一区二区在线观看| 免费看十八禁软件| 2018国产大陆天天弄谢| 王馨瑶露胸无遮挡在线观看| 老熟妇乱子伦视频在线观看| 亚洲精品在线观看二区| 日韩熟女老妇一区二区性免费视频| 最新的欧美精品一区二区| 自拍欧美九色日韩亚洲蝌蚪91| 九色亚洲精品在线播放| 国产一区二区三区综合在线观看| 欧美另类亚洲清纯唯美| 老熟妇仑乱视频hdxx| 国产亚洲精品久久久久5区| 国产片内射在线| 国产深夜福利视频在线观看| 亚洲精品自拍成人| 一本久久精品| 亚洲久久久国产精品| 国产一区二区在线观看av| 9热在线视频观看99| 精品人妻熟女毛片av久久网站| 亚洲成a人片在线一区二区| 国产精品一区二区精品视频观看| 香蕉丝袜av| 中文字幕最新亚洲高清| 亚洲国产毛片av蜜桃av| 欧美成狂野欧美在线观看| 免费在线观看视频国产中文字幕亚洲| 性高湖久久久久久久久免费观看| 亚洲精品国产一区二区精华液| 欧美精品亚洲一区二区| 久久中文字幕人妻熟女| 免费在线观看日本一区| 80岁老熟妇乱子伦牲交| 亚洲第一欧美日韩一区二区三区 | 99精国产麻豆久久婷婷| 我的亚洲天堂| 日韩精品免费视频一区二区三区| 视频在线观看一区二区三区| svipshipincom国产片| 丝瓜视频免费看黄片| 啪啪无遮挡十八禁网站| 女人爽到高潮嗷嗷叫在线视频| 久久久欧美国产精品| 操美女的视频在线观看| 三上悠亚av全集在线观看| 老鸭窝网址在线观看| 日日摸夜夜添夜夜添小说| 一区二区日韩欧美中文字幕| 女人精品久久久久毛片| 欧美+亚洲+日韩+国产| 久久精品成人免费网站| 亚洲午夜精品一区,二区,三区| 亚洲中文av在线| 法律面前人人平等表现在哪些方面| 日韩制服丝袜自拍偷拍| 欧美人与性动交α欧美精品济南到| av不卡在线播放| 免费在线观看完整版高清| 免费不卡黄色视频| 亚洲国产成人一精品久久久| 午夜福利在线观看吧| 女人爽到高潮嗷嗷叫在线视频| 男女床上黄色一级片免费看| 大片电影免费在线观看免费| 国产男靠女视频免费网站| 久久性视频一级片| 欧美日韩av久久| 视频区欧美日本亚洲| 男女高潮啪啪啪动态图| avwww免费| 国产成人一区二区三区免费视频网站| 国产视频一区二区在线看| 99国产综合亚洲精品| 黑人欧美特级aaaaaa片| 日韩欧美一区视频在线观看| 狂野欧美激情性xxxx| 婷婷成人精品国产| 一区二区三区精品91| 久久久久网色| 天堂中文最新版在线下载| 久久 成人 亚洲| 在线永久观看黄色视频| 午夜激情久久久久久久| 涩涩av久久男人的天堂| 亚洲人成伊人成综合网2020| 女人被躁到高潮嗷嗷叫费观| 大香蕉久久成人网| 国产精品1区2区在线观看. | tocl精华| 一边摸一边做爽爽视频免费| 亚洲国产精品一区二区三区在线| 高清欧美精品videossex| 国产在线视频一区二区| 黄色a级毛片大全视频| 午夜福利欧美成人| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲av成人不卡在线观看播放网| 在线观看免费午夜福利视频| 超碰97精品在线观看| 人成视频在线观看免费观看| 色老头精品视频在线观看| 日韩视频一区二区在线观看| 精品少妇内射三级| 亚洲精品粉嫩美女一区| 黄色怎么调成土黄色| 日韩欧美一区二区三区在线观看 | svipshipincom国产片| 丝袜喷水一区| 国产精品亚洲av一区麻豆| 久久久久久久大尺度免费视频| 男女边摸边吃奶| 热99国产精品久久久久久7| 国产三级黄色录像| 日日爽夜夜爽网站| 国产午夜精品久久久久久| 久久人妻av系列| 欧美精品高潮呻吟av久久| 成人黄色视频免费在线看| 亚洲色图av天堂| 久久国产精品大桥未久av| 欧美一级毛片孕妇| 免费看十八禁软件| aaaaa片日本免费| 成人精品一区二区免费| 无遮挡黄片免费观看| 中文字幕另类日韩欧美亚洲嫩草| 精品国产乱码久久久久久小说| 亚洲欧美一区二区三区久久| 搡老岳熟女国产| 色精品久久人妻99蜜桃| 久久人人爽av亚洲精品天堂| 狠狠精品人妻久久久久久综合| 大陆偷拍与自拍| av一本久久久久| 侵犯人妻中文字幕一二三四区| 啦啦啦免费观看视频1| 狠狠婷婷综合久久久久久88av| av片东京热男人的天堂| 成年版毛片免费区| 国产免费av片在线观看野外av| 最新在线观看一区二区三区| 老司机在亚洲福利影院| 黄色视频不卡| 亚洲免费av在线视频| 国产免费视频播放在线视频| 大码成人一级视频| 色婷婷久久久亚洲欧美| 午夜精品国产一区二区电影| av超薄肉色丝袜交足视频| 天堂8中文在线网| 黄网站色视频无遮挡免费观看| 在线看a的网站| 亚洲午夜理论影院| 久久天堂一区二区三区四区| 99热网站在线观看| 丝袜在线中文字幕| 最近最新免费中文字幕在线| 黄色怎么调成土黄色| 欧美+亚洲+日韩+国产| 99国产精品一区二区蜜桃av | 亚洲情色 制服丝袜| 国产又色又爽无遮挡免费看| 日韩一卡2卡3卡4卡2021年| 777久久人妻少妇嫩草av网站| 国产免费现黄频在线看| 人妻久久中文字幕网| 成人av一区二区三区在线看| 亚洲一码二码三码区别大吗| 黄色怎么调成土黄色| 午夜福利欧美成人| 波多野结衣一区麻豆| 成年版毛片免费区| 女性生殖器流出的白浆| www.熟女人妻精品国产| 亚洲少妇的诱惑av| 电影成人av| 丰满迷人的少妇在线观看| 久久精品熟女亚洲av麻豆精品| 99久久国产精品久久久| 欧美日韩黄片免| a级毛片在线看网站| 又黄又粗又硬又大视频| 欧美激情极品国产一区二区三区| 亚洲欧洲日产国产| 国产亚洲精品第一综合不卡| 99精品久久久久人妻精品| 欧美日韩亚洲国产一区二区在线观看 | 国产高清videossex| 国产一区有黄有色的免费视频| 热99re8久久精品国产| 777久久人妻少妇嫩草av网站| 久久久国产精品麻豆| 亚洲综合色网址| www.自偷自拍.com| 久久人妻福利社区极品人妻图片| 国产精品亚洲av一区麻豆| 老汉色∧v一级毛片| 母亲3免费完整高清在线观看| 91精品国产国语对白视频| 国产伦理片在线播放av一区| 国产单亲对白刺激| 韩国精品一区二区三区| 日本av免费视频播放| 麻豆成人av在线观看| 黑丝袜美女国产一区| 国产在线精品亚洲第一网站| av在线播放免费不卡| 欧美黄色淫秽网站| 纯流量卡能插随身wifi吗| 91国产中文字幕| 女性被躁到高潮视频| 国产成人精品在线电影| 久久影院123| 美女午夜性视频免费| 亚洲伊人久久精品综合| 丰满饥渴人妻一区二区三| 肉色欧美久久久久久久蜜桃| 午夜福利视频精品| 久久久久精品人妻al黑| 两个人看的免费小视频| 999精品在线视频| 99国产精品一区二区蜜桃av | 777久久人妻少妇嫩草av网站| 亚洲九九香蕉| 国产激情久久老熟女| 18禁观看日本| 国产色视频综合| 九色亚洲精品在线播放| 香蕉丝袜av| 国产成人精品久久二区二区免费| 韩国精品一区二区三区| av福利片在线| 91九色精品人成在线观看| 精品视频人人做人人爽| aaaaa片日本免费| 国产欧美日韩一区二区三区在线| 极品教师在线免费播放| 99久久99久久久精品蜜桃| 国产亚洲欧美在线一区二区| 黄色怎么调成土黄色| h视频一区二区三区| 日韩一卡2卡3卡4卡2021年| 九色亚洲精品在线播放| 日韩视频一区二区在线观看| 夫妻午夜视频| videos熟女内射| 欧美日韩福利视频一区二区| 亚洲精品在线美女| 一级片免费观看大全| 色老头精品视频在线观看| 欧美激情极品国产一区二区三区| 啦啦啦中文免费视频观看日本| 国产91精品成人一区二区三区 | 最新美女视频免费是黄的| 精品视频人人做人人爽| 老司机福利观看| 女人高潮潮喷娇喘18禁视频| 欧美人与性动交α欧美精品济南到| av免费在线观看网站| 黄色视频,在线免费观看| 国产高清videossex| 日韩成人在线观看一区二区三区| 欧美人与性动交α欧美精品济南到| 少妇 在线观看| 国产伦人伦偷精品视频| 丁香六月欧美| 在线永久观看黄色视频| 午夜激情久久久久久久| 免费看a级黄色片| 久久午夜亚洲精品久久| 色老头精品视频在线观看| 国产精品国产av在线观看| 99riav亚洲国产免费| 亚洲熟女毛片儿| 亚洲天堂av无毛| 亚洲精品在线观看二区| 国产男女内射视频| 精品人妻熟女毛片av久久网站| 欧美大码av| 99国产精品免费福利视频| 丁香六月欧美| 久久精品国产亚洲av高清一级| 麻豆成人av在线观看| 久久久国产成人免费| 亚洲 国产 在线| 女警被强在线播放| 丝袜在线中文字幕| 国产黄色免费在线视频| 女性被躁到高潮视频| 香蕉丝袜av| 日韩免费高清中文字幕av| 亚洲性夜色夜夜综合| 9色porny在线观看| av视频免费观看在线观看| 亚洲成a人片在线一区二区| 精品一区二区三区视频在线观看免费 | 久久人妻熟女aⅴ| 国产高清videossex| 午夜福利视频在线观看免费| 欧美成狂野欧美在线观看| 欧美成人午夜精品| 一夜夜www| 色播在线永久视频| 国产精品九九99| 丁香六月欧美| 99在线人妻在线中文字幕 | 一级毛片女人18水好多| 亚洲视频免费观看视频| www.精华液| 国产又爽黄色视频| 极品人妻少妇av视频| 三上悠亚av全集在线观看| 久久午夜亚洲精品久久| 亚洲熟女毛片儿| 久久天躁狠狠躁夜夜2o2o| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美日韩成人在线一区二区| 亚洲精品一卡2卡三卡4卡5卡| 啪啪无遮挡十八禁网站| 欧美激情久久久久久爽电影 | 色视频在线一区二区三区| 黄色视频,在线免费观看| 国产精品一区二区精品视频观看| 国产欧美日韩综合在线一区二区| av在线播放免费不卡| 黄色怎么调成土黄色| 少妇裸体淫交视频免费看高清 | 亚洲av国产av综合av卡| 国产精品久久久久成人av| 亚洲成av片中文字幕在线观看| 国产一区二区 视频在线| 久热这里只有精品99| 午夜激情久久久久久久| 真人做人爱边吃奶动态| 久久亚洲精品不卡| 欧美成人免费av一区二区三区 | 国产视频一区二区在线看| 极品教师在线免费播放| 丰满少妇做爰视频| 亚洲精品粉嫩美女一区| 精品国产乱子伦一区二区三区| 日韩欧美三级三区| 亚洲欧洲精品一区二区精品久久久| 考比视频在线观看| 亚洲欧洲日产国产| 久久精品熟女亚洲av麻豆精品| 精品久久蜜臀av无| 18禁观看日本| 黄色片一级片一级黄色片| 麻豆乱淫一区二区| 99riav亚洲国产免费| 久久久久久久大尺度免费视频| 国产成人av教育| 国产在线观看jvid| 久久久精品94久久精品| 1024香蕉在线观看| √禁漫天堂资源中文www| 巨乳人妻的诱惑在线观看| 亚洲国产欧美在线一区| 飞空精品影院首页| 日本wwww免费看| 侵犯人妻中文字幕一二三四区| 一级,二级,三级黄色视频| 日韩中文字幕欧美一区二区| 亚洲精品自拍成人| 黄网站色视频无遮挡免费观看| 久久天躁狠狠躁夜夜2o2o| 在线十欧美十亚洲十日本专区| cao死你这个sao货| 成人永久免费在线观看视频 | 丁香六月欧美| 极品教师在线免费播放| 五月天丁香电影| 18在线观看网站| 少妇粗大呻吟视频| 后天国语完整版免费观看| 九色亚洲精品在线播放| 色精品久久人妻99蜜桃| 又紧又爽又黄一区二区| cao死你这个sao货| 老司机在亚洲福利影院| 久久久久久久久久久久大奶| 女同久久另类99精品国产91| 国产在线免费精品| 王馨瑶露胸无遮挡在线观看| 国产精品av久久久久免费| 757午夜福利合集在线观看| 欧美亚洲 丝袜 人妻 在线| 久久久久久人人人人人| 免费在线观看黄色视频的| 亚洲国产欧美日韩在线播放| 香蕉国产在线看| 建设人人有责人人尽责人人享有的| 又大又爽又粗| 一级黄色大片毛片| 如日韩欧美国产精品一区二区三区| 天堂俺去俺来也www色官网| 美女主播在线视频| 嫩草影视91久久| 色婷婷av一区二区三区视频| 女人高潮潮喷娇喘18禁视频| 桃花免费在线播放| 精品亚洲成a人片在线观看| 18禁裸乳无遮挡动漫免费视频| 十八禁高潮呻吟视频| 老司机午夜十八禁免费视频| 久久精品国产a三级三级三级| 日本vs欧美在线观看视频| 十八禁高潮呻吟视频| 大码成人一级视频| 国产淫语在线视频| 国产激情久久老熟女| 日韩欧美一区二区三区在线观看 | 国产精品一区二区在线观看99| 9191精品国产免费久久| 国产av精品麻豆| 我要看黄色一级片免费的| 这个男人来自地球电影免费观看| av线在线观看网站| 国产成人欧美在线观看 | 中文字幕制服av| 精品国产乱码久久久久久小说| 国产深夜福利视频在线观看| 久久这里只有精品19| 国产在线一区二区三区精| 国产精品美女特级片免费视频播放器 | 成人18禁在线播放| 国产一区二区三区视频了| 中文欧美无线码| 欧美日韩黄片免| 久9热在线精品视频| 999精品在线视频| 亚洲成a人片在线一区二区| 亚洲国产看品久久| 久久国产精品人妻蜜桃| 国产一区二区激情短视频| 日韩免费高清中文字幕av| 国产成人精品久久二区二区91| 夜夜骑夜夜射夜夜干|