王永生,張愛(ài)平,劉汝亮,楊世琦,李存軍
(1.北京農(nóng)業(yè)信息技術(shù)研究中心,北京100097;2.國(guó)家農(nóng)業(yè)信息化工程技術(shù)研究中心,北京100097;3.中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)業(yè)環(huán)境與可持續(xù)發(fā)展研究所,農(nóng)業(yè)部農(nóng)業(yè)環(huán)境重點(diǎn)實(shí)驗(yàn)室,農(nóng)業(yè)清潔流域創(chuàng)新團(tuán)隊(duì),北京100081;4.寧夏農(nóng)林科學(xué)院,銀川750000)
?
優(yōu)化施氮對(duì)寧夏引黃灌區(qū)稻田CO2、CH4和N2O通量的影響
王永生1,2,張愛(ài)平3*,劉汝亮4,楊世琦3,李存軍1,2
(1.北京農(nóng)業(yè)信息技術(shù)研究中心,北京100097;2.國(guó)家農(nóng)業(yè)信息化工程技術(shù)研究中心,北京100097;3.中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)業(yè)環(huán)境與可持續(xù)發(fā)展研究所,農(nóng)業(yè)部農(nóng)業(yè)環(huán)境重點(diǎn)實(shí)驗(yàn)室,農(nóng)業(yè)清潔流域創(chuàng)新團(tuán)隊(duì),北京100081;4.寧夏農(nóng)林科學(xué)院,銀川750000)
摘要:針對(duì)寧夏引黃灌區(qū)稻田施氮嚴(yán)重過(guò)量現(xiàn)象,在寧夏引黃灌區(qū)的青銅峽稻田,采用靜態(tài)箱-氣相色譜法,通過(guò)田間試驗(yàn)研究常規(guī)施氮(N300)、優(yōu)化施氮(N240)和不施氮(N0)對(duì)水稻不同生育期CO2、CH4和N2O通量以及稻田增溫潛勢(shì)(GWP)的影響。結(jié)果表明:CO2排放主要在水稻灌漿和成熟期,CH4排放主要發(fā)生在水稻孕穗期,而N2O排放關(guān)鍵期在水稻的分蘗和拔節(jié)期。與N0處理相比,施氮能顯著增加稻田CO2、CH4和N2O排放通量以及稻田GWP;常規(guī)施氮處理中CO2、CH4和N2O的累積排放量分別為18 446.87、146.57 kg C·hm-2和2.93 kg N·hm-2;為期一年的優(yōu)化施氮沒(méi)有顯著增加水稻生育期內(nèi)稻田CO2排放,但使灌區(qū)稻田CH4和N2O排放分別顯著降低了24.42%和36.28%??偟膩?lái)看,為期一年的優(yōu)化施氮使寧夏引黃灌區(qū)稻田GWP顯著降低了26.70%。未來(lái)應(yīng)結(jié)合土壤有機(jī)碳氮形態(tài)和含量變化以及土壤微生物技術(shù),分析長(zhǎng)期優(yōu)化施氮對(duì)土壤溫室氣體通量的影響機(jī)制。
關(guān)鍵詞:寧夏引黃灌區(qū);優(yōu)化施氮;土壤;溫室氣體;增溫潛勢(shì)
王永生,張愛(ài)平,劉汝亮,等.優(yōu)化施氮對(duì)寧夏引黃灌區(qū)稻田CO2、CH4和N2O通量的影響[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2016,35(6)∶1218-1224.
WANG Yong-sheng,ZHANG Ai-Ping,LIU Ru-1iang,et a1. Effects of oPtimized N ferti1ization on carbon dioxide,methane and nitrous oxide f1uxes in Paddy fie1ds in Ye11ow River water irrigation region of Ningxia[J]. Journal of Agro-Environment Science,2016,35(6)∶1218-1224.
人類活動(dòng)導(dǎo)致大氣中CO2、CH4和N2O的濃度分別以年均0.5%、0.8%和0.3%的速率增加[1],使全球地表平均溫度上升了0.3~0.6℃[2]。稻田是重要的溫室氣體排放源,其CH4的年排放量為31~112 Tg,占全球CH4總排放的5%~19%[1],我國(guó)農(nóng)業(yè)生態(tài)系統(tǒng)的CH4排放量為9.2 Tg·a-1[3]。稻田的過(guò)量施肥和烤田期的干濕交替使N2O排放量不斷增加,我國(guó)稻田水稻生長(zhǎng)期N2O排放量為29 Gg·a-1,占我國(guó)農(nóng)田N2O年排放總量的7%~11%[4]。我國(guó)的水稻種植面積約占全球的20%,研究稻田溫室氣體排放及其減排措施,對(duì)于發(fā)展低碳農(nóng)業(yè)和控制溫室效應(yīng)具有重要意義。
水稻是寧夏引黃灌區(qū)的重要糧食作物,灌區(qū)的灌溉條件便利,光熱資源豐富[5],水稻種植面積約為18× 104hm2,占全國(guó)水稻種植總面積的0.6%,稻谷產(chǎn)量占全國(guó)總產(chǎn)的0.71%,是水稻的高產(chǎn)區(qū)域之一,平均單產(chǎn)比全國(guó)平均水平高1213 kg·hm-2,是西北乃至全國(guó)的重要商品糧基地[6]。但水稻種植過(guò)程中化肥平均施用量較高,還以每年6%的速率增長(zhǎng)。近5年的農(nóng)用化肥施用量為8.746×108kg·a-1,其中氮肥占54.81%[7]。稻田氮肥施用過(guò)度,降低了氮素利用效率,提高了地表水、土壤和淺層地下水體中硝酸鹽濃度[8],增加了土壤溫室氣體排放[9-10]。目前,引黃灌區(qū)稻田氮肥施用量為300kg N·hm-2,遠(yuǎn)高于全國(guó)的平均水平[11-12]。近些年來(lái),寧夏引黃灌區(qū)開展了大量的氮肥減量控制試驗(yàn),在氮肥施用量減至240 kg N·hm-2的情況下,不僅能增加水稻對(duì)土壤氮素的利用率[13-14],減少氮素淋失[15-18]和N2O排放[19],還能提高作物產(chǎn)量[14-15]。因此,240 kg N·hm-2的施氮量被推薦為寧夏引黃灌區(qū)的稻田優(yōu)化施氮水平。由于施氮對(duì)稻田溫室氣體排放的影響并不一致,從稻田CO2、CH4和N2O三種溫室氣體排放以及增溫潛勢(shì)角度出發(fā),評(píng)價(jià)寧夏引黃灌區(qū)優(yōu)化施肥對(duì)稻田溫室效應(yīng)影響的綜合研究極為重要。本研究目的在于,對(duì)比分析常規(guī)施肥和優(yōu)化施肥條件下,寧夏引黃灌區(qū)稻田CO2、CH4和N2O的排放通量以及對(duì)稻田增溫潛勢(shì)(G1oba1 warming Potentia1,GWP)的影響。
1.1試驗(yàn)區(qū)概況
試驗(yàn)區(qū)位于寧夏引黃灌區(qū)青銅峽市葉升鎮(zhèn)正鑫源現(xiàn)代農(nóng)業(yè)公司(106°11'35″E,38°07'26″N)。年均降水量192.9 mm,年蒸發(fā)量1 762.9 mm,無(wú)霜期163 d,年均積溫3 866.3℃。土壤類型為灌淤土,0~20 cm土壤有機(jī)質(zhì)含量16.1 g·kg-1,全氮0.9 g·kg-1,速效氮62 mg·kg-1,全磷0.9 g·kg-1,速效磷11.87 mg·kg-1,土壤PH值8.49,容重1.41 g·kg-1[20]。
1.2試驗(yàn)設(shè)計(jì)
試驗(yàn)采用隨機(jī)區(qū)組設(shè)計(jì),設(shè)置常規(guī)施氮(300 kg N·hm-2,N300)、優(yōu)化施氮(240 kg N·hm-2,N240)和對(duì)照不施氮(0 kg N·hm-2,N0)3個(gè)處理,每個(gè)處理重復(fù)3次,共9個(gè)小區(qū),小區(qū)面積為65 m2。優(yōu)化施氮處理與常規(guī)施氮的區(qū)別僅為氮肥減量,施氮時(shí)間和方法以及其他田間管理措施相同。試驗(yàn)小區(qū)之間田埂寬30 cm,田埂兩側(cè)開溝深120 cm,用長(zhǎng)壽塑料膜相互隔離,防止小區(qū)之間水分側(cè)滲和串流。試驗(yàn)灌水引自黃河,各小區(qū)設(shè)置單獨(dú)的灌水口和排水口。
水稻種植品種為寧粳43號(hào),5月29日插秧,10 月1日收獲。所用氮肥為尿素(N,46%),磷肥為重過(guò)磷酸鈣(P2O5,46%),鉀肥為氯化鉀(K2O,60%)。常規(guī)施氮和優(yōu)化施氮的管理措施與當(dāng)?shù)爻R?guī)措施同步。氮肥3次施入土壤,其中50%作為基肥,30%的分蘗肥和20%的拔節(jié)肥分別在6月9日和6月24日追施。水稻生長(zhǎng)季內(nèi)共灌水18次,每個(gè)小區(qū)的灌溉量為14 500 m3·hm-2,不同生育階段的灌水次數(shù)詳見表1。
1.3樣品采集及測(cè)定方法
土壤CO2、CH4和N2O的獲取與測(cè)定采用靜態(tài)箱-氣相色譜法。靜態(tài)箱由不銹鋼材料制成,分為底座(60 cm×50 cm×30 cm)和蓋箱(60 cm×50 cm×150 cm)兩部分。插秧前將底座埋入地下,采樣時(shí)注水密封,蓋箱外覆蓋白色防水罩以減少取樣時(shí)太陽(yáng)輻射對(duì)箱內(nèi)溫度的影響。根據(jù)株行距大小,插秧后底座內(nèi)共有水稻10株。溫室氣體觀測(cè)時(shí)間為2014年4月至11月,觀測(cè)期內(nèi)采用前緊后松的采樣頻率,共采樣21次。在插秧、施用分蘗和拔節(jié)肥后進(jìn)行加強(qiáng)采樣,在水稻收獲前后每月采樣1次,其他時(shí)間每月采樣3次。根據(jù)水稻的生長(zhǎng)情況和取樣時(shí)間,將整個(gè)觀測(cè)時(shí)間劃分為6個(gè)時(shí)期,每個(gè)階段內(nèi)的取樣次數(shù)詳見表1。氣體采集時(shí)間為上午8:00—10:00,在30 min時(shí)段內(nèi),用100 mL注射器在0、10、20、30 min時(shí)分別抽取1次氣樣,每個(gè)樣方共采集4個(gè)氣樣,用鋁箔氣袋(De1in,China)保存,利用氣相色譜(Agi1ent7890,USA)測(cè)定溫室氣體濃度。
表1 水稻各生育期內(nèi)灌水次數(shù)和氣體觀測(cè)頻率Tab1e 1 Frequency of water irrigation and greenhouse gas samP1ing during rice growth Period
1.4數(shù)據(jù)分析
土壤溫室氣體通量根據(jù)箱內(nèi)氣體濃度隨時(shí)間的變化率計(jì)算[21],計(jì)算公式如下:
式中:F為溫室氣體通量,mg·m-2·h-1或μg·m-2·h-1;ρ為標(biāo)準(zhǔn)狀態(tài)下溫室氣體濃度,kg·m-3;H為靜態(tài)箱高度,m;為溫室氣體的排放速率,mL·m-3·h-1;T為采樣箱內(nèi)氣體溫度,℃。
本研究選取100年尺度來(lái)計(jì)算灌區(qū)稻田CH4和N2O排放的增溫潛勢(shì)(GWP):
GWP=25×[CH4]+298×[N2O]
式中:25和298分別為CH4和N2O在100年尺度上相對(duì)于CO2的GWP倍數(shù)。
采用觀測(cè)期內(nèi)溫室氣體排放總量和采樣次數(shù)計(jì)算溫室氣體平均排放速率,年累積排放量由測(cè)定期間內(nèi)每天的通量累加得到,無(wú)實(shí)測(cè)數(shù)據(jù)的碳排放采用前后實(shí)測(cè)數(shù)據(jù),根據(jù)線性插值得到。采用重復(fù)測(cè)量方差分析,比較不同施氮處理、生育階段的溫室氣體排放通量差異。數(shù)據(jù)處理及繪圖分別采用SPSS 16.0和SigmaP1ot 10.0。
2.1稻田CO2通量
觀測(cè)期內(nèi),灌區(qū)稻田CO2排放通量存在明顯的動(dòng)態(tài)變化(P<0.001),排放峰出現(xiàn)在水稻成熟期,最小值出現(xiàn)在泡田期(圖1和表2)。N0處理中稻田CO2累計(jì)排放量為12 305.18 kg C·hm-2,施氮顯著增加了灌區(qū)稻田CO2的排放(P=0.023)(表3)。N300和N240對(duì)稻田CO2排放通量貢獻(xiàn)的增加比例分別為49.91%和43.73%,主要表現(xiàn)在水稻孕穗、灌漿和成熟期(表2)。與N300相比,N240沒(méi)有顯著降低灌區(qū)稻田CO2累計(jì)排放量。
2.2稻田CH4通量
灌區(qū)稻田CH4通量呈現(xiàn)單峰型變化(圖1,P<0.001),排放峰出現(xiàn)在水稻孕穗期,而在水稻收獲后的休閑期,土壤為CH4吸收匯。N0處理中稻田CH4累計(jì)排放量為72.73 kg C·hm-2,施氮顯著增加了灌區(qū)稻田CH4的排放(P=0.045)。N300和N240處理稻田CH4的排放均值分別為146.57、110.77 kg C·hm-2,分別增加了101.53%和52.31%,增加期主要為水稻孕穗期(表2和表3)。與N300相比,N240顯著降低了24.42%的稻田CH4排放。
2.3稻田N2O通量
稻田N2O排放通量在水稻生育期內(nèi)呈現(xiàn)顯著的階段性變化(圖1,P<0.001),最大排放出現(xiàn)在分蘗和拔節(jié)期。N0處理中稻田N2O排放均值為1.16 kg N· hm-2,顯著低于N300處理的2.93 kg N·hm-2和N240處理的1.87 kg N·hm-2(表3)。施氮顯著增加灌區(qū)稻田N2O排放(P=0.003),尤其是在分蘗和拔節(jié)期(表2)。與N300相比,N240對(duì)稻田N2O排放通量的減少作用顯著,降幅達(dá)到了36.28%。
2.4稻田GWP
在不施氮的條件下,灌區(qū)稻田的GWP為2 164.18 kg CO2·hm-2,N300和N240均顯著增加了灌區(qū)稻田的GWP,分別為4 536.60、3 325.20 kg CO2·hm-2。與N300相比,N240使寧夏引黃灌區(qū)稻田GWP顯著降低了26.70%(表3)。
3.1優(yōu)化施氮對(duì)稻田溫室氣體通量的影響
圖1 觀測(cè)期內(nèi)稻田溫室氣體排放速率變化情況Figure 1 Variations of greenhouse gas emission rates in Paddy fie1d during exPerimenta1 Period
表2 水稻不同生育期內(nèi)稻田溫室氣體排放速率Tab1e 2 Variations of greenhouse gas emission rates in Paddy fie1d at different growth stages of rice
土壤中CO2來(lái)源于土壤自養(yǎng)呼吸(根系呼吸)和異養(yǎng)呼吸(微生物呼吸)[22]。本研究中稻田CO2的排放峰出現(xiàn)在水稻生長(zhǎng)的中后期,尤其是成熟期(圖1),原因在于:(1)水稻生長(zhǎng)初期,植株矮小,根系分泌物較少,不僅直接限制了自養(yǎng)呼吸,還因底物缺少間接限制了異養(yǎng)呼吸[23],而到了中后期,根系生物量和腐敗分泌物增加,土壤呼吸作用加強(qiáng)[24-25];(2)水稻生長(zhǎng)初期土壤溫度較低,而且土壤處于淹水狀態(tài),限制土壤呼吸作用,在8—9月,由于灌溉與曬田交替,土壤通氣性增強(qiáng),溫度升高,促進(jìn)了土壤有氧呼吸的進(jìn)行[25-26]。施氮顯著增加稻田土壤CO2排放的研究較多,本研究也有同樣的結(jié)果,而且施氮主要增加灌區(qū)水稻孕穗、灌漿和成熟期土壤CO2排放(表2)。與常規(guī)施氮相比,優(yōu)化施氮并沒(méi)有顯著減少土壤CO2排放(表3),與趙崢等[24]的研究結(jié)果一致。施氮引起的植株生物量增大是引起生態(tài)系統(tǒng)CO2排放增加的重要原因[27]。研究發(fā)現(xiàn),CO2排放與水稻產(chǎn)量存在顯著的相關(guān)性[28],但在該地區(qū),與常規(guī)施氮相比,優(yōu)化施氮并沒(méi)有顯著影響水稻的生長(zhǎng)和產(chǎn)量[29],水稻根系分泌物并未顯著增加。因此,優(yōu)化施氮并沒(méi)有顯著增加微生物活動(dòng)的底物,CO2排放的增加也不明顯。施氮引起的土壤有機(jī)碳形態(tài)和含量的變化,也可能是引起CO2排放改變的重要原因[23],但在寧夏引黃灌區(qū)缺少關(guān)于此方面的研究。此外,本研究在氣體取樣過(guò)程中,靜態(tài)箱內(nèi)水稻植株的光合作用也會(huì)對(duì)稻田CO2通量產(chǎn)生影響,下一步需要增加CO2凈排放的相關(guān)研究。
土壤-大氣界面CH4通量是土壤內(nèi)部CH4產(chǎn)生和氧化共同作用的結(jié)果,受底物和擴(kuò)散速率的影響[30]。在稻田淹水期,隨著水稻分蘗的增加,植株生長(zhǎng)進(jìn)入旺盛階段,根系分泌物的增加以及土壤有機(jī)質(zhì)的不斷分解,厭氧環(huán)境中產(chǎn)生的CH4氣體,隨著水稻發(fā)達(dá)的通氣組織排向大氣[31],使CH4通量在孕穗期達(dá)到最大(表2),N300、N240和N0處理中該段時(shí)期的CH4排放分別占總排放量的60.20%、44.44%和26.38%。與常規(guī)施氮相比,優(yōu)化施氮顯著減少了CH4排放(表3),主要原因也在于減少了孕穗期CH4的排放。水稻生長(zhǎng)后期的干濕交替使土壤通氣性增加,從而使CH4氧化能力加強(qiáng)[32],因此排放通量不斷下降。由于常規(guī)施氮和優(yōu)化施氮處理下,水稻生長(zhǎng)沒(méi)有顯著性差異[29],優(yōu)化施氮顯著減少CH4排放的原因可能與CH4氧化作用的降低有關(guān)。研究發(fā)現(xiàn),隨著施用量的增加,氮肥對(duì)土壤CH4氧化作用的抑制作用增強(qiáng)[33],因此優(yōu)化施氮處理中CH4氧化作用強(qiáng)于常規(guī)施氮,使稻田CH4排放量顯著減少。
表3 稻田溫室氣體累積排放通量及增溫潛勢(shì)Tab1e 3 Average emission f1uxes and g1oba1 warming Potentia1 of greenhouse gases from Paddy fie1ds
化學(xué)反硝化與土壤中的硝化作用、反硝化作用、硝態(tài)氮異化還原成銨作用都能產(chǎn)生N2O。施肥和田間水分管理是影響稻田N2O排放的關(guān)鍵因素[34]。本研究中,基肥、分蘗肥和拔節(jié)肥的3次施入,為反硝化細(xì)菌提供了大量的氮源,使N2O排放在分蘗期和拔節(jié)期出現(xiàn)顯著的排放峰(圖1,表2),與張惠等[19]的研究結(jié)果一致。監(jiān)測(cè)期內(nèi),常規(guī)施氮稻田N2O排放總量為2.93 kg N·hm-2,顯著高于優(yōu)化施氮的1.87 kg N·hm-2,兩個(gè)處理中氮素?fù)p失比例分別為0.98%和0.78%,因此,N2O排放并不是寧夏引黃灌區(qū)稻田氮素?fù)p失的主要途徑[19,35]。施氮引起的土壤硝態(tài)氮含量的增加是灌區(qū)稻田N2O排放增加的主要原因[18-19]。在對(duì)寧夏的靈武灌區(qū)和青銅峽灌區(qū)的稻田氮肥減量研究發(fā)現(xiàn),與常規(guī)施氮相比,優(yōu)化施氮可顯著提高氮素利用效率[14],同時(shí)增加對(duì)土壤原有氮素的吸收利用能力[13],減少灌區(qū)稻田土壤硝態(tài)氮和銨態(tài)氮含量[16,19],使硝化作用和反硝化作用的底物減少,降低N2O排放。因此我們認(rèn)為,在寧夏引黃灌區(qū),優(yōu)化施氮對(duì)土壤有效氮含量的降低作用可能是稻田N2O排放降低的主要原因。
3.2優(yōu)化施肥對(duì)稻田GWP的影響
在百年尺度上,CH4和N2O的GWP分別是CO2的25倍和298倍[1]。本研究中,施氮顯著增加了灌區(qū)稻田的GWP,常規(guī)施肥和優(yōu)化施肥的增加比例分別為109.62%和53.65%(表2),而且優(yōu)化施氮處理的GWP顯著低于常規(guī)施氮。按寧夏灌區(qū)水稻種植面積為1.8×105hm2計(jì)算,得出優(yōu)化施肥比常規(guī)施肥在每個(gè)水稻生長(zhǎng)季內(nèi)可減少碳排放2.18×108kg,相當(dāng)于Li等[36]通過(guò)DNDC模擬的我國(guó)3×107hm2稻田的CH4-C年排放量(6.4~12.0×106kg)所產(chǎn)生的溫室效應(yīng)。但該結(jié)果只是優(yōu)化施肥1年的表現(xiàn),還需要長(zhǎng)期實(shí)驗(yàn)的修正。
研究表明,施氮能顯著增加寧夏引黃灌區(qū)稻田CO2、CH4和N2O排放,從而顯著增加稻田GWP;CO2排放主要在水稻灌漿和成熟期,CH4排放主要發(fā)生在水稻孕穗期,而N2O排放關(guān)鍵期在分蘗和拔節(jié)期。與常規(guī)施氮相比,1年的優(yōu)化施氮結(jié)果傾向于降低土壤CO2排放,同時(shí)顯著降低了稻田24.42%的CH4累積排放和36.28%的N2O累積排放量,總的來(lái)看優(yōu)化施氮顯著降低了灌區(qū)稻田GWP。
本研究中靜態(tài)箱內(nèi)植株的存在,使溫室氣體通量變化對(duì)優(yōu)化施氮的響應(yīng)結(jié)果還存在一定的局限性。在下一步的研究中,首先應(yīng)加強(qiáng)寧夏引黃灌區(qū)施氮對(duì)土壤碳氮溫室氣體的長(zhǎng)期研究,同時(shí)開展剪除水稻后,優(yōu)化施氮對(duì)土壤溫室氣體通量的影響研究。其次應(yīng)分別建立土壤有機(jī)碳氮形態(tài)和含量與土壤碳氮溫室氣體通量的關(guān)系,明確引起溫室氣體通量變化的原因;利用Bio1og微平板法和磷脂脂肪酸法分析施肥對(duì)土壤微生物群落結(jié)構(gòu)和呼吸代謝的影響,利用末端限制性片段技術(shù)分析施氮對(duì)甲烷產(chǎn)生和氧化菌、氨氧化菌與反硝化細(xì)菌功能基因的影響,從微生物角度探討施氮對(duì)稻田土壤溫室氣體排放通量的影響。
參考文獻(xiàn):
[1]IPCC. C1imate change 2007-the Physica1 science basis:Working grouP I contribution to the fourth assessment rePort of the IPCC[M]Cambridge:Cambridge University Press,2007.
[2]Houghton J T,Jenkins G J,EPhraums J J. C1imate Change1990:The IPCC scientific assessment,rePort PrePared for intergovernmenta1 Pane1 on c1imate change by working grouP I[M]. Cambridge:Cambridge University Press,1990.
[3]李長(zhǎng)生,肖向明,F(xiàn)ro1king S,等.中國(guó)農(nóng)田的溫室氣體排放[J].第四紀(jì)研究,2003,23(5):494-503. LI Chang-sheng,XIAO Xiang-ming,F(xiàn)ro1king S,et a1. Greenhouse gas emission from croP1ands of China[J]. Quaternary Sciences,2003,23 (5):494-503.
[4]Zou J W,Huang Y,Zheng X H,et a1. Quantifying direct N2O emissions in Paddy fie1ds during rice growing season in main1and China:DePendence on water regime[J]. Atmospheric Environment,2007,41(37):8030-8042.
[5]劉汝亮,李友宏,張愛(ài)平,等.氮肥后移對(duì)引黃灌區(qū)水稻產(chǎn)量和氮素淋溶損失的影響[J].水土保持學(xué)報(bào),2012,26(2):16-20. LIU Ru-1iang,LI You-hong,ZHANG Ai-Ping,et a1. Effect of PostPoning N aPP1ication on rice yie1d and N 1osses in Ye11ow River irrigation area[J]. Journal of Soil and Water Conservation,2012,26(2):16-20.
[6]國(guó)家統(tǒng)計(jì)局.中國(guó)統(tǒng)計(jì)年鑒(2009)[M].北京:中國(guó)統(tǒng)計(jì)出版社,2009. Nationa1 Bureau of Statistics of China. China statistica1 year book 2009 [M]. Beijing:China Statistics Press,2009.
[7]寧夏回族自治區(qū)統(tǒng)計(jì)局.寧夏統(tǒng)計(jì)年鑒(2008)[M].北京:中國(guó)統(tǒng)計(jì)出版社,2008. Ningxia Statistics Bureau. Ningxia statistica1 yearbook 2008[M]. Beijing:China Statistics Press,2008.
[8]Ju X T,Xing G X,Chen X P,et a1. Reducing environmenta1 risk by im-Proving N management in intensive Chinese agricu1tura1 systems[J]. Proceedings of the National Academy of Sciences of the United States of America,2009,106(19):3041-3046.
[9]Shcherbak I,Mi11ar N,Robertson G P. G1oba1 metaana1ysis of the non-1inear resPonse of soi1 nitrous oxide(N2O)emissions to ferti1izer nitrogen [J]. Proceedings of the National Academy of Sciences,2014,111(25):9199-9204.
[10]Robertson G P,Pau1 E A,Harwood R R. Greenhouse gases in intensive agricu1ture:Contributions of individua1 gases to the radiative forcing of the atmosPhere[J]. Science,2000,289(5486):1922-1925.
[11]朱兆良,文啟孝.中國(guó)土壤氮素[M].南京:江蘇科學(xué)技術(shù)出版社,1992:228-245. ZHU Zhao-1iang,WEN Qi-xiao. Soi1 nitrogen in China[M]. Nanjing:Jiangsu Science and Techno1ogy Press,1992:228-245.
[12]李紅莉,張衛(wèi)峰,張福鎖,等.中國(guó)主要糧食作物化肥施用量與效率變化分析[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2010,16(5):1136-1143. LI Hong-1i,ZHANG Wei-feng,ZHANG Fu-suo,et a1. Chemica1 ferti1-izer use and efficiency change of mian grain croPs in China[J]. Plant Nitrition and Fertilizer Science,2010,16(5):1136-1143.
[13]張晴雯,張惠,易軍,等.青銅峽灌區(qū)水稻田化肥氮去向研究[J].環(huán)境科學(xué)學(xué)報(bào),2010,30(8):1707-1714. ZHANG Qing-wen,ZHANG Hui,YI Jun,et a1. The fate of ferti1izerderivied nitrogen in a rice fie1d in the Qingtongxia irrigation area[J]. Acta Scientiae Circumstantiae,2010,30(8):1707-1714.
[14]李巧珍,陳曉群,李玉中,等.寧夏灌區(qū)不同氮磷組合對(duì)水稻產(chǎn)量及氮肥利用率的影響[J].中國(guó)農(nóng)業(yè)氣象,2010,31(3):379-383. LI Qiao-zhen,CHEN Xiao-qun,LI Yu-zhong,et a1. Effect of different N/P ferti1izer aPP1ication on rice yie1d and N use efficiency in irrigation area of Ningxia[J]. Chinese Journal of Agromrtrorology,2010,31(3):379-383.
[15]陳曉群,孫玉芳,趙營(yíng),等.不同N、P肥配比對(duì)水稻產(chǎn)量、養(yǎng)分吸收及稻田水環(huán)境的影響[J].西北農(nóng)業(yè)學(xué)報(bào),2010,19(7):173-180. CHEN Xiao-qun,SUN Yu-fang,ZHAO Ying,et a1. Effect of different N and P rates on the rice yie1d,nutrients uPtake and water environment of Paddy fie1d[J]. Acta Agriculture Boreali-occidentalis Sinica,2010,19(7):173-180.
[16]易軍,張晴雯,楊正禮.寧夏引黃灌區(qū)稻田氮素濃度變化與遷移特征[J].中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2011,19(4):771-777. YI Jun,ZHANG Qing-wen,YANG Zheng-1i. Concentration change and migration characteristics if nitrogen in the Paddy fie1d of Ningxia Ye11ow Riverirrigationarea[J].Chinese Journalof Eco-Agriculture,2011,19(4):771-777.
[17]周麗娜,劉汝亮,張愛(ài)平,等.引黃灌區(qū)灌淤土氮素淋失特征土柱模擬研究[J].農(nóng)業(yè)資源與環(huán)境學(xué)報(bào),2014,31(6):513-520. ZHOU Li-na,LIU Ru-1iang,ZHANG Ai-Ping,et a1. AnthroPogenica11uvia1 soi1 nitrogen ferti1izer 1eaching 1oss characteristics study using soi1 co1umn simu1ation in Ye11ow River irrigation area,China[J]. Journal of Agricultural Resources and Environment,2014,31(6):513-520.
[18]Zhang A P,Liu R L,Gao J,et a1. Regu1ating N aPP1ication for rice yie1d and sustainab1e eco-agro deve1oPment in the uPPer reaches of Ye11ow River basin,China[J]. Scientific World Journal,2014,doi:org/10. 1155/ 2014/239279.
[19]張惠,楊正禮,羅良國(guó),等.黃河上游灌區(qū)稻田N2O排放特征[J].生態(tài)學(xué)報(bào),2011,31(21):6606-6615. ZHANG Hui,YANG Zheng-1i,LUO Liang-guo,et a1. The feature ofN2O emission from a Paddy fie1d in irrigation area of the Ye11ow River [J]. Acta Ecologica Sinica,2011,31(21):6606-6615.
[20]張愛(ài)平,劉汝亮,高霽,等.生物炭對(duì)灌淤土氮素流失及水稻產(chǎn)量的影響[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2014,33(12):2395-2403. ZHANG Ai-Ping,LIU Ru-1iang,GAO Ji,et a1. Effects of biochar on nitrogen 1osses and rice yie1d in anthroPogenic-a11uvia1 soi1 irrigated with Ye11ow River water[J]. Journal of Agro-Environment Science,2014,33 (12):2395-2403.
[21]Wang Y S,Wang Y H. Quick measurement of CH4,CO2and N2O emissions from a short-P1ant ecosystem[J]. Advances in Atmospheric Sciences,2003,20(5):842-844.
[22]Kuzyakov Y. Sources of CO2eff1ux from soi1 and review of Partitioning methods[J]. Soil Biology & Biochemistry,2006,38(3):425-448.
[23]Fang H J,Cheng S L,Yu G R,et a1. ExPerimenta1 nitrogen dePosition a1ters the quantity and qua1ity of soi1 disso1ved organic carbon in an a1Pine meadow on the Qinghai-Tibetan P1ateau[J]. Applied Soil Ecology,2014,81:1-11.
[24]趙崢,岳玉波,張翼,等.不同施肥條件對(duì)稻田溫室氣體排放特征的影響[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2014,33(11):2273-2278. ZHAO Zheng,YUE Yu-bo,ZHANG Yi,et a1. ImPact of different ferti1ization Practices on greenhouse gas emission from Paddy fie1d[J]. Journal of Agro-Environment Science,2014,33(11):2273-2278.
[25]侯玉蘭,王軍,陳振樓,等.崇明島稻麥輪作系統(tǒng)稻田溫室氣體排放研究[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2012,31(9):1862-1867. HOU Yu-1an,WANG Jun,CHEN Zhen-1ou,et a1. Emission of greenhouse gases from Paddy fie1ds of rice-wheat rotation system in Chongmingis1and,China[J]. Journal of Agro-Environment Science,2012,31 (9):1862-1867.
[26]Tesarova M,G1oser J. Tota1 CO2outPut from a11uvia1 soi1s with two tyPes of grass1and communities[J]. Pedobiologia,1976,16:364-372.
[27]Wang Y S,Cheng S L,F(xiàn)ang H J,et a1. Contrasting effects of ammonium and nitrate inPuts on soi1 CO2emission in a subtroPica1 coniferous P1antation of Southern China[J]. Biology and Fertility of Soils,2015,51 (7):815-825.
[28]薛正平.水稻田溫室氣體排放對(duì)施氮量響應(yīng)的試驗(yàn)研究[C].全國(guó)農(nóng)業(yè)氣象與生態(tài)環(huán)境學(xué)術(shù)年會(huì)論文集,2006:471-473. XUE Zheng-Ping. ResPonse of soi1 methane emission to nitrogen aPP1ication in Paddy fie1d[C]. Nationa1 Agro-meteoro1ogy and Eco-environment of Academic Annua1 Conference,2006:471-473.
[29]劉汝亮,張愛(ài)平,李友宏,等.長(zhǎng)期配施有機(jī)肥對(duì)寧夏引黃灌區(qū)水稻產(chǎn)量和稻田氮素淋失及平衡特征的影響[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2015,34(5):947-954. LIU Ru-1iang,ZHANG Ai-Ping,LI You-hong,et a1. Rice yie1d,nitrogen use efficiency(NUE)and nitrogen 1eaching 1osses as affected by 1ong-term combined aPP1ications of manure and chemica1 ferti1izers in Ye11ow River irrigated region of Ningxia,China[J]. Journal of Agro-Environment Science,2015,34(5):947-954.
[30]Oh N H,Kim H S,Richter D D. What regu1ates soi1 CO2concentrations?A mode1ing aPProach to CO2diffusion in deeP soi1 Profi1es[J]. Environmental Engineering Science,2005,22(1):38-45.
[31]上官行健,王明星,陳德章,等.稻田土壤中的CH4產(chǎn)生[J].地球科學(xué)進(jìn)展,1993,8(5):1-12. SHANGGUAN Xing-jian,WANG Ming-xing,CHEN De-zhang,et a1. Methane Peoduction in rice Paddy fie1ds[J]. Advance in Earth Sciences,1993,8(5):1-12.
[32]Li C S,Qiu J J,F(xiàn)ro1king S,et a1. Reduced methane emissions from 1arge-sca1e changes in water management of China's rice Paddies during 1980—2000[J]. Geophysical Research Letters,2002,29(20):331-334.
[33]Wang Y S,Cheng S L,F(xiàn)ang H J,et a1. Simu1ated nitrogen dePosition reduces CH4uPtake and increases N2O emission from a subtroPica1 P1antation forest soi1 in Southern China[J]. Plos One,2014,9(4):e93571.
[34]Xiong Z Q,Xing G X,Zhu Z L. Nitrous oxide and methane emissions as affected by water,soi1 and nitrogen[J]. Pedosphere,2007,17(2):146-155.
[35]朱金霞,張?jiān)磁?,鄭?guó)保,等.氮肥對(duì)寧夏地區(qū)水稻田N2O排放的影響[J].西北農(nóng)業(yè)學(xué)報(bào),2014,23(1):98-102. ZHU Jin-xia,ZHANG Yuan-Pei,ZHENG Guo-bao,et a1. Effect of nitrogen ferti1izer on the emission of N2O form Paddy fie1d in Ningxia,China[J]. Acta Agriculture Boreali-occidentalis Sinica,2014,23(1):98-102.
[36]Li C S,Mosier A,Wassmann R,et a1. Mode1ing greenhouse gas emissions from rice-based Production systems:Sensitivity and uPsca1ing[J]. Global Biogeochemical Cycles,2004,18(1):1-19.
Effects of optimized N fertilization on carbon dioxide,methane and nitrous oxide fluxes in paddy fields in Yellow River water irrigation region of Ningxia
WANG Yong-sheng1,2,ZHANG Ai-Ping3*,LIU Ru-1iang4,YANG Shi-qi3,LI Cun-jun1,2
(1.Beijing Research Center for Information Techno1ogy in Agricu1ture,Beijing 100097,China;2.Nationa1 Engineering Research Center for Information Techno1ogy in Agricu1ture,Beijing 100097,China;3.Institute of Agro-Environment and Sustainab1e Deve1oPment,CAAS/Key Laboratory of Agro-Environment and C1imate Change,China Ministry of Agricu1ture,Beijing 100081,China;4.Ningxia Academy of Agricu1ture and Forestry Sciences,Yinchuan 750000,China)
Abstract:Excessive nitrogen(N)ferti1izer aPP1ication is a widesPread Practice in Ye11ow River water irrigation region of Ningxia. Previous studies have demonstrated that oPtimized N ferti1ization can not on1y imProve rice yie1d but a1so reduce nitrogen 1eaching. However,there was 1itt1e information avai1ab1e about the resPonses of soi1 greenhouse gas f1uxes to oPtimized N ferti1ization in this region. A fie1d exPeriment was conducted to eva1uate the effects of different N ferti1ization on carbon dioxide(CO2),methane(CH4)and nitrous oxide(N2O)f1uxes and g1oba1 warming Potentia1(GWP)in Paddy fie1d in Ye11ow River water irrigation region of Ningxia,using static chamber technique and gas chromatograPhy. Treatments inc1uded conventiona1 N ferti1ization(N300),oPtimized N ferti1ization(N240)and no N ferti1ization(N0). Our resu1ts showed obvious differences in greenhouse gas f1uxes during the rice growth Period. Higher CO2emissions aPPeared at fi11ing and mature stages,but CH4emissions main1y occurred at booting stage. However,the Peak of N2O emissions was observed at ti11ering and e1ongationstages. APP1ying nitrogen significant1y increased soi1 CO2,CH4,and N2O emissions and the g1oba1 warming Potentia1. During the exPerimenta1 Period,average CO2,CH4,and N2O f1uxes were 18 446.87 kg C·hm-2,146.57 kg C·hm-2,and 2.93 kg N·hm-2,resPective1y. One-season oPtimized N ferti1ization did not affect CO2emissions,but significant1y reduced CH4and N2O emissions by 24.42%and 36.28%,resPective-1y,as comPared with conventiona1 N ferti1ization. Overa11,our resu1ts indicate that the g1oba1 warming Potentia1 of Paddy fie1d was significant1y reduced by 26.70%by oPtimized N ferti1ization in Ye11ow River water irrigation region of Ningxia. Further research is needed to ana-1yze the mechanisms of soi1 greenhouse gas f1uxes under 1ong-term oPtimized N ferti1ization by integrating the variations of soi1 organic carbon and N avai1abi1ity and soi1 microbio1ogy methods.
Keywords:Ye11ow River water irrigation region of Ningxia;oPtimized N ferti1ization;soi1;greenhouse gas;g1oba1 warming Potentia1
中圖分類號(hào):X511
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1672-2043(2016)06-1218-07 doi∶10.11654/jaes.2016.06.027
收稿日期:2015-11-30
基金項(xiàng)目:國(guó)家水體污染控制與治理科技重大專項(xiàng)(201ZX07201-009);中央公益性科研院所基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金(BSRF201306)
作者簡(jiǎn)介:王永生(1985—),男,山東濰坊人,博士,助理研究員,主要從事土壤碳氮循環(huán)關(guān)鍵過(guò)程及微生物機(jī)理研究。E-mai1:wyswqj@163.com
*通信作者:張愛(ài)平E-mai1:aPzhang0601@126.com