王繼禹,賈秀玲,段譽
(1.鄭州工商學(xué)院公共基礎(chǔ)部,河南 鄭州 451400;2.貴州工程應(yīng)用技術(shù)學(xué)院理學(xué)院,貴州 畢節(jié) 551700)
一類時滯模糊BAM神經(jīng)網(wǎng)絡(luò)周期解的全局指數(shù)穩(wěn)定性的新準則
王繼禹1,賈秀玲1,段譽2
(1.鄭州工商學(xué)院公共基礎(chǔ)部,河南 鄭州 451400;2.貴州工程應(yīng)用技術(shù)學(xué)院理學(xué)院,貴州 畢節(jié) 551700)
研究了一類具變時滯模糊BAM(bi-directionalassociativememory)神經(jīng)網(wǎng)絡(luò)。利用Yang不等式和構(gòu)造Lyapuonv函數(shù)等技巧,在弱化條件下給出了BAM神經(jīng)網(wǎng)絡(luò)周期解的全局指數(shù)穩(wěn)定性的充分條件。
模糊BAM神經(jīng)網(wǎng)絡(luò);周期解;指數(shù)穩(wěn)定性
雙向聯(lián)想記憶神經(jīng)網(wǎng)絡(luò)(BAM)模型自從被Kosko提出以來,[1]已在模式識別、信息的智能處理、最優(yōu)化問題計算以及復(fù)雜控制等工程領(lǐng)域中得到廣泛的應(yīng)用。因此,雙向聯(lián)想記憶神經(jīng)網(wǎng)絡(luò)已經(jīng)引起了眾多研究者的關(guān)注。[2-4]
自從1965年美國加州大學(xué)控制專家Zadeh教授提出模糊集概念以后,模糊數(shù)學(xué)作為一門新興的數(shù)學(xué)學(xué)科得到了迅速發(fā)展。[5]1996年,T。Yang和L。Yang把模糊邏輯融入傳統(tǒng)的神經(jīng)網(wǎng)絡(luò)模型中,[6]因為模糊神經(jīng)網(wǎng)絡(luò)在圖形處理及模式識別方面的廣泛應(yīng)用,迅速引起了一批學(xué)者的大量研究。[7-10]但是在已有的結(jié)論中很少有討論具變時滯的模糊BAM神經(jīng)網(wǎng)絡(luò)的全局指數(shù)穩(wěn)定性,且實際問題中,由于大量長度大小不等的神經(jīng)元是并行連接的,神經(jīng)元之間的連接權(quán)也是時變的,因此討論含有變時滯的非自治模糊BAM神經(jīng)網(wǎng)絡(luò)的周期解的全局指數(shù)穩(wěn)定性是很有意義的。本文將研究如下神經(jīng)網(wǎng)絡(luò)模型:
本文針對一類具變時滯的非自治模糊雙向聯(lián)想記憶(BAM)神經(jīng)網(wǎng)絡(luò),基于Yang不等式等技巧,導(dǎo)出了其周期解的全局指數(shù)穩(wěn)定性的一個充分條件,該成果對于模糊雙向聯(lián)想記憶(BAM)神經(jīng)網(wǎng)絡(luò)的設(shè)計與應(yīng)用具有明顯的意義。
[1]Kosko.B.Bidierctionalassociativememories[J].IEEETransanction System Man Cybernet,1988(1):49-60.
[2]LiY.Globalexponentialstability of BAM neuralnetworksw ith delaysand impulses[J].ChaosSolitonsand Fractals,2005(1):279-285.
[3]LiY,Yang C.Globalexponentialstability analysison impulisive BAM neuralnetworksw ith distributed delays[J].JournalofMathematicalAnalysisAnd Applications,2006(2):1125-1139.
[4]LiY,W ang J.An analysison globalexponentialstability and the existence ofperiodic solutions for non-autonomoushybrid BAM neuralnetworksw ith distributed delaysand impulses[J].Computers And Mathematicsw ith Applications,2008(9):2256-2267.
[5]鞏增泰,趙乖霞.模糊直線上模糊數(shù)值函數(shù)的Henstock積分[J].云南大學(xué)學(xué)報(自然科學(xué)版),2008(6): 541-548.
[6]Yang T,Yang L B,W u C W,et al.Fuzzy cellular neural networks:Theory[C]//IEEE International W orkshop on Cellular NeuralNetworks&Their Applications.1996:181-186.
[7]W ang J,Lu J.Globalexponentialstability of fuzzy cellular neuralnetworksw ith delaysand reaction-diffusion terms[J].ChaosSolitonsand Fractals,2008(3):878-885.
[8]Long S,Xu D.Globalexponentialp-stability of stochastic non-autonomous Takagi–Sugeno fuzzy cellular neuralnetworksw ith time-varying delaysand impulses[J].Fuzzy Sets&Systems,2014(9):82-100.
[9]Yang G.New resultson the stability of fuzzy cellular neuralnetworksw ith time-varying leakage delays[J].NeuralComputing&Applications,2014(7-8):1709-1715.
[10]李永昆,楊莉,吳萬勤.一類具變時滯的模糊BAM神經(jīng)網(wǎng)絡(luò)的平衡點的指數(shù)穩(wěn)定性[J].生物數(shù)學(xué)學(xué)報,2010(1):13-23.
New Criteria for G lobal Exponential Stability of Periodic Solutions for a Classof Fuzzy BAM Neural Networksw ith Time-Varying Delays
WANG Ji-yu1,JIA Xiu-ling1,DUYu2
(1.Departmentof Public Basic Education,Zhengzhou Technology and Business University,Zhengzhou, Henan451400,China;2.Schoolof Science,Guizhou University of Engineering Science, Bijie,Guizhou551700,Guizhou,)
In this paper,a class of non-autonomous fuzzy BAM(bi-directional associativememory)neuralnetworkswith time-varying delays.By utilizing the Lyapunov functionalmethond,applying Young inequality technique and some analysis techniques,one sufficient condition is obtained for the globalexponential stability of periodic solutions for a classof fuzzy BAM neuralnetworkswith time-varying delaysunder theweaker condition.
Fuzzy BAM NeuralNetworks;Periodic Solutions;Exponential Stability
B84
A
2096-0239(2016)06-0113-06
(責(zé)編:任秀秀 責(zé)校:明茂修)
2016-10-20
河南省基礎(chǔ)與前沿技術(shù)項目“條件代理重加密方案及其應(yīng)用的研究”,項目編號:142300410384;河南省教育廳重點科研項目“具脈沖和時滯的人工神經(jīng)網(wǎng)絡(luò)動力學(xué)行為研究”,項目編號:15A110027;貴州省科學(xué)技術(shù)廳科學(xué)技術(shù)聯(lián)合基金項目“Kirchhoff方程解的存在性和多解性”,項目編號:黔科合LH字[2015]7595;貴州省科學(xué)技術(shù)廳科學(xué)技術(shù)聯(lián)合基金項目“極值理論及風(fēng)險模型的大偏差”,項目編號:黔科合LH字[2016]7054。
王繼禹(1981-),男,河南南陽人,鄭州工商學(xué)院公共基礎(chǔ)部講師。研究方向:泛函微分方程定性理論。